03 ## CERTAIN RIGHT REGULAR BANDS Reikichi Yoshida - O. Abstract. A band is called a <u>right regular band</u> if it satisfies xyx = yx. Theorem 1 in Kimura [2] proved that a right regular band is a semilattice of right zero semigroups. Hence the fine structure of a right regular band is obtained by constructing all \$\infty\$-compositions of a system of right zero semigroups. Theorem 4.3 in Yamada [6] discussed its problem using the concept of the free product. We shall discuss the same problem by more effective method. Furthermore we shall describe certain right regular bands. We use the natations of Clifford and Preston [1] without comment. - 1. Preliminaries. Let S be a semigroup. $\Lambda = \{\lambda\}$ $[P = \{\rho\}, \Lambda^{(o)}, P^{(o)}]$ denote the full left [right, inner left, inner right] translation semigroup of S. A structure semilattice means a lower semilattice. 1 denotes the identity mapping. A chain C means a semilattice in which $\beta \gamma = \beta$ or γ in C. To each σ in a semilattice [chain] \uparrow assign a pairwise disjoint semigroup $S_{\sigma} = \{x_{\sigma}, y_{\sigma}, \cdots\}$. Let $S = \bigcup \{S_{\sigma} : \sigma \in \Gamma \}$. If $S(\circ)$ becomes a semigroup by defining a composite (\circ) by $x_{\sigma} \circ y_{\tau}$ $\begin{cases} =x_{\sigma}y_{\sigma} & \text{if } \sigma = \tau, \\ \in S_{\sigma\tau} & \text{otherwise,} \end{cases}$ then $S(\circ)$ is said to be a semilattice [chain] or an A = [G -] composition of a system $\{S_{\sigma} : \sigma \in \Gamma \}$ of semigroups. An I = [V -, Y -] semilattice means a semilattice having $\begin{cases} Y \otimes \alpha \\ S \otimes S \otimes S \otimes S \\ S \otimes Y \otimes Y & \alpha \end{cases}$ the structure isomorphic with $\{S,\gamma,\alpha\}$ [$\{\gamma,\beta,\alpha\},\{\delta,\gamma,\beta,\alpha\}$] defined by Table 1. An \mathcal{J}_{Γ}^- [\mathcal{J}_{V}^- , \mathcal{J}_{Y}^-] composition means an \mathcal{J}_{Γ}^- -composition of which the structure semilattice is I- [V-, Y-] semilattice. We write $\rho \mathcal{L}_{K}^-\lambda$ if λ and ρ are linked. 2. \mathcal{L}_{I} -compositions. Let S_{β} and S_{γ} be any semigroups. If to each element t of S_{β} we let correspond a left translation $\lambda_{\gamma}(t)$ and a right translation $\rho_{\gamma}(t)$ of S_{γ} , respectively, such that the following conditions (C), then $\left\{(\lambda_{\gamma}(t),\,\rho_{\gamma}(t))\colon t\in S_{\beta}\right\}$ is called a system of strictly linked translations: $$(c) \begin{cases} \lambda_{\gamma}(t_2) \ \lambda_{\gamma}(t_1) = \lambda_{\gamma}(t_1 t_2), & \rho_{\gamma}(t) \not = \lambda_{\gamma}(t_1), \\ \rho_{\gamma}(t_1) \rho_{\gamma}(t_2) = \rho_{\gamma}(t_1 t_2), & \lambda_{\gamma}(t_1) \rho_{\gamma}(t_2) = \rho_{\gamma}(t_2) \lambda_{\gamma}(t_1). \end{cases}$$ Theorem 2.1. [7, Theorem 2.1] Let C