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CERTAIN RIGHT REGULAR BANDS

Reikichi Yoshida

0. Abstract. A band is called a right regular band if it

satisfies Xyx = yx. Theorem 1 in Kimura [2] proved that a right
regular band is a semilattice of right zero semigroups. Hence the
'fine structure of a right regular band is obtained by constructing
all JLcompositions of a system of right zero semigroups. Theorem 4.3
in Yamada [6] discussed its problem using the concept of the free
product. We shall discuss the same problem by more effective method.
Purthermore we shall describe certain right regular bands. We use

the natations of Clifford and Preston [1] without comment.

1. Preliminaries. Tet S be a semigroup. [\={A} [P={p}, ﬁfo),
P(o)] denote the full left [right, inner left, inner right] translation
gemigroup of S. A structure semilattice means a lower semilattice.

1 denotes the identity mapping. A chain C means a semilattice in
which BY = B or ¥ in C.

To eac£ o in a semilattice [chain] T' assign a pairwise disjoint

semigroup SO=§x0,yo,i--§. Tet S=(J{S : oeTﬂf. If S(-) becomes a

o

semigroup by defining a composite (.) by X oY, g 0% 6

< Sox otherwise,

then S(o) is said to be'a semilattice [chain] or an JL [éL]

composition of a system ;soz"oe[ﬂf of semigroups. g_g\Y
-7 F <

An T- [v-, Y-] semilattice means a semilattice having Y
; . . pls 7

al s ¥
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the structure isomorphic with fS,T,a} [ {Y,B,af,ig,?,ﬁ,a}] defined

by Table 1. An T~ [ J@r,‘ﬁg—] composition means an,j—composition

of which the structure semilattice is I- [V~, Y—] semilattice. We

write pl£3\if A and p are linked.

2. J;—compcsitions; Tet S8 and Sy be any semigroups. If to
each element t of SB we let correspond a left translation Ay(t)
and a right translation py(t) of S?’ respectively, such that the
following conditions (C), then g(Ay(t), py(t)§2 t{fSB§ is called g
system of strictly linked translations:

o i}\y(tz)v}\y(‘tl)ﬂ\y(tltz)y pp(8) L Ay (1),
py(t)oy(t5)=p (118,), Ap(t9) 0 (85) =0 (85)A, (%) .

Theorem 2.1. [7, Theorem 2.1] Iet C be a chain, and to every
element o of C‘assign any semigroup Sazgaa,ba,---}. Let S =
Uls,: «€c$. Assume that the following conditions hold:

(2.1.1) To each pair 7,8 €C, ¥Y<B, there is a system of strictly
linked translations.

(2.1.2) 1If g<7<fa, their translations satisfy the next equations:

: }\g(gy'/’-’(ba) )=?\5(ba)?\g(g7)" Ag(g.,- ?\y(aa))ﬂ\g(gr)?\g(aa) ’
pslEy-Ayld ))=p4(b Joslgy)s psley-pyla,))=rsley)es(a,),
?\‘a(gy)pg(auhp&(aa)Aé\(gy) ’ }\S(aa)P(g\(gr)'—'pg(gy) )\3(8.&) .

Then S(.) becomes a é;composition of %Qiz mg;C} by defining a
composite (o) in S as follows:
| uo-Ao(yT) if o<1,
(2.1.3) Y ouy = yTopT(uGJ if 1<o,
Yol . if o=t1.
Conversely, every glcomposition of 950: oe;C} can be found in

this way.

Theorem 2.1 is rewrited in the following for a system of left
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reductive semigroups. P(k)

denotes the set of all right translations
having a linked left translation. A denotes the correspondence

which prescribes for each p in P(k) left translations linked with o.

(2.2) 1If a semigroup S is left reductive, then the correspondence

A is one-valued.

Corollary 2.3. [8, Corollary 2*'] To every « of a chain C, assign
a left reductive semigroup Sa. Let Aa be the happing of Pék) into
Aa described in (2.2). Then every Z:-composition of %Sa: a€ C§ is

completely determined by homomorphisms ¥T<B, of S, into ng)

B

8,7’
satisfying

2.3.1) [gy-(a v )Tty c=(g vy <)a v )
( 14 o« o, Y ) 1,57\ &y Yy 5 o Ty S gfor S<¥<o in C,
(2.3.2) Ley-{lag vy ) AyfT vy s=(ag-ty YEy-ty 5)

Now we shall treat a system of right zero semigroups.

(2.4) Let S be g right zero semigroup. Then
(1) A =11} ana P =7f;

(ii) o £k 1 for all aéys.

