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ARCHIMEDEAN CLASSES IN AN ORDERED SEMIGROUP IV )

T6ru Saitd

By an ordered semigroup we mean a semigroup S with a simple
order < which satisfies
for x, y, 2 €8, x <y imples xz £ yz and 2zx < 2zY¥.
The archimedean equivalence 4 on an ordered semigroup S is defined
by:
for x, ye S, x A4y if and only if there exist natural
numbers p, g, ¥ and s such that xP < yq and yr < xs.
The difficulty occurs because of the fact that the archimedean equi-
valence is not necessarily a congruence relation.. In our previous
papers [3], [4] and [5], we discussed the behavior of set products of.
two archimedean classes of an ordered semigroup. The purpose of the
present paper is to give some supplementary properties to preceding
papers and also some applications.

We use the terminology and notations in our previous papers (31,

[4] and [5] freely.

1. 1In this section, we give some properties of archimedean

classes which will be needed in the following discussion.

LEMMA 1. Suppose A, Be ¢, BS <A§ and BS§ 1is periodic of

L-type. Let g be the idempotent of A * B and f the idempotent

of B. Then

(1) ag =g for every a e A;
(2) if BS < AS, then af = g for every a € A.
*)
In the seminar, we gave a talk which covers our papers "Archi-
medean classes in an ordered semigroup I-IV". But Part I-III was

published recently and, accordingly, we publish here only Part IV.
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PROOF. Since (A * B)S§ = A A BS§ =BS§, A * B is a periodic
archimedean class and so really contains the unique idempotent g.

In the proof, we only consider the case when A < B. Then A <X A * B

< B. First supposé that B¢ A§. Then

A*B=min{ Xe ¢ ; A

A

X <B and X e A§ ABS = AS } = A.
since g 1is the zero element of A * B = A, we have ag = g for
every a € A. Next suppose that B§ < AS§. Let a € A and put

h = ag. Let D be the archimedean class containing the element h.
Then, by [3] Lemma 5.2, h is an idempotent and

D=min{ X e ¢ ; A <X and X e B§ }.

since A <A *B and (A * B)S§

On the other hand, h = ag < f2 =f and so A <D

A§ N BS§ = B§, we have D < A * B.

B and also

HA

De BS§ = AS A BS§. Hence A * B

A

D and so D

A * B. Hence h =g

and so ag = g. Moreover, since A < A * B, we have a < g. Hence

and so af = g.

THEOREM 2. Suppose that A, B e ¢, AS§ ABS< AS and AS§, BS

is periodic of L-type. Then

(1) if A

A

B, then ABC (A * B),;

(2) if B

A

A, then AB c (A * B) .

ggggg.' Here we only show the assertion (l1). Suppose A < B.
Since A8 A BS < A§, we have A < A * B < B. Since (A * B)6= A§ A BS,
A * B is a periodic archimedean. class. We denote by g the~ideﬁpo-
tent of A * B. Let ae€ A and b e B. First suppose g < b. Then,
since a < g, we have ab < gb = g. On the other hand, (A * B)S
= AS§ A BS§ < AS and, by [3] Lemma 5.10, A * (A * B) = A * B. Hence,
by Lemma 1, g = ag < ab. Hence ab =g e (A * B)+. Next suppose that
b < g. Then we have B < A * B and so B=A * B. Hence B is a
periodic archimedean class with idempotent g and so " = g for

some natural number n. Hence if ab < ba, then, by Lemma 1,
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g = an+l n+lbn+l < ( b)n+1 < abPap = aganb = ag = g,
and if ba < ab, then

g = ag = aganb = ab™a"p < (ab)n+l < an+lbn+l = an+1g = g.
Thus we have (ab)n+l = g and so ab € A * B. Also, since A <

A * B, we have ab < gb =g and so ab e (A * B)+.
In the proof of Theorem 2, we incidentally proved

COROLLARY 3. Suppose that A, B e ¢, A8 N BS < A§, AS /" BS

is periodic of L-type and A < B. Let g be the idempotent of

A * B. Then ab =g for every a ¢ A and b e B such that g < b.
In particular, if A * B # B, then ab =g for every a € A and

b ¢ B.

2. Let S Dbe an ordered semigroup. S is called a-regular

if the archimedean equivalence on S 1is a congruence relation.

S 1is called nonnegatively ordered if a < a2 for every a ¢ A.

A criterion of a-regularity for a nonnegatively ordered semigroup
was given in [2] Theorem 2.8. The purpose of this section is to give
a criterion of a-regularity for a general ordered semigroﬁp.