be a chain, and to every element α of C assign any semigroup $S_{\alpha} = \{a_{\alpha}, b_{\alpha}, \cdots\}$. Let $S = \bigcup \{S_{\alpha} : \alpha \in C\}$. Assume that the following conditions hold: (2.1.1) To each pair $\gamma, \beta \in C$, $\gamma < \beta$, there is a system of strictly linked translations. (2.1.2) If $\delta < \gamma < \alpha$, their translations satisfy the next equations: $$\begin{cases} \lambda_{\mathcal{S}}(g_{\gamma}, \rho_{\gamma}(b_{\alpha})) = \lambda_{\mathcal{S}}(b_{\alpha})\lambda_{\mathcal{S}}(g_{\gamma}), & \lambda_{\mathcal{S}}(g_{\gamma}, \lambda_{\gamma}(a_{\alpha})) = \lambda_{\mathcal{S}}(g_{\gamma})\lambda_{\mathcal{S}}(a_{\alpha}), \\ \rho_{\mathcal{S}}(g_{\gamma}, \lambda_{\gamma}(b_{\alpha})) = \rho_{\mathcal{S}}(b_{\alpha})\rho_{\mathcal{S}}(g_{\gamma}), & \rho_{\mathcal{S}}(g_{\gamma}, \rho_{\gamma}(a_{\alpha})) = \rho_{\mathcal{S}}(g_{\gamma})\rho_{\mathcal{S}}(a_{\alpha}), \\ \lambda_{\mathcal{S}}(g_{\gamma})\rho_{\mathcal{S}}(a_{\alpha}) = \rho_{\mathcal{S}}(a_{\alpha})\lambda_{\mathcal{S}}(g_{\gamma}), & \lambda_{\mathcal{S}}(a_{\alpha})\rho_{\mathcal{S}}(g_{\gamma}) = \rho_{\mathcal{S}}(g_{\gamma})\lambda_{\mathcal{S}}(a_{\alpha}). \end{cases}$$ Then $S(\cdot)$ becomes a G-composition of $\left\{S_{\alpha}: \alpha \in C\right\}$ by defining a composite (.) in S as follows: $$(2.1.3) y_{\tau} \cdot u_{\sigma} = \begin{cases} u_{\sigma} \cdot \lambda_{\sigma}(y_{\tau}) & \text{if } \sigma < \tau, \\ y_{\tau} \cdot \rho_{\tau}(u_{\sigma}) & \text{if } \tau < \sigma, \\ y_{\sigma}u_{\sigma} & \text{if } \sigma = \tau. \end{cases}$$ Conversely, every G-composition of $\left\{S_{\sigma}\colon\,\sigma\!\in\!C\right\}$ can be found in this way. Theorem 2.1 is rewrited in the following for a system of left reductive semigroups. $P^{(k)}$ denotes the set of all right translations having a linked left translation. Δ denotes the correspondence which prescribes for each ρ in $P^{(k)}$ left translations linked with ρ . (2.2) If a semigroup S is left reductive, then the correspondence Δ is one-valued. Corollary 2.3. [8, Corollary 2'] To every α of a chain C, assign a left reductive semigroup S_{α} . Let \varDelta_{α} be the mapping of $P_{\alpha}^{(k)}$ into Λ_{α} described in (2.2). Then every G-composition of $\left\{S_{\alpha}\colon \alpha\!\in\! C\right\}$ is completely determined by homomorphisms $\psi_{\beta,\gamma},\ \gamma\!<\!\beta,$ of S_{β} into $P_{\gamma}^{(k)}$ satisfying $$\begin{array}{ll} (2.3.1) & \left[g_{\gamma} \cdot (a_{\alpha} \cdot \psi_{\alpha, \gamma}) \right] \cdot \psi_{\gamma, \delta} = (g_{\gamma} \cdot \psi_{\gamma, \delta}) (a_{\alpha} \cdot \psi_{\alpha, \delta}) \\ (2.3.2) & \left[g_{\gamma} \cdot \left\{ (a_{\alpha} \cdot \psi_{\alpha, \gamma}) \cdot \Delta_{\gamma} \right\} \right] \cdot \psi_{\gamma, \delta} = (a_{\alpha} \cdot \psi_{\alpha, \delta}) (g_{\gamma} \cdot \psi_{\gamma, \delta}) \end{array} \right\} \text{ for } S < \gamma < \alpha \text{ in } C.