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ON DIVISOR THEORY IN AN ARCHIMEDIAN LATTICE-ORDERED SEMIGROUP
Dedicated to Emeritus Professor Mchio Nagumo on his 70th birthday
KENTARO MURATA and KUMIE SHIRAI

The main purpose of this note is to consider
a divisor theory of lattice-ordered semigroups (abbr.
l-semigroups), and to show that an l-semigroup S is
Artinian if and only if the cone of S has the divisor

theory.

1. Introduction. Let L be an l-semigroup (not necessarily
commutative), and let X, be any multiplicatively closed subset
of L such that for each element a €L there is an element x & =
with x a. Let A be a commutative l-semigroup with unity quantity
€ such that (1) £ is the gréatest element of A , (2) A contains
primes and (3) each element of A\ is uniquely decomposed into
primes apart from its commutativity. ‘

An l-semigroup epimorphism f: a+—>£f(a) from L to D is called
a right divisor theory of L if it satisfies the following conditions:

(1°) If for x, ye>,, f(x) is divisible by f(y) in & , then

x is divisible by ¥ on the right-hand side in L, i.e. if there is
an element ye&/\ such that f£(x) =¥f(y), then there is an element c
€ L such that x = cy.

(2°) Z(o) = Z{(p) implieso=f , where 2. () is the set of
the elements of x € >, such that f(x) is divisible by «e€3..

A left divisor theory is defined analogousely.

A main purpose of this note is to prove the following

THEOREM. Let S be a conditionally complete lattice-ordered
semigroup (abbr. cl-semigroup) with unity quantity e. Assume that
the cone C = {aES; a se} satisfies the ascending chain condition

in the sense of quasi-equality (cf. DEFINITION 3 ) and has a join-
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generator system >. such that (a) 3, is closed under multiplication
(b) every element of >, is invertible in S and (c) every element s€
S is written as s = ax"'= y 'b where a,beC and x, ye>.. Then the
following conditions are eguivalent: ’

(lr) C has a right divisor theory.

(ll) C has a left divisor theory.

(2) C is archimedian.

(3) S is Artinian.

Let G be the group generated by . in S. Then S is a quotient
semigroup of C by G A C in the sense of [2], where A will denote the
intersection. The cone C of S is said to be archimedian, if whenever
z'x <e for n = 1,2,...(x€2 , z€G) imply z < e. Since zlx < e &
2" < x = xzng e, there needs no distinction of "right" and "left"
for archimedesness. An Artinian l-semigroup is considered in the
next section.

2. Artinian l-semigroups. Let S be a cl- semigroup whose cone
C has a join-generator system > with the conditions (a), (b) and
(c) in the theorem mentioned above.

LEMMA 1. The group G generated by 2, in S is a join-generator
system of S.

Proof. The any element a€ S there is an element x¢2,such that
axe€ C. That ax = sup N for a subset N of Z . Hence we have a =

L {ux-1; ue_N}. This means that

(sup N x-1 = sup(Nx"’) where Nx~
G is a join-generator system of S.

LEMMA 2. For any two elements a and b of S, X(a,b) ={UEG; ub
ga} is non-void. The set F(a,b) = {s €S; sb sa} has an upper
bound, and sup F(a,b) = sup X(a,b).

Proof. Take an element x € G such that x < a, and take y€ 2,
such that yb < e. Then putting u = xy we have ub < a. It is easy

to see that av~!

is an upper bound of F(a,b) for any ve G with v<
b. Let s = cx~! be any element of F(a,b) where c€C, xe2, ; and

put J = {zez H z,sc}. Then since zx~!'b < cx~'b = sb € a and zx !
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€ G, we have s = cx—t = (sup J)x" = sup(Jx‘1) < sup X(a,b). Hence

sup F(a,b) < sup X(a,b). The converse inequality is evident.
DEFINITION 1. a/b = sup F(a,b) is called a right residual of
a by b.
LEMMA 3. If a€eS and ueG, then a/u = au=l In particular e/u

Proof. There is a subset A of G such that a/u = sup A. Then
for any z€ A we have zu < a, z gau'1, a/u éau"’. The converse
inequality is evident.

The residual has thr following properties:

(1) a/(bc) = (a/c)/b.

(2) (inf A)/b = inf { a/b; a € A}, if either inf A .or the
right-hand side exists. '

(3) a/(sup B) = inf { a/b; b € B}, if either sup B or the
right-hand side exists.

It is clear that U(a) = {ueG; a < u} is non-void for any a€S.

DEFINITION 2. a* = inf U(a) is called a closure of a. a is
said to be closed if a* = a.

The following pro?erties are immediate:

(4) a < a*.

(5) a<b implies a* < b¥*,

LEMMA 4. If a is closed, then a/b is closed for any b € S.