The next Lemma was given in our Lecture Note [6]. But, for

the sake of convenience we give it with proof.

£

LEMMA 4. Let a be an element of finite order n of an ordered

semigroup S. If there exists an idempotent g of S such that

a™ DE g and a lies between a® and g, then n < 2.

PROOF. Suppose n < 1. We consider only the case when a is
positive, that is, a < a2. Then we have g < a < a2 < a”. By
[3] Lemmas 1.6 and 1.7, we have a? L g or a™ R g. For the sake
of definiteness, we assume a R g and so ang = q, gan = am.
Then g = g2 < ag < ang = g and so g = ag. Hence gaga = ga and
gazga2 = ga2 and so ga and ga2 are idempotents of S. We have
a < ga2, since ga2 < a would imply al = gan < ... 2 ga2 < a,



which is a contradiction. If a < ga, then

a3 < (ga)3 =ga g a? < a3,
and if ga < a, then
a3 < (ga2)3 = ga2 = (ga)a g a2 < a3.

. 2 3
Hence, in both cases, we have a“ = a”.

THEOREM 5. The archimedean equivalence in

S 1is not a congruence relation, if and only if

an ordered semigroup

either

(1) there exist torsion-free archimedean classes A and B

ig S such that A # B and A § B, or

(2) S contains a subsemigroup o-isomorphic to either one of

the ordered semigroups K K K and K

17 T2 B3 4°
e £ é g e £ a g
e e e e e e e £ f g
Kl: f f f f f K2: f e f g g
a £ g g g a e £ g g
9|9 9 9 g gle £ g g
e< f<ax<g e< f<ax<g
g a f e g a £ e
9| 9 9 9 g gl 9 g £ e
Kyt alg g g £ K,: alg g £ e
£ £ £ f £ f g g f e
e e e e e e g f £ e
g<a<f<e g<a«<f«<e,
PROOF. "Only if" part. Suppose that the archimedean equiva-

lence on S 1is not a congruence relation. Then there exist archi-

23

medean classes A and B such that 2B ~is not contained in a single

archimedean class. First suppose that A§ A B§

‘"is torsion-free.



Then, by [3] Corollary 6.2, we have A # B and A 8§ B. Then

AS§ = A§ ANBS = BS§ and so A and B are torsion-free archimedean
classes. Hence we have the condition (1). Next suppose that AS§ A B§
is periodic. First we consider the case when AS A BS 1is of L-type
and A < B. Then, by Theorem 2, we have AS§ = A§ ABS. We denote

by g and e the idempotents of the periodic archimedean classes

A and B * A, respectively. Then AS§ = A§ A BS = (B * A)§ and,

by [3] Theorem 3.3, we have g DE e. Also, by [3] Lemma 6.7, there
exists an idempotent £ of S such that g < £ < e and g DE £,

and also there exists a e A_\{g} such that ae = f. Since A is

a periodic archimedean class with idempotent g, we have al = g

for some natural number n > 1. Also g = a < a < £ and, by Lemma 4,
we have aZ = g. Now we can verify that {g, a, f, e} forms a sub-

semigroup o-isomorphic to K In a similar way, if A§ A B§ 1is of

3
L-type and B < A or A8 N BS is of R-type and A < B or AS ABS
is of R-type and B < A, we can prove that S contains a subsemigroup
o-isomorphic to K, or ‘Kz or K,.

"If" part. Suppose that there exist torsion-free archimedean
classes A and B in S such that A # B and A § B. Then,
by [3] Theorem 2.4, AB N A # 0 and ABN B #0. Hence AB is not
contained in a single archimedean class and so the archimedean equi-
valence is not a congruence relation. If S contains a subsemigroup
Q—isomorphic to Kl or K2 or K3 or K4, then clearly the archi-

medean equivalence is not a congruence relation.

3. As an application, in this section we give a result that
a finite product of elements of an ordered semigroup is archimedean
equivalent under certain conditions to a product of at most two of

these factors.
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LEMMA 6. In an ordered semigroup S, let a = KyeooXy and

ll

tet Xq7 .. o X and A be archimedean classes containing x

X, and a, respectively. Then

oo ® ’

X)8 A ... A X 8 < AS.

PROOF. If n = 1, the assertion is trivial. Suppose n = 2.