$$ Now we shall treat a system of right zero semigroups. (2.4) Let S be a right zero semigroup. Then (i) $$\Lambda = \{\underline{1}\}$$ and $P = \mathcal{J}_S$; (ii) $$\alpha \not = 1$$ for all $\alpha \in \mathcal{T}_S$. (2.5) Let C be a chain. For every $\alpha \in C$ let S_{α} be a right zero semigroup. Let $S=U\{S_{\alpha}: \alpha \in C\}$. To each pair $S<\gamma$ of C, we let correspond a homomorphism $\chi_{\gamma,S}$ of S_{γ} into $\mathcal{J}_{S_{S}}$ satisfying $$(2.5.1) \quad \left[g_{\gamma} \cdot (a_{\alpha} \cdot \chi_{\alpha, \gamma}) \right] \cdot \chi_{\gamma, \varsigma} = (g_{\gamma} \cdot \chi_{\gamma, \varsigma}) (a_{\alpha} \cdot \chi_{\alpha, \varsigma}) \left\{ \text{ for } \varsigma < \gamma < \alpha \text{ in } C. \right\}$$ $$(2.5.2) \quad g_{\gamma} \cdot \chi_{\gamma, \varsigma} = (a_{\alpha} \cdot \chi_{\alpha, \varsigma}) (g_{\gamma} \cdot \chi_{\gamma, \varsigma}) \left\{ \text{ for } \varsigma < \gamma < \alpha \text{ in } C. \right\}$$ Then $S(\cdot)$ becomes a G-composition of $\{S_{\alpha}: \alpha \in C\}$ by defining a product (\cdot) in S as follows: $$y_{\tau} \circ u_{\sigma} = \begin{cases} y_{\tau} \cdot (u_{\sigma} \cdot \chi_{\sigma, \tau}) & \text{if } \tau < \sigma, \\ u_{\sigma} & \text{if } \tau \ge \sigma. \end{cases}$$ Conversely every G-composition of $\left\{ \textbf{S}_{\alpha}\colon\ \alpha\in\textbf{C}\right\}$ can be obtained in this way. Hereafter we shall consider a partition π of a semigroup S as the equivalence relation on S defined by $s\pi t$ (s,t \in S) if s and t belong to the same member of π . (2.6) Let S_{γ} and S_{δ} be two right zero semigroups. Then we take a partition $\mathcal{H}_{\gamma,\delta}$ of S_{δ} where $\mathcal{H}_{\gamma,\delta}:S_{\delta}=U\{S_{\mu}:\mu\in\mathcal{M}\}$. To every $g\in S_{\gamma}$, fix an element $\bar{u}_{\mu}(g)$ from each equivalence class S_{μ} of S_{δ} mod $\mathcal{H}_{\gamma,\delta}$. We define $\chi_{\gamma,\delta}$ by $u_{\mu}\cdot(g\cdot\chi_{\gamma,\delta})=\bar{u}_{\mu}(g)$ for all $u_{\mu}\in S_{\mu}$. Then $\chi_{\gamma,\delta}$ is a homomorphism of S_{γ} into $\mathcal{H}_{S_{\delta}}$. Conversely every homomorphism $\chi_{\gamma,\xi}$ of S_{γ} into $\mathcal{J}_{S_{\mathcal{S}}}$ can be obtained in this fashion. Theorem 2.7. Let C be a chain. For each $\alpha \in C$ assign a pairwise disjoint right zero semigroup S_α . - (i) For every pair γ,α in C, $\gamma<\alpha,$ we take a partition $\pi_{\alpha\,,\gamma}$ of S_{γ} such that - (2.7.1) if $\delta < \gamma < \alpha$ then $\pi_{\gamma, \delta} \supseteq \pi_{\alpha, \delta}$; that is, let $\pi_{\alpha, \gamma} : \{S_{\xi} : \xi \in \Xi \}, \pi_{\gamma, \delta} : \{S_{\mu} : \mu \in \mu\}$ and $\pi_{\alpha, \delta} : \{S_{\nu(\mu)} : \nu(\mu) \in N(\mu), \mu \in \mu\}$. - (ii) For each $a \in S_{\alpha}$ [$g \in S_{\gamma}$, $a \in S_{\alpha}$], let $\{\overline{z}_{\xi}(a) : \xi \in \Xi\}$ [$\{\overline{u}_{\mu}(g) : \mu \in \mu\}$, $\{\overline{u}_{\nu(\mu)}(a) : \nu(\mu) \in N(\mu), \mu \in \mu\}$] be fixed elements from equivalence classes S_{ξ} [S_{μ} , $S_{\nu(\mu)}$] for indices in (i). Suppose that they have the next connection: - (2.7.2) If $g \pi_{\alpha,\gamma}$ h, then $\bar{u}_{\mu}(g) \pi_{\alpha,\delta} \bar{u}_{\mu}(h)$ for all $\mu \in \mu$. - (2.7.3) Let $\mu \in \mu$ and $a \in S_{\alpha}$. Then Then we can construct a \mathcal{E} -composition of $\{S_{\alpha}: \alpha \in C\}$. Conversely every \mathscr{C} -composition of $\{S_{\alpha}: \alpha \in C\}$ can be so constructed. Proof. Sufficiency. Define $\chi_{\alpha,\gamma}$, $\chi_{\gamma,\delta}$, $\chi_{\alpha,\delta}$ by (2.7.5) $$\begin{cases} z_{\bar{3}} \cdot (a \cdot \chi_{\alpha, \gamma}) = \bar{z}_{\bar{3}}(a), & z_{\bar{3}} \in S_{\bar{3}}; & u_{\mu} \cdot (g \cdot \chi_{\gamma, \varepsilon}) = \bar{u}_{\mu}(g), & u_{\mu} \in S_{\mu}; \\ u_{\nu(\mu)} \cdot (a \cdot \chi_{\alpha, \delta}) = \bar{\bar{u}}_{\nu(\mu)}(a), & u_{\nu(\mu)} \in S_{\nu(\mu)}. \end{cases}$$ 3. $\sqrt[n]{-}$ compositions. Let $T = \{\gamma, \beta, \alpha\}$ be a V-semilattice. To each element of T, assign mutually disjoint any semigroup $S_{\gamma} = \{\varepsilon, h, \dots\}$, $S_{\beta} = \{c, d, \dots\}$, $S_{\alpha} = \{a, b, \dots\}$. Theorem 3.1. [7, Theorem 2.2] Let S=SyUS US . Assume that the following conditions hold. - (3.1.1) There is a system of strictly linked translations between S_{α} and S_{γ} [S_{β} and S_{γ}]. - (3.1.2) There is a mapping θ [ψ] of $S_{\beta} x S_{\alpha} [S_{\alpha} x S_{\beta}]$ into S_{γ} . - (3.1.3) The connection between their translations and their mappings is given by $$\begin{cases} \lambda(c)\lambda(a)=\lambda_{(a,c)} \cdot \psi, & \lambda(a)\lambda(c)=\lambda_{(c,a)} \cdot \theta, \\ \rho(a)\rho(c)=\rho_{(a,c)} \cdot \psi, & \rho(c)\rho(a)=\rho_{(c,a)} \cdot \theta, \\ \lambda(c)\rho(a)=\rho(a)\lambda(c), & \lambda(a)\rho(c)=\rho(c)\lambda(a), \end{cases}$$ $$\begin{cases} (ab,c)\cdot\psi=[(b,c)\cdot\psi]\cdot\lambda(a), & (c,ab)\cdot\theta=[(c,a)\cdot\theta]\cdot\rho(b), \\ & [(a,c)\cdot\psi]\cdot\rho(b)=[(c,b)\cdot\theta]\cdot\lambda(a), \\ \\ \{(cd,a)\cdot\theta=[(d,a)\cdot\theta]\cdot\lambda(c), & (a,cd)\cdot\psi=[(a,c)\cdot\psi]\cdot\rho(d), \\ \\ \{(a,d)\cdot\psi\}\cdot\lambda(c)=[(c,a)\cdot\theta]\cdot\rho(d). \end{cases}$$ Then we can construct an \int_{V} -composition of $\{S_{\gamma}, S_{\beta}, S_{\alpha}\}$. Conversely every \mathcal{J}_V -composition of $\{s_{\gamma}, s_{\beta}, s_{\alpha}\}$ can be so constructed. Proof. Sufficiency. Define a composite (*) by $(3.1.4) \begin{cases} c \cdot a = (c,a) \cdot \theta, & a \cdot c = (a,c) \cdot \psi, \\ a \cdot g = g \cdot \lambda(a), & c \cdot g = g \cdot \lambda(c), & g \cdot a = g \cdot \rho(a), & g \cdot c = g \cdot \rho(c) \end{cases}$ We have the next theorem for a system of right zero semigroups. Theorem 3.2. Assign mutually disjoint right zero semigroups S_{γ} , S_{β} , S_{α} . We take two partitions of S_{γ} : $(3.2.1) \ \mathcal{H}_{\alpha,\gamma} \colon S_{\gamma} = \bigcup \big\{ S_{\tilde{\beta}} \colon \tilde{\beta} \in \mathbb{Z} \big\}, \quad (3.2.2) \ \mathcal{H}_{\beta,\gamma} \colon S_{\gamma} = \bigcup \big\{ S_{\tilde{\gamma}} \colon \tilde{\gamma} \in \mathbb{H} \big\}.$ For any element a in S_{α} , we fix $\tilde{z}_{\tilde{\beta}}(a)$ from each $S_{\tilde{\beta}}$ such that $(3.2.3) \text{ there is } \gamma(a) \in \mathbb{H} \text{ satisfying } \tilde{z}_{\tilde{\beta}}(a) \in S_{\gamma}(a) \text{ for all } \tilde{\beta} \in \mathbb{Z}.$ For any c in S_{β} , we fix $\tilde{z}_{\gamma}(c)$ from each S_{γ} such that $(3.2.4) \text{ there is } \tilde{\beta}(c) \in \mathbb{Z} \text{ satisfying } \tilde{z}_{\tilde{\beta}}(c) \in S_{\tilde{\beta}}(c) \text{ for all } \gamma \in \mathbb{H}.$ Then we can construct an \mathcal{L}_{V} -composition $S(\cdot) = S_{\gamma} \cup S_{\beta} \cup S_{\alpha}$. Conversely every \mathcal{J}_V -composition of $\{S_{\gamma},S_{\beta},S_{\alpha}\}$ can be so constructed. 4. \mathscr{L} -compositions. Let $\Gamma = \{\alpha, \beta, \gamma, \delta, \dots, \sigma, \dots\}$ be any semilattice. $\mathscr{M}(S)$ denotes the translational hull of a semigroup S and let $\mathscr{M}(S)$ = $\{(\lambda_S, \rho_S): S \in S\}$ be the translational diagonal of S. The following theorem is due to M. Petrich. Theorem 4.1. [5, Theorem 7.8.13] For every σ in a semilattice T, let $S_{\sigma} = \{a_{\sigma}, b_{\sigma}, c_{\sigma}, \cdots\}$ be a weakly reductive semigroup where S_{σ} are pairwise disjoint. For every pair $\delta, \gamma \in \Gamma$, $\delta \leq \gamma$, let $\overline{\chi}_{\gamma, \delta}$ be a mapping of S_{γ} into $\#(S_{\delta})$ satisfying (4.1.1) $$s_{\sigma} \cdot \bar{\chi}_{\sigma, \sigma} = (\lambda_{s_{\sigma}}, \rho_{s_{\sigma}})$$ for all $s_{\sigma} \in S_{\sigma}$, (4.1.2) if $\alpha \leq \beta$, $\beta \leq \alpha$, then $(S_{\alpha} \cdot \bar{\chi}_{\alpha,\alpha\beta})(S_{\beta} \cdot \bar{\chi}_{\beta,\alpha\beta}) \subseteq \beta(S_{\alpha\beta})$, (4.1.3) if $S < \alpha \beta$, then $a_{\alpha} \cdot c_{\beta} = \left[(a_{\alpha} \cdot \overline{\chi}_{\alpha, \alpha\beta}) (c_{\beta} \cdot \overline{\chi}_{\beta, \alpha\beta}) \right] \cdot \overline{\chi}_{\alpha\beta, \alpha\beta}^{-1}.$ Then S(\cdot) becomes an \$\mathcal{J}\$-composition. Conversely every \$\mathcal{J}\$-composition of a system of weakly reductive semigroups can be so constructed. (4.2) If S is a right zero semigroup, then $/\!