The Firing Squad Synchronization Problem for Graphs ### YASUAKI NISHITANI Research Institute of Electrical Communication, Tohoku University, Sendai, Japan ## NAMIO HONDA Department of Electronics, Nagoya University, Nagoya, Japan Abstract This paper deals with the Firing Squad Synchronization problem for some classes of digraph structures and graph structures. The first part of this paper gives solutions for the classes of circuit structures, quasi-circuit structures, and some other extended digraph structures. The second part gives a solution for the class of connected graph structures, whose synchronization time for a graph structure with radius r is 3r+1 or 3r time units. ### 1. Introduction The problem of synchronizing a finite (but arbitrarily long) one-dimensional array of finite automata, known as the firing squad synchronization problem, was proposed by Myhill and Moore [8]. Consider a one-dimensional array of identical finite automata. The state of each automaton at time t+1 depends on its own state and those of its two neighbours at time t. The problem consists of defining the structure of automata so that one end automaton of the array, called the general, can cause all automata to enter a particular state, called the firing state, all at once. It can easily be shown that the minimal time required to synchronize an n-element array is 2n-2 time units. The first minimal-time solution was obtained by Goto [2]. Waksman [13] has produced a minimal-time solution with 16 states and Balzer [1] has reduced the complexity to 8 states. The problem was generalized in many different ways by Moore and Langdon [9], Herman [3, 4], Rosenstiehl [11,12], Kobayashi [5, 6, 7], and Romani [10]. This paper deals with the firing squad synchronization problem for d-digraph structures and d-graph structures. Informally, a d-digraph structure (d-graph structure) is a network of identical finite automata in which an automaton is placed at each vertex of a digraph (graph) and the automata are connected along every arcs (edges) of the digraph (graph). We present solutions of the problem for some subclasses of d-digraph structures in section 3 and for the class Π^d of connected d-graph structures in sections 4 and 5. Rosenstiehl and Romani studied the problem of synchronizing a network of finite automata however connected. Rosenstiehl's solution obtains a synchronization time of 2^n , where n is the number of automata in the network, and Romani's solution obtains a synchronization time shorter than or equal to that of Rosenstiehl's. The class of networks studied by Rosenstiehl and Romani is the same class as Π^d in our formulation. Our solution obtains a synchronization time of 3r or 3r+1, where r is the longest distance between the general and any other element in the network. ### 2. Preliminaries In this section, we give definitions and notations used in this paper. A digraph (or directed graph) is a pair (X, U), where X is a set of elements called vertices and U is a set of ordered pairs of distinct vertices called arcs. A graph (or undirected graph) G is a pair (X, E) where X is a set of vertices and E is a set of unordered pairs of distinct vertices called edges. A graph G is also regarded as a symmetric digraph G^* that has two oppositely directed arcs corresponding to each edge of G. In this paper we adopt this viewpoint. The order of a digraph (graph) G, denoted by |G|, is the number of vertices in G. The distance from a vertex x to a vertex y in G, denoted by $\operatorname{dist}_G(x, y)$, is the shortest length among the pathes from x to y. Note that generally $\operatorname{dist}_G(x, y) \neq \operatorname{dist}_G(y, x)$ in a digraph G. A d-finite automaton M^d is a 6-tuple $(s, s_e, s_q, s_g, s_f, \lambda)$, where (1) s is a finite set of states, (2) s_e is an element not in s (the external signal), (3) s_g , s_q , and s_f are particular distinct elements in S (the quiescent state, the general state, and the firing state respectively), and (4) λ is a transition function