2
x2 < X,X, = a < x2 with =x7 ¢ X a e A and x2 e X
1 ="172 = 2 1’ 2 2

. 2 2
with X, € X5y, @ €A and X € X.
ﬁence, by [3] Lemma 5.6, we have X16 A de < AS. Suppose n > 2.
Put Y = X,...X, and let Y be the archimedean class containing vy.
Then, by induction hypothesis,
X26 AN Xn6 < Y§

i = b’ SN = ' v
and, since a X %, X, X1y, we have

X168 A X8 A ... A X 8% X 8N YS X AS.

THEOREM 7. 1In an ordered semigroup S, let a = Xqe--Xy and

let Xy, ..., X, and A be archimedean classes containing x;,

cee 4 Xg and a, respectively. If X16 A XnG = AS and

a 1is an element of infinite order, then a 4 x., for some 1 < i

A

n.

PROOF. If n =1, then the assertion is trivial. Suppose

2
1¥p & XXy = Xy 1

26, then AS = Xls/\ X26 = XlG = XZG “and,

by [3] Theorem 3.5, A = Xl or A = X2. Hence we have a 4 X4

a i Xy If de # XZG, then, since XlG A X26 = A8 1is a torsion-

free 6~-class, it follows from [3] Theorem 6.1 that either a = x

n=2. If Xl

If Xl # X2 and X16 = X

= X2, then a = x c© X, and so a 4 x

1°
or

lx

€ XX, © X, or a= XX, € X X, & X, and so a 4 X, or a4 x,.

Finally suppose n > 2. Let Y be the archimedean class containing

2

the element y = x SRS S Then, since a = xlxz...xn = Xy, we

2
have Xlé A Y6 £ A§  and X26 A eeoe A Xn6 =< ¥Y§ by Lemma 6. Hence

= <
A8 = X8 A Xy8 A L. A X 8L X 6 A YL AS
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and so Xlé AN 4 AS§. Also we have a = XY and so a 4 X, or
ady. But, if a 4 y, then we have A=Y and so

Y§ = AS = Xl6 NXSA Lol A Xn6 < X25 A eee A Xn5 < Y§.

N

Hence YS§ X26 AN oo A Xné and, by induction hypothesis, we have

ady A x, i < n. This completes the proof.

i for some 2

A

LEMMA 8. Let A, B and C be archimedean classes in an

ordered semigroup S such that. AB < C. Then we have C = A * B
and CS§ = AS A BS.

. EBQQE. If A =B, then AB = Azyg A and so C = A. Hence,
'
by [3] Lemma 5.8, C=A=A* A=A*B and also CS§ = A =
AS AN B§. Next suppose that A # B and AS A BS is torsion-free.
Then, by [3] Corollary 6.2, A § B does‘not hold. Hence, by [3]
Theorem 6.1, we have either A Yy B or B y A. Also, if A y B,
then, since ABS A=A * B, we have C=A =A * B and C§ = A§
= AS A BS§, and if B y A, then, since AB S B = A * B, we have
C=B=A*B and C§ = B = A§ AN BS§. Finally suppose that A # B
and A8 A BS is periodic. For the sake of definiteness we assume
A <B and AS N BS§ 1is of L-type. Let a € A and b e B. Then,

since A < B, we have a < b and so a2 < ab < b2 with a2 € A,

ab € C 'and b2 e B. Hence A < C < B and, by [3] Lemma 5.6, we

have AS A BS X CS§. On the other hane, we have a2b = a(ab). € C n AC

and ab2 = (ab)b e C " CB. Hence C YA and C y B and so

Cé £ A§ N BS. Hence we have C8-= AS§ N B§. Also, since A <cC B

A

and Cbe AS AN BS, we have

A*B=min{ De ¢ ; A<DZ<B and D e AS ABS } < C.
On the other hand, since A * B ¢ AG_A BS§, A * B 1is a periodic
archimedean class and so cqntains an idempotent, say g. Then,
since A < A * B, wé have a; < g for some a, € A. Since

1
AS A BS < BS, we have (A *.B) Y B and so, by [3] Theorem

(A * B)S

2.7, alb < gb = g. Hence we have C < A * B and thus C = A * B,



27

LEMMA 9. In a nonnegatively ordered semigroup S, suppose

EBEE a = Xl"'xn' Let Xl’ ces g Xn and A be archimedean classes

containing Xys oo xﬁ and a, respectively. Then X186 A .e
containing and

A an = AS.