\!\!/(S)$ is isomorphic onto \mathcal{J}_S by $(1,\alpha)\mapsto \alpha$. Theorem 4.3. Let Γ be a semilattice. To each $\sigma \in \Gamma$ assign a right zero semigroup S_σ , where S_σ are pairwise disjoint. To every pair $\tau, \sigma \in \Gamma$, $\tau < \sigma$, we take a partition $\mathcal{T}_{\sigma,\tau}$ and fixed elements satisfying the following condition. Let $\{\delta, \gamma, \beta, \alpha\}$ be a Y-subsemilattice of T. Let $S_{\delta} = \{u, \overline{u}, \overline{\overline{u}}, \dots\}$, $S_{\gamma} = \{g, h, \dots, z, \overline{z}, \dots\}$, $S_{\beta} = \{c, \dots\}$ and $S_{\alpha} = \{a, \dots\}$. Assume that (4.3.1) - (4.3.3) hold. (4.3.1) As in Theorem 3.2, we take two partitions $\pi_{\alpha,\gamma}$ and $\pi_{\beta,\gamma}$ of S_{γ} and fixed elements $\bar{z}_3(a)$ $[\bar{z}_{\gamma}(c)]$ from each S_3 $[S_{\gamma}]$ satisfying (3.2.3) [(3.2.4)]. (4.3.2) We take a partition $\pi_{\gamma,\delta}$ of $S_{\delta}: S_{\delta} = U\{S_{\mu}: \mu \in \mu\}$, and we fix $\bar{u}_{\mu}(g) \in S_{\mu}$ for $g \in S_{\gamma}$ and $\mu \in \mu$. (4.3.3) As in Theorem 2.7, we take a partition $\pi_{\alpha,\delta}$ of S_{δ} satisfying (2.7.1)-(2.7.3). Similarly for $\pi_{\beta,\delta}$. We fix $\bar{u}_{\nu(\mu)}(a) \in S_{\nu(\mu)}$ as follows: $(4.3.3.1) \ \overline{u}_{\nu(\mu)}(a) \begin{cases} = \overline{u}_{\mu}(\overline{z}_{\mathfrak{F}}(a)) & \text{if } \overline{u}_{\mu}(\overline{z}_{\mathfrak{F}}(a)) \in S_{\nu(\mu)}, \\ \in S_{\nu(\mu)} \cap [\overline{u}_{\mu}(\overline{z}_{\mathfrak{F}}(a)(c)) \mathcal{T}_{\mathfrak{g},\mathfrak{F}}] & \text{otherwise.} \end{cases}$ Similarly for $\overline{u}_{\mathcal{H}(\mu)}(c)$. Then we can construct an \mathcal{L} -composition $S(\cdot) = U S_{\mathfrak{F}}: \sigma \in T S_{\mathfrak{F}}$. Conversely every &-composition of a system of right zero semigroups can be found in this fashion. 5. Certain \mathcal{C} -compositions. We shall discuss certain \mathcal{C} -compositions of right zero semigroups. Let C be a chain, $3 \le |C|$. To each $\alpha \in C$ assign a pairwise disjoint right zero semigroup S_{α} . Let $S(\cdot) = \bigcup \{ S_{\alpha} : \alpha \in C \}$ be a \mathcal{C} -composition. Let $\gamma_0 \in C$. A $(\omega, \iota, \omega) - [(\omega, \iota, \iota) -, (\iota, \iota, \omega) -, (\iota, \omega, \omega) -]$ right regular band means a \mathscr{C} -composition S(.) such that $\pi_{a.5}$, $\delta < \alpha$ $[\pi_{\alpha,\gamma}, \gamma < \alpha, \pi_{\gamma,\delta}, \delta < \gamma, \pi_{\alpha,\gamma}, \alpha < \gamma]$ described in Theorem 2.7 satisfies $\mathcal{I}_{\alpha, \delta} = \begin{cases} l_{\delta} & \text{if } \delta < \gamma_{o} < \alpha, \\ \omega_{\epsilon} & \text{otherwise} \end{cases} \begin{bmatrix} \mathcal{I}_{\alpha, \gamma} = \begin{cases} \omega_{\gamma} & \text{if } \gamma_{o} \leq \gamma < \alpha, \\ l_{\gamma} & \text{otherwise,} \end{cases}$ $$\pi_{\gamma,\delta} = \begin{cases} \omega_r & \text{if } \delta < \gamma < \gamma_o, \\ l_r & \text{otherwise,} \end{cases}$$ $$\pi_{\alpha,\gamma} = \begin{cases} l_{\gamma} & \text{if } \gamma_o < \gamma < \alpha, \\ l_{\gamma} & \text{otherwise.