Proof. Let b = sup B for a subset B of G. Then since a =
inf U(a) we have a/b = inf U(a)/sup B = inf { u/v; u€U(a), veB} =
inf { uv“}?:inf U(a/b) 2 a/b (by (2),(3) and LEMMA 3). Hence we
obtain ‘a/b = inf U(a/b) as desired. '

We have the following properties:

(6) a* = e/(e/a).

(7) e/a = e/a¥*.

(8) a** = a¥%,

(2) a*b* < (a*b*)* = (ab)*,

(10) (sup A)* =Asup(A*)*, if either sup A or sup A* exists,

where A* = {a*; a€A}. 1In particular (a\JDb)* = (a*\ b*)*,
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(11) (inf A*)* = inf A*, if inf A* exists. 1In particular
(a* M b*)* = a* N Db*,

We define an operation "," by a*sb* = (ab)*.

(12) (sup A)*eb* = (sup(A*ob*))*, b*o(sup A)* = (sup(b*oA¥))*,
if sup A exists,

Proof. Ad (6): For any u € U(a) we have e/a=e/u = u'ﬁ
e/(e/a) < e/u‘1 = u. Hence e/(e/a) < inf U(a) = a*. Conversely
since a = sup A for a suitable subset A of G, we have x~ 1= e/x =
e/a for any x€ A. Hence x = e¢/x~ 1 = ¢/(e/x) < e/(e/a) and hence
a = sup A <e/(e/a). Thus we obtain a* < e/(e/a) by LEMMA 4 and (5).
Ad (7): By (6) we have e/a* = e/(e/(e/a)) = (e/a)* = e/a. The
converse inequality is evident. (8) is immediate by (6) and (7).

Ad (9): Since e/(ab)* = e/(ab) = (e/b)/a = (e/b*)/a = e/(ab¥*), we
have (ab)* = (ab)** = e¢/(e/(ab)*) = e/(e/(ab*)) = (ab*)*. Now we

can define left residuals and argue symmetrically as above. If ué€G
then va £ e &S a $u“4@ au € e. Hence we have e/a = a\e, the
left residual of e by a. This yield (ab)* = (a*b)*, and the identity
of (9) holds. (10), (11) and (12) are checked easily.

DEFINITION 3. Two elements a, b€ S are said to be quasi-equal,
if a* = b*., In symbol: a ~ b.

(13) a~b implies e/a = e/b, and conversely.

(14) a*~s a. ‘

(15) a*~_. c implies a* > c.

‘The above three are immediate. Put S* = {s*; S(ES}, and define
a* \V b* {(a* U b*)* = (a U b)*, a* N\ b* = (a* "\ b*)* = a* M\ b* and
a* A b* (a A\ b)*. Then by using (8) ~~ (12) we can show that (S*,°,
V :/A) is cl-semigroup, and similarly for (S*,0,\V,A).

DEFINITION 4. If the semlgroup (S*,o )is a group, S is called

an Artinian l-semigroup [3].

We can show that if g .igArtinian, (S*,9¢, \/, A) 1is an cl-group.
Hence (S*, o0 ) is a commutative group, and (S*,\/, A) 1s a distributive
lattice. In this case e is maximally integral (cf. p, 12 in [1]).

For it can be shown that C is archimedian if and only if the above
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two meet operations coinside (cf. pp 13-14 in [1]).

3. Proof of THEOREM. (lr)=?(2); Let (C, A, £f) be a given
divisor theory of the cone C of S, and let H be the restricted direct
product of infinite cyclic groups, each of which is generated by a
prime divisor in /\. Then it can be show that f: C —> /\ extends
to a map f: S —>H by f: cz™ r——%f(c)f(z)"1 where cz-1€ s, cecC, ze
>.. f(cz~!) does not depend on the choice of the fractional repre-
sentations.

Suppose that xu" < e, x €2, , u€G for n = 1,2,..., and let
£(x) = T ... T L AN A 0), E(w) = AN Al LN I
(/A; > 0 or < 0) be the prime factorizations in H, where Tyr-ear T,
are the common prime divisors. The since f(xc™ € A we have
Ai+ ng., >0 (i =1,..., r) and n/ujzo (j = r+l,..., t) for all
positive integers n. This implies/ui>0 for i=1,..., r,...,t.
Hence we have f(u) < f(e), f(u)€ . Since u is written as u = yz'4
for some y, =z e(Z , we have y = uz, f{y) = f(u)f(z). BY using the
condition (1°) we can choose an element c €C such that y = cz. Thus

we obtain u = ¢ <€e as desired.