PROOF. If n =1, the assertion is trivial. Suppose  n = 2.
If XlX2 is contained in a single archimedean class, then, by Lemma 8,
we have X16 A X26 = Ad. Next consider the case when XlX2 is not
contained in a single archimedean class. If Xl < X2, then, since
S. is nonnegatively ordered, it follows from [3] Lemma 1.8 that
X, is a periodic archimedean class of R-type with idempotent, say e,
and there exists an idempotent f such that f R e and XiX2 <
(£} U X2. We denote by Y the archimedean class containing the
element f. Then, by [3] Theorem 3.3, we have Y& = X26. Since
a = x;x, ¢ {f} U X,, we have A$§ = X,8. On the other hand,

xje = xy(x5e) = x;x,e ¢ ({£f} U X,) {e} = {fe} v X,{e} = {e}

and so e = xje € Xlx2 n X,. Hence X2 Y Xl and so XZG = Xlﬁ.

Hence we have A§ = X25 = Xlé A X,8. If X, £ X we can similarly

ll
prove that AS§ = Xlé A X26.

Now suppose n > 2. We put y = oo X and denote by 2

n
the archimedean class containing y. Then, by induction hypothesis,
Z8 = X26 AN ved A Xn6. Also, since a = xlXZ"'Xn = Xy, we have
A = X16 AN Z8. Hence

A = X, 8 A XZG AN cooasN XS,

1 n

COROLLARY 10. 1In a honnegatively ordered semigroup S, suppose

that a = Xyeeo X, and a is an element of infinite order. Then

a4 X for some 1 < i < n.



28

LEMMA 11. In an ordered semigroup S, let a = X XyXq and

let X X

X and A be archimedean classes containing X1/ X

1 27 3 —

X and a, respectively. If- A§ 1is periodic of L-type and

X16 A X26 A X

§ = A < X,6 A X26, then a 4 X1X3 Oor a A XXge

3 1 3

PROOF. Put y = XX, and let Y Dbe the archimedean class

containing y. Then, by Lemma 6, XlG Ax,86 < ¥Y§ and, since

2
a8 = XXy,X3 = yX5, We also have YS A X36 < AS§ = Xl6 A X26 A X36
< Y8 A X36. Hence
YS§ A X36 = A < X16 A X26 < Y6§.
Hence, by Theorem 2, a = yX3 € Y * X3. Now, by way of contradiction,

we assume that X4 lies between Xy and Xo 4 that is, either
Xy < X3 < X, Or X, < X3 < X Then we have either Xl < X3 <X

2
X Hence, by [3] Lemma 5.6, we have X16 A X26 < X36

(0]
a}
=
N
A
e
w
A

1
and so Xlé A X26 A X36 = Xlé A X26, which is a contradiction.
Hence either Xy lies between %, and X3 Or X, lies between

X and Xq. For the sake of definiteness, we assume X, < Xy <

X3.
and, by [3] Lemma 5.6, we have X26 A X35 < de

Then X, < X; £ X <
and so X26 A X36 = Xlé A X26 A X36 = AS§ < Xl6 A X26 < X26. Hence,
by Theorem 2, X X4 € X2 * X3. Now, since X, < Xy, We have

xg 2 XXy 2 xi and so X, £ Y < Xy < X3. Also, for every Z e (

such that X2 <2 <Y, we have X2 Lz Y

A

Xl and, again by

[3] Lemma 5.6, X26 A X8 = A§ < X,686 A X26 < Z8. Hence

3 1
Y* Xy, =min{ Ue C; ¥ UZX; and Ue A§}
=min{ Ue C; X, £U<X; and U e A§ } = X, * X;3.

1 * = *
Thus we obtain a, X X3 € Y X3 X2 X3 and so a 4 x2x3. In
the remaining cases, we can similarly prove that either a 4 X X5 or

a 4 X2x3.



29

LEMMS 12. 1In a nonnegatively ordered semigroup S, suppose
that A, B € ¢ such that A§ < BS and AS§ is periodic of L-type
that 22¢0 that = ana =2 Per1odi1c or L-type

and a € A, beB and e and g are idempotents of the periodic

archimedean classes A and B * A, respectively. Then ab ¢ A

if and only if ag = e.