} \end{cases}$$ Let $\delta, \gamma \in C$, $\delta < \gamma$. Fix $u_0 \in S_{\delta}$. Define a constant mapping $\mathcal{G}_{\gamma,\delta}(u_0)$ by $g \cdot \mathcal{G}_{\gamma,\delta}(u_0) = u_0$ for all $g \in S_{\gamma}$. Theorem 5.1. Let C be a chain. To every a∈C associate a right zero semigroup S_{α} , and suppose that S_{α} are pairwise disjoint. Let $S=U\{S_{\alpha}: \alpha \in C\}$. Fix $\gamma_0 \in C$. Let $\{g_{\alpha,\gamma}: \gamma_0 \leq \gamma < \alpha\}$ be an inductive system of mappings. Let $\{\mathcal{G}_{\mathcal{S},\gamma}\colon\ \mathcal{E}<\mathbf{Y}\leq\mathbf{Y}_{o}\}$ be an inductive system of mappings such that $\mathcal{G}_{\gamma_0, \delta} = \mathcal{G}_{\gamma_0, \delta}(u_0)$, $u_0 \in S_{\delta}$. Let $u \in S_r$, $a \in S_a$. Define a composite (•) by $$u \cdot a = \begin{cases} u & \text{if } \delta < \gamma_0 < \alpha, \\ a \cdot \mathcal{G}_{\alpha, \delta} & \text{otherwise.} \end{cases}$$ Then we can construct an (w, l, w)-right regular band. Conversely every (w,i,w)-right regular band can be so constructed. | | | | 4.0 | | | | | | | | | |------------------|---------------|------------------|--------------------------|-----|----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | | u v • | ·· k | 1 | | gr | 1 • • • 1 | c d · a D | | | | | | s _z } | u
v | k.g _y | , [] · F _Y , | 8 | uol | 20 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | Sy | k
1
u v | | | | k _o | o | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | g
h
u v | ·· k | 1 | ••• | | | $[c.\mathcal{G}_{\beta,\gamma_0}] \cdot [a.\mathcal{G}_{\alpha,\gamma_0}] [a.\mathcal{G}_{\alpha,$ | | | | | | s _B } | d
u v | · · k | 1 | ••• | g | 1 • • • | $a.g_{\alpha,2}$ $b.g_{\alpha,\beta}$ | | | | | | \$ a } | a
o u v | •• k | 1 | | g | 1 | c d ·· | | | | | | Tania 2 | | | | | | | | | | | | lable 2 Theorem 5.2. With same situation as in Theorem 5.1, let $\left\{ \begin{array}{l} \mathcal{G}_{\alpha}, \gamma \colon \ \gamma_{o} \leq \gamma < \alpha \end{array} \right\} \text{ be an inductive} \\ \text{system of mappings. Let } k \in S_{\gamma}, \\ a \in S_{\alpha}, \ \gamma < \alpha. \text{ We define a composite} \\ \text{(.) by } k \cdot a = \left\{ \begin{array}{l} a \cdot \mathcal{G}_{\alpha}, \gamma \text{ if } \gamma_{o} \leq \gamma < \alpha, \\ k \text{ otherwise.} \end{array} \right.$ | | u v | • • • | gh | | a | Ъ | | | | | |--------------|-----|-------|-------------------------------------|--|--|----------|---|--|--|--| | u v · · · gh | | | <u>u</u> <u>u</u> <u>v</u> <u>v</u> | | u