(2.5) Let C be a chain. Por évery a&C let Soc be a right
zero semigroup. Let S= Ufsa: «€c}. To each pair §<¥ of C, we
let correspond & homomorphism 7(7’5 of S.’ into %gsatisfying
(2.5.1) [gl'"(aa'Za,?)]°17,8=(g7'xl',$)(aa')éx,g)
(2.5.2) ey Ky,s=(a- X, Ileyhy s)
Then S(.) becomes g G—composition of fSa: ac’C} by defining a

f for $<¥Wou in C.

product («) in S as follows:

(2.5.3) v

Y ={y1-(u0-}foﬂ) if 1<o,
%0

‘uo if 1>=o0.
Conversely every g—composition of {Sa: o ecf can be obtained

in this way.



Hereafter we shall consider a partition ﬂ:of‘a‘semigroup S as
the equivalence relation on S defined by sTt (s,t€S) if s and v

belong to the same member of 7.

(2.6) Let Sr and S; be two right zero semigroups. Then we
take a partitiqn ﬂ;'s of Sg; where ﬂ;'3288=\)}spz evet&ﬂ To every
g€Sy» fix an element u,(g) from each equivalence class Sr of Sg
mod ﬂ;'s. Ve define 2;.8 by ur-(g-);,8)=ur(g) for all uve;sv.
Then X.‘,'s is a homomorphism of .S.’ into 78;‘ |

Y ° b

Conversely every homomorphism )Q.S of s, 1nto.3gs can be

ohbtained in this fashion.

Theorem 2.7. Let C be a chain. For each aeC assign a
pairwise disjoint right zero semigroup Sa‘

(1) For every pair y,a in C, y<a, we take a partition T, y
3

of SY such that

(2.7.1) 1if 8<y<a then LI 27,85

7 : : s : : o
that is, let = {SE EeE }, L {Su ueH} an

a,Y’
o, s’ {Sv(u): v(u)eN(u), ueﬁ.}.

(ii) For each aeSa L geSY, agsa 1, let {Zg(a): EeZ}
[{ﬁu(g): ueﬁh {ﬁv(u)(a): v(u)en(u), ueﬁ}] be fixed elements from
equivalence classes Sg [ Su, Sv(u) ] for indices in (i). Suppose
that they have the next connection:
(2.7.2) 1If g LI h, then ﬁu(g) LI ﬁu(h) for all uarL
(2.7.3) Let uep and aeS_ . Then

uu(zg(a)) T, s uu(zg.(a)) implies up(zg(ai) = uu(zg,(a)).
(2.7.4) Let aeS . If uu(zg(a))esv(u), then uv(u)(a)=uu(z€(a)).
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- Then we can construct a &;composition of {Sq:_a1gc}.

Conversely every Elcomposition of {S“: a{:C§ can be so constructed.

s . 4 7y

Proof. Sufficiency. Define 2;’7, Ny, g0 2;,3 by

(2.7.5) izj.(a.x‘h’)zzs(a)’ Z;'&' 55 v_ UF'(E‘Xy,g)ﬂlf((g)v ul_,\ﬁ ut/ﬁ
o) (@ ke, )0 (200 e Sy B

B.K%rcompositions. Let14=§7,6.a} be a V-semilattice. To

each element of T, assign mutually disjoint any semigroup S?=%g.h,
"3’ SB=§C,d,~0'}, sa=§a,b’oco}.

Theorem 3.1. [7, Theorem 2.2]} Iet S=S?USBUS&. "Assume that
the following conditions hold.
(3.1.1) There is a system of strictly linked translations between
5, and S, [sB and S,J.
- (3.1.2) There is a mapping € [v] of SgxSy [SaxSB] into S,.
f3.1.3) The connection between their translations and their
mappings is given by _

% AeIr(a)=Ac, oy.4r AMa)r(ed=A, oy.g9
p(a)p(0)=p(a,c)_¢, pledp(a)=p(; 4y.9°
A(c)e(a)=p(a)r(c), Aa)p(c)=p(c)r(a),

S (ab;c)-w=[(b,c)-w]-x(a), (c,ab).8=[(c,a)-8].p(b),

1 [(a,¢)-3]-p(b)=[(c,b)-8]-a(a),

; (cd,a)-6=[(d,a)-6]+n(c), (a,cd)-y=[(a,c)-pl-p(d),

\ [(a,a).y]-A(c)=[(c,a).-0]-p(a).

Then we can construct ané%—compbsition of {s,, SB’ Saf,
Conversely every J%rcomposition of §s,, Sg, Sd§ can be so
constructed.
Proof. Sufficiency. Define a composite (&) by
(3.1.