PROOF. First suppose that AB € A. Then we have ab ¢ A for
every a € A and b € B. On the other hand, if A =B * A, then
we have ag = ae = e. Also, if A # B * A, then, since B * A lies
between A and B, the element g in B * A lies between a and
b' for some b' € B. Hence ag lies between a2 and ab' with
a2 e A and ab' € ABS A. Hence ag € A and, since (B * A)S§
= A8 NBS = A§, we have ga = g by [3] Theorem 2.7 and so ag is
an idempotent of A. Hence ag = e. Next suppose that AB is not
contained in A. Since eb =e € ABN A, AB is not contained in
a single archimedean class. Hence, by [3] Lemma 1.8, B < A and
ABC {f} U A, where f is an idémpdtent of S such that f < e
and f L e. Again by [3] Lemma 1.8, BA is contained in a single
archimedean class and, by Lemma 8, BA < B * A, Since be is
an idempotent and also be ¢ BAS B * A, we have be = g. Now
we suppose ab € A. Then ag = a(be) = (ab)e = e. Next we suppose
ab ¢ A. Then, since ab ¢ AB < {f} UA, we have ab = f. Hence

ag = a(be) = (ab)e =‘fe = f # e.

LEMMA 13. In a nonnegatively ordered semigroup S, let

a= xlxzx3 and let Xl’ X2, X3 and A be archimedean classes

containing x X X and a, respectively. If A§ 1is periodic,

1’ 2’ 3 —
then a 4 xlx2 or a4 x2x3 or a = x1x3.

PROOF. For the sake of definiteness we assume AS is of L-type.
By Lemma 9, we have AS§ = Xlé A X26 A X36. If A§ < de A x26, then

the assertion follows from Lemma 11. In what follows, we assume



30

AS = X8 A XZG. We denote by Y the archimedean class containing

1

XXy By Lemma 9, Y§ = de A X26 = A8 and so Y is a periodic

archimedean class with idempotent, say e. If XX, X5 € Y, then

we clearly have .a = xlxzk3 A XX, ‘Suppose XX X ¢ Y. Then,

since e = ex, € Y n YX3, YX3 does not contained in a single
archimedean class. Hence, by [3] Lemma 1.8, we have X3 <Y, every
element of Y 1is of order at most two, there exists an idempotent £
of S such that f <e, fLe and e and f are consecutive '

in eL, there exists a peribdic archimedean class U wi%h idempotent
g which satisfies g L e, g < e, Xy £ U, XU, UX3 €U, Yg = {f, e}

and YX, < {f} U Y. sSince X1X,X4 € YX3 and xjX,x3 £ Y, we have

XX Xq = f.

(a) The case: Xl Xz.

Since X16 A X26 = AS§ ' is of L-type, X%, is contained in

A

a single archimedean class by [3] Lemma 1.8. Hence, by Lemma 8,

= *
X] £ Y =% *X

X; * X, = min{ X e ¢ ; X; £ X <X, and X & X;6 A X,8 = AS },.

2 é X2. Since

there is no archimedean class X e A§ such that X; < X < Y.- Since

e €Y and Y¢§ = XlﬁﬂA Xzég Xlé, we have ex, = e " and so xje is

an idempotent and X e L e. Since S 1is nonnegatively ordered,

e 1is the greatest element - of Y and so X, £ e. Hence xi < xje s e
and so the archimedean class ¢ontaining Xje belongs to AS§ and
lies between Xy and Y. Hence it coincides with Y and so x,e = e.

Now, since g L e, we have US§ = Y§ = AS : X36 and so gx3 = g

by [3] Lemma 2.7. Hence X39 is an idempotent and also x3g‘e X3U < u.
Hence X39 =g and so X X,9 = xlx2x3g =fg=£f < e = x,e. Hence
X,9 < e = eg and so X, < e. Hence X2 LY X2 and so we obtain

X2 = Y. Since X3U‘E U, it follows from Lemma 8Vthat U = X3 * U.

Also, since X3 <'U < Y = X,y US = A§ and (Xy * xz)é = X38 A X8

= AS,
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WU =X, *U=min{ Xe ¢; X, <X<U and X e AS§ }

3

min{ X € ¢ ; -X * X

I

3
SX<X, and X e A§ } =X

3 3 2

and so g 1is the idempotent of X3 * Xz. Now e 1is the idempotent

of X2 and X59 # e, it follows from Lemma 12 that XoXg £ X2.

Hence X2X3 'is not contained in a singie archimedean class and,

by [3] Lemma 1.8, we have XyXgy = f and so XyXg = f = X X, X4y = a.
(b) The case: X, £ Xy and X X, is contained in a single

archimedean class.

ahd, by Lemma 8, Y = X; * X

We have X, < Xl * X, £ Xl 1 2-
Also XXXy = f<es= ex,Xg anduso X < e. Hence we’have
X; 2 Xi.* X, and so X; =X; * X,. If x, < x5, then |
£f= fxg < xlxg S XXyXg = £

2 _ . e : _ <
and so XX, = f ¢,Xl‘ Since Xlé = (Xl * X2)6 = xld A X26 X8,

= 72
it follows from Lemma 12 that xlh # e, where h is theridempotent
of Xz‘? X;. Hence, again by Lemma 12, we have XX, £ Xl' But,
by [3] Lemma 1.8, X;X, < {f1 U Xy and so X X, = f = X;XyX3 = a.