 | u
v | - | | | | | h
• | | | | | $^{a}\cdot\mathcal{I}_{\alpha}$, γ_{c} | b· Sa, y | 0 | | | | | a
b | | | | | | | | | | | | Table 3 | | | | | | | | | | | Then we can construct an (ω, ℓ, ℓ) -right regular band. Conversely every (ω, l, l) -right regular band can be so constructed. Theorem 5.3. With same situation in Theorem 5.1, let $\{\mathcal{G}_{\gamma,\delta}\colon \delta{<}\gamma \leq \gamma_o\} \text{ be an inductive system of mappings. Let } u\in S_{\delta}, \\ k\in S_{\gamma}, \delta{<}\gamma. \text{ We define a composite}$ $\text{(•) by } u \cdot k = \begin{cases} k \cdot \mathcal{G}_{\gamma,\delta} \text{ if } S{<}\gamma \leq \gamma_o, \\ u \text{ otherwise.} \end{cases}$ Then we can construct an (l, l, ω) right regular band. Conversely every ($(\iota, \iota, \dot{\omega})$ -right regular band can be so constructed. Theorem 5.4. With same situation in Theorem 5.3, we take $\gamma_0 \in \mathbb{C}$. Fix $u_0 \in S_{\mathcal{S}}$ for all S where $S < \gamma_0$. Let $S < \gamma < \alpha < \gamma_0$. Let k_0 , u_0 be the fixed element in S_γ , S_δ , respectively. Select an inductive system $\{\mathcal{G}_{\gamma,\delta}:\ S < \gamma < \gamma_0\}$ of mappings satisfying $k_0 \cdot \mathcal{G}_{\gamma,\delta} = u_0$. Let $u \in S_\delta$, $k \in S_\gamma$, $a \in S_\alpha$. Define a composite (.) by $$\begin{cases} u \cdot a = u_0 & \text{if } S < \gamma_0 \leq \alpha, \\ u \cdot k = k \cdot \mathcal{I}_{\gamma, S} & \text{if } S < \gamma < \gamma_0, \\ k \cdot a = k & \text{if } \gamma_0 \leq \gamma < \alpha. \end{cases}$$ Then we can construct a $(1, \psi, \phi)$ -right regular band. Conversely every $((,\psi,\psi)$ -right regular band can be so constructed. ## REFERENCES - 1. A.H.Clifford and G.B.Preston, The algebraic theory of semigroups, vol. 1, A.M.S., Providence, R.I., 1961. - 2. N. Kimura, On semigroups, Dissertation, Tulane Univ., 1957. - 3. N. Kimura, Note on idempotent semigroups I, Proc. Jap. Acad. 33 (1957), 642-645. - 4. F. Kimura, The structure of idempotent semigroups (I), Pacific J. M. 8 (1958), 257-275. - 5. M. Petrich, Topics in semigroups, Penn. State Univ., 1967. - 6. M. Yamada, The structure of separative bands, Dissertation, Univ. of Utah, 1962. - 7. R. Yoshida, Ideal extensions of semigroups and compound semigroups, Mem. Res. Inst. Sci. Eng. Ritumeikan Univ. 13 (1965), 1-8. 8. Yoshida, Ichikawa, Kubo and Shimokawa, On chains of semigroups, Mem. Res. Inst. Sci. Eng. Ritumeikan Univ. 16 (1968) 1-11. Department of Mathematics Ritsumeikan University Kyoto Addenda. After I wrote this report, I read B.D.Arendt "Semisimple bands", Transaction Amer. Math. Soc. 143 (1969), 133-143. And I knew that my Theorem 2.7 and Theorem 3.2 have similar contents as Arendt's Theorem 27 and Theorem 24, respectively.