from $S \times (S \cup \{s_e\})^d$ into S such that λ (s_q , s_1 , \cdots , s_d) = s_q if each of s_1 , \cdots , s_d is either s_q or s_e . Informally, M^d is an automaton with d input terminal. A d-tuple (s_1 , \cdots , s_d) in the set ($S \cup \{s_e\}$) d is called an input letter. A d-digraph structures is a 3-tuple (G, x_g, d) , where d is a positive integer, G is a digraph such that $d_G^- \le d$ where d_G^- is the in-degree of G, and x_g is a particular vertex of G called the general. On a d-digraph structure, a d-finite automaton M^d is placed at each vertex of G. A vertex x installed with a d-finite automaton is called a cell x. Cells are connected along arcs in G. Let x be a vertex with $d_G^-(x)$ into-arcs. Among d input terminals of a cell x, $d_G^-(x)$ of them are connected with the output terminals of the predecessor cells of x and the remaining $d - d_G^-(x)$ (≥ 0) input terminals are connected to the external world. In order to describe clearly how the input terminals of x are connected to the predecessors of x or the external world, each input terminal is labeled a distinct integer i ($1 \le i \le d$). If the input terminal of x, labeled i, is connected to a predecessor y of x, y is called the i th predecessor cell of x. If the input terminal labeled i is connected to the external world, we say that the i th predecessor does not exist. The i-th component of an input letter (s_1, \cdots, s_d) of a cell x is the state of the i th predecessor cell of x (if it exists) or the external signal s_e (if not). A d-digraph structure (G, x_g, d) is called a connected d-digraph structure if there is at least one path from x_g to y for any vertex y in G. In the followings, we shall deal with connected digraph structures, so we call them simply digraph structures. Suppose that a d-digraph structure (G, x_g, d) is given and a d-finite automaton M^d is placed on each vertex of G. Then the state of a cell x at time t, denoted by s (x, t, G, x_g, M^d) , is defined by the following rules. At t=0, only the general cell x_g is in the general state s_g and all other cells are in the quiescent state s_q . That is, $s(x,0,8,x_g,M^d)$ is s_g if $x=x_g$ and is s_q otherwise. Let $s_i=s(x_i,t,G,x_g,M^d)$ if the i th predecessor x_i of x_g exists $= s_e \qquad \text{if it does not exist.}$ Then the state of x at time t+1 is determined as $s \ (x,\ t+1,\ G,\ x_g,\ M^d) = \lambda \ (s(x,\ t,\ G,\ x_g,\ M^d),\ s_1,\ \cdots, s_d).$ If the state of x at time t is s_f , we say that x fires at time t. The problem is to specify a automaton \mathbf{M}^d which makes all cells in (G, x_g, d) to fire at once. A d-finite automaton \mathbf{M}^d is called a solution of the firing squad synchronization problem for a subclass \mathbf{G}^d of d-digraph structures (simply a solution for \mathbf{G}^d) if, for each d-digraph structures (G, x_g, d) in \mathbf{G}^d , there exists a time t $(G, x_g, d, \mathbf{M}^d)$ such that all cells in G fire at time t $(G, x_g, d, \mathbf{M}^d)$ and do not fire prior to time t $(G, x_g, d, \mathbf{M}^d)$. The time t $(G, x_g, d, \mathbf{M}^d)$ is called the synchronization time of M^d for firing a d-digraph structures $(G, x_g, d) \in \Theta^d$, (simply the synchronization time of M^d for (G, x_g, d)). Next, we define a d-graph structure (G,x_g,d) . Let G be a graph with $d_G \leq d$, and let x_g be a particular vertex of G. For G, we define the symmetric digraph G^* that has two oppositely directed arcs corresponding to each edge in G. Thus $d_G = d_{G^*} = d_{G^*} = d_{G^*}$. Then a d-graph structure (G,x_g,d) is defined to be the d-digraph structure (G^*,x_g,d) . A d-graph structure (G, x_g, d) is called a connected d-graph structure if there is at least one path from x to y for any pair of distinct vertices. The class of connected d-graph structures and the corresponding d-digraph structures are denoted as Π^d and Π^{d*} respectively. In the followings, connected graph structures are called simply graph structures. A d-finite automaton M^d is called