(2) =»(3): Let a be an arbitrary element of S*, and let b =
az€C, ze€2, . Then since e/b 2 e, we have b* = e¢/(e/b) < e/e = e
Hence we obtain aoz = b*e C* = {c*; ceC} = 8* A C. Thus in order

to prove that (S*, o ) is a group, it is sufficient to show that
every element of C* is invertible with respect to. the operation "o".
Let a€ C*, and let u€G be an element such that a(e/a) << u. Then

u "a(e/a) < e, ula<se/(e/a) = a* = a. Hence we have a LKLua, a =
W"a for n = 1,2,.... If we take an element x €F, such that x € a,
then x éuna. Hence u 'x <a<e forn=1,2,... This implies
u~'< e, e < u. Thus we get e < inf U( al(e/a)) =.(a(e/a))*<_e* =e.
We obtain therefore ao(e/a) = e. ‘

(3)=> (1_): Suppose that S is Artinian. Then (S*,,\V,A) is
r

cl-group and so (S*,¢,\/,A) is commutative 1- group. For an element

p* of S8*, p* is irreducible if and only if p* is prime. Since C
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satisfies the ascending chain condition in the sense of quasi-equality,
each element of C* is uniquely decomposed into primes apart from its
commutativity. Now we show that (C,C*,%) is a divisor theory of C.
Suppose that x* = a* y* for x,y € 2 and a*e€ C*. Then since x* = x,
y* = y we have x = a*y, xy~! = xoy ~! = a*, x = a*y. This shows
that the condition (1°) holds for C. Let > (a*) be the set of the
elements x €2, which are divisible by a*, i.e., x <a*. If 3 (a¥*)

2. (b*) we obtain a* = sup> (a*) = supy (b*) = b*. That is, the
condition (2°) holds for C. B

Similarly we can show the implications: (ll)é(Z)%B)é(ll) .

4. Uniqueness for divisor theory. Let (L,& ,f) be a (right)
divisor theory of L. An element X is called a principal divisor,
if there is an element x € such that « = f(x). It is easily shown
that >.() is not vacuous for each divisor X .

UNIQUENESS THEOREM. For any two right divisor theories (L,4 ;%)
and (L, |7,9) of L there exists an isomorphism ¢ from A\ to |~ ,
under which the principal divisors in A and in [~ correspond’.

Proof. We shall show first thaf for each prime T €A there is-
a prime f€J” such that =(P) € >.(). For, if not, there is a
prime T &/\ for which there is no prime Pe [ with Z(f:)Q'Z(E).
Take an element x € 2, (7L), and let g(x) = ﬁ f%"‘ be the prime
factorization of g(x) in 7 . Then since each Z‘(Pi) is not contained
in 2,(T), we can choose x; which is contained in Z(j3 ) and not
contained in 2, (7). Hence there are Y € [ such that g (x;) fiYi
for i = 1,...,n. Then we have g(xﬁ 1€") = g(x)Y , where b’=
K&‘--- X&" . Hence by (1°) xf‘ xf" is divisible by x on the
right-hand 51de in L, hence f(x& N o ) is divisible by f(x) , and
hence f(xl) <L E(x )*" is divisible by T . ThereforeS.(TC) contains
some x., which is a contradiction. Symmetrically for the prime fe[’,
there is a prime T € A such that J(T) < Y, (P). v
2 Next we show that T =7. Since Q is a semigroup with the

(6)



166

unique factorization theorem, we have TWT % ™. By using (2°) we
can see that S,(wmw’) is strictly contained in 3, (7¢) and hence in

>. (L) . Then we can take an element y € 2, such that f(y) is
divisible by ®' and not divisible by /. If T ¥, f(y) is
divisible by Tr’ , since f(y) is divisible by 7T . This is imposible.
We have therefore W=7/, () = %(f). By using (2°) we can
see easily that for each prime €/, the prime fe|” with Z (f)
= 2.(T) is uniquely determined. Hence we can define the map ? : 7C
— f= ?(7C). It is evident that § extends uniquely to an isomor-
phism from /A to 7.

' In order to prove the last part of the theorem we suppose that
f(x) is exactly divisible by‘rk. Since EL(KF) is, by (2°), strictly
contained in 2>, (7)), we can choose an element X such that f(xo) =
L and A is not divisible by 7T . Hence again by (2°) we can take
an element u which is contained in J,( O(k) and not in Z(TCD(k) . Then

of course g(u) 1s not d1v131ble by ? (TL). Since f(xu) = £(x)£f(u)
=7CO( ﬁ (TEO() ﬁ f(x,) § = f(xg)ﬁ for some @éA , we get xu
= bxg for some be L. Hence we have g(x)g(u) = g(x ) g(b) On the
other hand since g(x ) is divisible by ? UL) and g(u) is not divisi-
ble by 9’(H;), g(x) is divisible by 9W7C) By a symmetrical argu-

ment we can show that f(x) is exactly divisible by EF if and only if
g(x)vis exactly divisible by ff(n;)k. This completes the proof.

COROLLARY 1. Suppose that S is an Artinian l-semigroup, and

C the cone of S. Then the divisor theory (C,C*,x) is uniquely
determined apart from isomorphism.

COROLLARY 2. S and C are as same as in Corollary 1. Assume
that the ascending chain condition holds for elements of C, and
any prime element is maximal (in C). Then S forms a commutative
l-group. ,

Proof. It can be proved that quasi-equality implies equality,
which is similar to the proof of Theorem 2.6 in [1].
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