If X,, We can prove in a similar way that a = XXy

A

%3
(c) The case: X, 2 Xl and X1X2 is not contained in a single
archimedean class.
By [3] Lemma 1.8, Xl is a periodic archimedéan class with
idempotént,vsay SE there exists an idempotent f1 of S such

that fl < eqy fl L e and fl and e, are consecutive in e;I,

there exists a periodic archimedean class T with idempotent k

such that k L e;, X, < T, TX,, X,TS T and XX, {f;} UX

172 — 1
17 then fl is an

1’ 2
Hence x.x, € XX, {fl} U X

2" 72

If = £

1° X1%2
idempotent of Y and so XXy = fl = e. Hence a = X1XyX5 = € # £,

which is a contradiction. Hence XX, € Xl’ Then we have Xl =Y

and so e, =e, fl = f. Since X2T c T, we have T = X2 * T by

Lemma 8 and so, since T§ = de = Y§ = AS = de A X26 and X, < T <X

2 1,
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T = X, *T=min{- X e (C; X, <X<T and X € AS }

2

min{ X € ¢ ; X, £ X< and X € AS } = X, * X

Xy 2 1°
Hence k 1is the idempotent of X2 * X1 and, since X Xy € Xl'

we have Xlk = e by Lemma 12. Hence, again by Lemma 12,

XX, € Xl = Y and so xlxzx3 = f < x x2 Hence we have x3 < X,

12
and so xlxg < XXXy = f < e. Since X16= AS ;:X36, it follows
from [3] Theorem 2.7 that ex; = e € X1X3 n Xl‘ Hence X1X3 is not

contained in a single archimedean class and so, by [3] Lemma 1.8,

X,X3 < {f} U X,. Since x1x§ < £, we have xlxg £ X, and so

th # e by Lemma 12, where h is the idempotent of X3 * Xl’

Hence, again by Lemma 12, x;x%; £ X;. Since x;X3 € X;X3 C {£} U Xy

we have XXz = f = xlxzx3 = a.

THEOREM 14. 1In a nonnegatively ordered semigroup(ﬁs, let

a = XyeeoX) with n > 2 and let Xl’ ces g Xn and A be archimedean

1

classes containing x

11 eee 0 X and a, respectively. If a is

an element of finite order, then a 4 xixj for Some i, j such

HA

that 1 < i < 3§ < n.

-PROOF. If n = 2, the assertion is trivial. If n = 3, then
the assertion is given by Lemma 13. If n > 3, then put y = XyeooXp .
Then a = X1X,¥ and, by Lemma 13, a 4 XX, Or a A X,y = XXz Xy
or a = Xy = X;X3...X,. Now we obtain the assertion by induction

hypothesis.

COROLLARY 15 ([1] Théoréme 1). In an ordered idempotent semi-

group S, the product of a finite number of elements of S is equal

to a product of at most two of these factors. , y

PROOF. If S 1is an ordered idempotent semigroup, each element

~

is of finite order and each archimedean class is constituted by a

single element. Hence the corollary follows from Theorem 14.



COROLLARY 16. In a nonnegatively ordered semigroup S, the

product of a finite number of elements of S is archimedean equi-

PROOF. The corollary follows from Corollary 10 and Theorem 14.

Example 17. Let S be an ordered semigroup consisting of
seven elements e < a < u<g<v<>b< f with the multiplication

table:

u e a u g
v g9 g9 g v b f
b g v b £ £ £ £

In S, A=1{e, a}, U= {u}, G={g}, Vv={v} and B = {b, f}
are archimedean classes and AS§ = G§ = BS§, AS§ <US§, AS < VS.

Since ab = u, Lemma 9 does not hold in general without the assump-
tion that S is nonnegatively ordered. Also we have ab2 = g but
neither ab = u 4 g nor b2 = f A g. Hence Lemma 13 does not hold

in general without the assumptibn that S is nonnegatively ordered.