: cea=(c,a).o, aec=(a,c) .y,
0 |

aeg=g-A(a), ceg=g-A(c), gea=g-p(a), gec=g-plc)
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We have the next theorem for a system of right zero semigroups.

Theorem 3.2. Assign mutually disjoint right zero semigroups
Sys SB’ S,+ We take two partitions of SY: (T
(3.2.1) T stgsS: sel, (3.2.2) Ty, v’ s,:Ufsz: 761{}.
Wor any element a in Sa’ we fix Eg(a) from each Sg such that
(3.2.3) there is Y(a)e&H satisfying Es(a)e;s?(aj for all S{EZ.
For any c in S5, we fix Zz(c) from each SZ such that
(3.2.4) there is g(c)éfj satisfying %j(c)éis§(03 for all ZéIL

Then we can construct an d%—composition S(o)=SYUS USa.

B

Conversely every d;—composition of {ST,SB,SaE can be so

constructed.

4.;X~compositions. Let'r={a,8,7,g,--‘,0,-'~} be any semilattice,

J(S) denotes the translational hull of a semigroup S and let 0(s)
:i(xs,ps): s€ S} be the translational diagonal of S. The following

theorem is due to M. Petrich.

Theorem 4.1. [5, Theorem 7.8.13] For every o in a semilattice

T let Soziaa’bovcﬁ"'°f be a weakly reductive semigroup where §
are pairwise disjoint. For every pair g,?éTﬂ, S<7v, let‘zy s be a

’
mapping of S, into N(S5) satisfying

(4.1.1) s =(AS 1P

. 6] c
(4.1.2) if a4p, BEa, then (Sa'xa,as)(SB'XB,aB)gg(saﬁ)’
(4.1.3) if S<aB, then

o'xo,o ) for all S,€ES s

- - - -1 = - — ‘
[(aa'xn,ae)(cB'XB,aB)]'xhﬁ,aﬂ‘XQB,S:(aa'Xa,S)(CBZXB,S)'
Defing a composite (o) in SzlJ%So: oeT@ by
_ _ )
f4.1.40 a, ° CB = [(aa”xa,aB)(cB'xﬁ,aﬁ)]°xa8,a6‘

Then S(.) becomes an Jtcomposition. Conversely every JLcomposition

of a system of weakly reductive semigroups can be so constructed.
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(4.2) If S is a right zero semigroup, then H(S) is isomorphic

onto 73 by (l,d)Ha.

_Theorem 4.3. Iet T be a semilattice. To each ce] assign a
right zero semigroup So, where‘.bsO are pai‘i‘wlisef‘disfj;eiﬂnt, To every
pair 1,0l , ;1<o,.v‘§‘e);;¢%}s%\ba partition n—o,t ~and fixed elements
satisfying the following éo;dition. |

Let {§,7,8,0f be a Y-subsemilattice of T. TLet Sy=}u,i,d,---},
Sy=§g‘hv°j°z9§v--}, Sg={c,--} and §_={a,..-{. Assume that
(4.3.1)-(4.3.3) hold.

(4.3.1) As in Theorem 3.2, we take two partitions Mo,y 308 Ty o
of S, and fixed elements %(a) [E,((c)] from each S, [S)Z]

sgtisfying (3.2.3) [(3.2.4)].

_

y

. (4.3.2) wWe take a partition 7[;,,8 of SS: Sg= U{ SP: \Mét«if; and we
fix u(u(g)é S(" for g€S, and Fee/L

(4.3.3) As in Theorem 2.7, we take a partition 7[:1,8' of Sg
satisfying (2.7.1)-(2.7.3). Similarly for T, .. We fix 0, (&)

Bso I)(t/\)

€Sy(f‘) as follows:
o =u.(z i u..(z. Y€ s

ut‘(zo?(a)) if u(/(zs(a)/t )"( )9
€ Sv(r)n[ur‘(z?(a)(C))’{[B,S] otherwise.
Similarly for ﬁ)d.()(c). Then we can construct an X-composition
5(«)=U}s : oeTH.

Conversely every j—cbmposition of a system of right zero

(4.3.3.1) ﬁv(y)(a)ﬁ

semigroups can be found in this fashion.

‘5‘. Certain 5—compositions . We shall discuss certain Cf-
compositions of right zero semigroups.