4. 1In [7] éoéika§Vili and Loginov proved that in an ordered
semigroup S whichlsatisfies the conditions (1) for x, y, 2 € S,
X <y implies xz < yz and 2zx < zy, and (2) xz > x and. zx > X
for every x, z € S such that 2z 1is not the identity of S, tﬁe
subsemigroup generated by a well-ordered subset of S is also

a well-ordered subset of 8.
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As an application of the preceding section,'in this section
we extend the result of %oéikaévili and Loginov for ﬁonnegatively
ordered semigroups. Thevéroof is carried out in a similar way to
that in [7].

In this section, we denote by S a nonnegatively ordered -

semigroup.

LEMMA 18. If My and M, are well-ordered subsets of S,

then the set product M

le' is also a well-ordered subset of S.

PROOF. By way of contradiction, we assume Ml 2 is not well

ordered. Then there exists an infinite sequence

x1 > X2 > x3 > e
of elements of Mle. Since xi € Ml ar We have Xy = X1X55 for
some X1 € Ml and Xi2 € M2' Since Ml is well-ordered,
{ X5q i=1,2, 3, ... } has the least element yy- We put
Il«= {1i; X1 T Yy }. By way of contradiction, we assume Il is
infinite and consists of i1 < in < 113 < «... Then
X. = X. X, = ¥V.X. > X, = X. X. = Y X.
i1 1111 1112 1 1112 io 1121 1122 1 1122
: 4
> X, = X. X. = Y X, > ey
i3 1131 1132 1 1132 :
whence we have an infinite sequence Xi 50 > X 5 2 Xy 50> ..
11 12 13

of elements of M2’ which contradicts the fact that M2 is well-

ordered. Hence Il is finite and so we can take n1 = max Il.

Then if i > nl, then i ¢ Il and so xil > yl. Also we have
X > xX.. Hence
n i

1
= X X = X > X. = XiqX., 2 YVqXs
nll n12 nl i il®i2 1712

and so xn12 > Xi5- Thus we have shown that xnlz % Xi2 for every

ylxnlz

i>n,.
1



Now suppose that m is a natural number such that X > X

i2
for every 1 > m. Since Ml is well-ordered, ({ X1 i>m+ 1}
has the least element ym. We put

I ={ i; i>m+ 1 and X1 =y, }-

By way of contradiction, we assume I, 1is infinite and consists of

elements i < i, < i < eene .Then

m3
X, = X. X. = YV _X. > X, . = X, X. = y. X,
in1 lmll 1m12 m 1m12 i, lm21 1m22 m lm22
> X, = x, X, = Yy _X. > teey,
m3 lm3l,lm32 m lm32
whence we have‘an infinite sequence X 5 >\xi 5 Xi 9> .
ml m2 m3

of elements of M2, which contradicts the fact that M2 is well-
ordered. ‘Hence Im is finite and so we can take 'nm = max Im.

For i > n., we have 1 ¢ Im and also i > n m+ 1 and so

v

m

and s0 x., > y_. Also we have X, > X Hence

35

i m
1 m
X = X = X > X. = X. . > X.
Y¥n 2 Xn 1%n 2 n i i1%i2 2 Yp¥i>
m m m m
and so x > X.,. Also, since n_ > m + 1 > e have x > X .
nm2 i2 ! m = m, W m2 nm2

Thus we have shown that there exists a natural number n. such that

> m X > x an > X, for ever i-> n . Hence w
O ! m2 nm2 dA xnm2 i2 °© very m ¢ €

>obtain an infinite sequence x > X > X > ... of elements
, n12 n22 n32

of M2, which contradicts that M2 is well-ordered. This proves

that M1M2 is well-ordered.

From Lemma 18, we have, by induction

COROLLARY 19. If My, My, el M, -are well-ordered subsets

of S, then MM .o oM is also a well-ordered subset of s.
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LEMMA gg; Let M be a well-ordered subset of s, let L be

the subsemigroup generated by M and let B be the set of all

archimedean classes of the semigroup L. Then B is a well-ordered

set.

—
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PROOF. Let B' be a nonempty subset of B. Let B ¢ B' and
leti”x € B. Then, since x € B& L, there exists a finite number
of elements Xir Koy eee 4 X of M such ﬁhat X = xlxz...xn.

By Corollary 16, there exists y ¢ M U M2 such that X A y. Thus
we have shown that each archimedean class B in B' contaiﬁs

a repfesentative x(B) ¢ M U Mz;‘ Then X ={ x(B) ; Be B'} |is

a nonempty subset of M U M2. But M U M2 is a wéli—ordered subset
of S by Lemma 18 and so there exists B0 € B' such that

x(BO) = min X. Then clearly B is the least element of B'. This

0
proves that B is well-ordered.

LEMMA 21. Let M be a well-ordered subset of s and let L

be the subsemigroup generated by M. Then every archimedéan class

of the Sémigroup L is a well-ordered subset of S.

PROOF . By way of contradiction, we assume that there exists
an archimedean class of L. which is not well-ordered. Then, by

Lemma 20, there exists the least archimedean class X which is

not well-ordered. As above we denote by B the set of all archimedean

classes of the semigroup L. Thus, if Y e B and Y < X, then

Y is well-ordered.

We put U=U{YeB; ¥<X I}.
(a) If U # O, then U is a subsemigroup of S.
In fact, let vy, z €¢ U. Then y e€ Y and 2z € Z for some

Y, Z ¢ B such that ¥ < X and 2 < X. If y <z, then yz < 2 ¢

and so yz €¢ W for some W e B such that W < Z < X, whence yz ¢ U.

If 2z £y, then we can obtain yz € U in a similar way.
Simiiarly we can prove. |
(b) X U U is a subsemigroup of 8.
(c) If U #0O, then U is a well-ordered subse£ of S.

In fact, let V be a nonempty subset of U and let

Z
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B'"={BeB; BNV#LCI} Then B' is a nonempty subset of B.

Hence, by Lemma 20, we can take B0,= min B'. Then B0 e B' and,

by the definition of U, By < X and so, by assumption, B, is
well—orderéd. Hence we can take bo = min(Bd N V). Now it is clear
is the least element of V.

0
_ 2 2 2 2
Put T=M UUM UMU UUMU U MU UM U MUU UM U.

that b

(d). Evefy'element x € X can be'written in the form

X = t1t2°"tm with ‘tl; t2, cee ¢ tm e T A X. .
~In fact, let x € X. Then, since x ¢ X< L, x = K Xgeo Xy
for some RINARSYIERTIE SHp M. By Corollary 16, there exists

y e MU M2 such that x 4 y. Then y € X. Also, since S is
nonnegatively ordered, there exists a natural number s such that
x £ ys. We denote by Xi the archimedean class containing the

element X, . Suppose X < Xi for some i. Then we have x £ ys < X

Putting p = x and q = Xi010 0%k (p or g may be the

1°° %51
s . . .
empty symbol), we have pPx,q = X y < X Since S is nonnegatively

A

ordered, we have p < p2 and g q2 and so

px;q £ P°x;a° = pxq < py>q < P q.

A

Hence x = pPx,q = pysq. Applying this procedure several times, we
obtain an expression x = Y1¥y- - ¥y with Yir Yor «ee 1 ¥y 7
e (M U M2) N (XU U). Finally, by (a) and (b), we obtain an expression
X = tlt2"‘tm with tl’ tor ooy tm e TN X. |

Now we return to the proof of the lemma. Since the archimedean
class X of L is not well-ordered, there exists an infinite sequence
zy < Z, < Z, < ... oOf elements of X. Since X contains at most
one idempotent and, if X .contains an idempotent, then the idempotent
is the greatest element of X, we can assume that each one of

Zyr Zor 234 e is not an idempotent.‘ Since U and M are well-

ordered subsets of S, it follows from Corollary 19 that T is
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well-ordered. Hence T n X contains the least element to. Then,

since z is not an idempotent and zy and t0 are archimedean

1
equivalent, there exists a natural number k such that zy < tg.

By (d), for each Zi4 there is a representation z; = tltz"'tm
with tl’ t2, cee 4 tm eTn X. If k <m were true, then

k+1 m _ k . .

t0 < t0 < tltz...tm =z; $zq < tO’ which contradicts the fact

that S 1is nonnegatively ordered. Hence m < k and so

z; € U§=l TJ. But, by Corollary 19, T is well-ordered and so also

7} is well-ordered for every j such that 1 < j £ k. Hence

U §=1TJ is a well-ordered subset of S and also contains an infinite
sequence  z, < 2z, < z3 < ...; which is a contradiction. This proves

Lemma 21.

THEOREM 22. In a nonnegatively ordered semigroup S, let

M be a well-ordered subset and let L be the subsemigroup of S

generated by M. Then L 1is also a well-ordered subset of S.

PROOF. Suppose [ # Nc L. We denote by B the set of all
archimedean classes of the semigroup L. We put
B'={XeB; XnN#Q@DO }.

0
by Lemma 21, there exists Xg = min(X0 1 N). Then clearly X is

Then, by Lemma 20, there exists X, = min B' and X0 NN #[. Also,

the least element of N. Hence L is well-ordered.
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