Let C be a chain, 3<|C|. To each a€C assign a pairwise
disjoint right zero éemigroup S,- Let S(e)=U{Sa: aeC} ve & B-

composition. Iet Y €C. A (&,(,d)- [(@,(,L)-, (L, 0L,E)=, ((,w,w)-]
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right regular band means a ¥-composition S(.) such that 7[0,5. S

[’(Z'a,-r. 1<a, 7(7'3. 5<7, 7((1,7, x< Y] described in Theoren 2.7

o~ \Q)Y if 70§_ T< a,

ICa, ,=2

ilg if $<70< a,
aigz%

satisfies T

g otherwise L otherwise,

Ly
L? if 7°< 7<a,&

- %(\)‘rif S<¥<?,,
@y otherwise .

!L7v8= Lao":{

LJ otherwise,

Let §,Y€C, 6<7¥. Pix u €Sg. Define a constant mapping

fy'g(uo) by g-g'y’g(uo)=uo for all g€5,-

Theorem 5.1. Let C be a chain. To every a€C associate

a

right zero semigroup Sa’ and suppose that"Sd are pairwise disjoint.

1et 5=Uys : aeC}. Pix ¥ €C. Let {g, 4 Y= ¥<a} be an

inductive system of mappings. Let §§8 7 o< 7_5_70} be an
?

let ueS., a€S,. Define a composite () by

u
Neaqa :{

a-%o,s otherwise.

)
if g( 7‘0<a,

—

"hen we can construct an (@, (,®)-right regular band.

inductive system of mappings such that 3"7 ’5=§7 ,S(uo), u,€ SS‘
o 0

Conversely every (Le),(.,u))-right regular band can be so constructed.

l
_‘j

UV oo k 1 ..‘.gh...'rc d -1 [
: 7 u u u i
k[T 7 K K K T
Ygl////% kl
LLrobd ’ o d ///! | . . .

nlﬁ P -

't i i { '////‘/ ‘/// ~ ! B
. J d u V; .o e k 1 " g ih ,/’ ".’/‘/ s s v a.y - b-&p o
“s g, , . ) ' . 1 . LI - - ' a L; - u
h\ o . i ‘f////f, - , '

. ] TNE
S,l:. u voee K 1 .. gih-- c d 1

! i b

[



Theorem 5.2. With same

situation as in Theorem 5.1, let
gﬂh,r: 70g57<;a§ be an inductive

gystem of mappings. Let k&S

'r’

a €5, ¥Y<a. We define & composite

() by koa=3a'99cx,'l if YV, =V<a,

k otherwise.

17

e l<ie|e
-l |<ie|e

a.jz’yob.gz’wo;..

N\ERzE
N\

7

Table 3

Then we can construct an (@,(,()-right regular band.

Conversely every (@, L, )-right regular band can be so constructed.

Theorem 5.3. With same
gituation in Theorem 5.1, let
igj?,S: S<¥ =Y} Dbe an inductive
system of mappings. ILet ufésg,
kegsy, 5<¥. We define a composite
kKefycif G<¥<Y
(o) by u°k=§ Y,$ = O’
u otherwise.
Then we can comstruct an (U, l,d)-

right regular band.

T<Te|w
L <le|o

& Fa, sl Srg

Table 4

|
a

15im
- |i5iog

c e TP e M e <

Conversely every (L,(,@)-right_regular band can be so constructed.

Theorem 5.4.

Pix uoe SS for all$ where S<70.

With same situation in Theorem 5.3, we take YOé}C.

Tet S<¥<oa<? . Let k_, u  be the fixed element in Sy, Sg,

respectively. ©Select an inductive system %93’5 :

satisfying ko-j;,g =u,. Let

- = U
Ued o

o
o
~
1

(¢) by
k

=
°
©
]

5<7<:70§ of mappings
Define a composite

if §<70§a,

= k‘fy,g if §<7<70’

if ?0§§7<:a.




Then we can construct a (.,&d,8)-right regular band.
Conversely every ((,&,&)-right regular band can be so

constructed.

nwy ... k 1 <o gh «..ocd a b .
ul. //
M ,///4 L@ . l IR
85 ( // / k 7)% 1 gy 98 : u4uo 1(jLIO Ucud
Cels LSS o |
! S
S i .. o . .
Sy % ey ,’////’ K kol + kKol kK
o | i /'l Vs /// /
p———— 1 - R A .
(7 ! / g |8 g &
S % h | ?Ezi;7/ | njh
Oy . ‘ , / —= e
© A . /4;7_7_ R
¢ : ! / c |c_
s ; 1 7l
O S . . S A, ﬁ_,,// P P -
a j //
o .| ’ 4
Table 5 .
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Addenda. After I wrote this report, I read B.D.Arendt
"Semisimple bands", Transaction Amer. Math. Soc. 143 (1969), 133-
143. And I knew that my Theorem 2.7 and Theorem 3.2 have similar

contents as Arendt's Theorem 27 and Theorem 24, respectively.