a solution of the firing squad synchronization problem for Π^d if M^d is a solution for Π^d . The synchronization time $t(G, x_g, d, M^d)$ of M^d for a d-graph structure (G, x_g, d) is defined by the synchronization time $t(G^*, x_g, d, M^d)$ for the corresponding d-digraph structure (G^*, x_g, d) . For a d-graph structures (G, x_g, d) , let t_{min} (G, x_g, d) be the minimum value of $t(G, x_g, d, M^d)$ over all solutions M^d for Π^d . Given (G, x_g, d) , let $L(G, x_g, d)$ be $\max_{x,y} \{dist_G(x_g, x) + dist_G(x, y)\}$. Kobayashi gave the following result about t_{min} (G, x_g, d) [5] Theorem 2.1. For $(G, x_g, d) \in \Pi^d$ with |G| = 1, $t_{min}(G, x_g, d) = 1$. For $$(G, x_g, d) \in \Pi^d$$ with $|G| \ge 2$, $$t_{min} (G, x_g, d) \ge L(G, x_g, d).$$ Especially, if there are three cells x, x', and y such that x and x' are adjacent, $dist_G$ $(x_g, x_l) = dist_G$ (x_g, x') , and $dist_G$ $(x_g, x) + dist_G$ $(x, y) = dist_G$ $(x_g, x') + dist_G$ $(x', y) = L(G, x_g, d)$, then $$t_{min}(G, x_q, d) \ge L(G, x_q, d) + 1.$$ Intuitively, $L(G, x_g, d)$ is the time required for x to receive a signal from x_g and leave the quiescent state, and then for y to receive a signal from x for any vertices x and y in G. - 3. Solutions for certain subclasses of d-digraph structures. - 3.1 In this section, we give solutions for certain subclasses of d-digraph structures. A digraph $C_n = (X_n, U_n)$ is called a circuit if $X_n = \{x_0, \cdots, x_{n-1}\}, U_n = \{u_0, \cdots, u_{n-1}\}, u_i = (x_{i-1}, x_i)$ for each i (0 < i < n), and $u_0 = (x_{n-1}, x_0)$. A circuit structure $(C_n, x_0, 1)$ is a 1-digraph structure in which C_n is a circuit. Let Θ_C be the class of circuit structures. A solution for Θ_c was given by Kobayashi. Its synchronization time for $(\mathcal{C}_n,\,x_0,\,1)$ is 2n-1 time units. It is easily shown that the minimum time required to synchronize $(\mathcal{C}_n,\,x_0,\,1)$ is 2n-1 time units. So the solution given by Kobayashi is a minimum time solution. The authors have obtained independently a similar solution. Here we give our solution $M_c=(S_c,\,s_e,\,s_q,\,s_q,\,s_f,\,\lambda_c)$ which is called the circuit solution. The evolution of the solution ${\it M}_c$ is depicted in Fig. 1. The horizontal axis represents the circuit of cells in ${\it C}_n$ and the vertical axis represents time. The (z, t) entry represents the state of the z th cell at time t. Let us divide cells in C_n into two equal parts. We shall represent a binary number $n=a_0+a_1\,2+\cdots+a_m\,2^m$ ($a_i=0$ or 1) as $n=\langle a_1\,,\,\cdots,\,a_m\rangle$. In dividing n cells into two equal parts, each part is considered to contain $\langle a_1\,,\,\cdots,\,a_m\rangle$ cells. We divide the two halves into two parts each so that the size of each subdivision is $\langle a_2\,,\,\cdots,\,a_m\rangle$. In similar fashion, the size of the k th subdivision is $\langle a_k\,,\,\cdots,\,a_m\rangle$. We use four signals P_{00} , P_{11} , P_{20} , and P_{21} for marking the boundaries between subdivisions and also for generating the following series of signals which propagate along the circuit. P_{00} and P_{11} are called general signals, and P_{20} and P_{21} are called subgeneral signals. A general signal $P_{0\,\,0}$ generates following series of signals: a P-series consisting of P_{0} and P_{1} signals which does not propagate, BC-series consisting of B_0 , B_1 , B_2 , B_3 , C_0 , C_1 , C_2 , and C_3 signals which propagate with velocities v=1/3, 3/7, \cdots , $(2^i-1)/(2^{i+\frac{1}{2}}-1)$, \cdots (cells/time unit), (a BC-series which propagates with $v=(2^i+1)/(2^{i+1}-1)$ is called a $(BC)_i$ -series), an A_0 -series consisting of A_{00} and A_{01} signals which propagates with v=1, and RS-series consisting of R_1 , R_2 , S_0 , S_1 , and S_2 signals which propagate with v=2/3, 4/7, ..., $2^i/(2^{i+1}-1)$, ...(i=1, 2, ...), (an RS-series which propagates with $v=2^i/(2^{i+1}-1)$ is called an (RS),-series). A general signal P_{11} generates following series of signals: a P-series, BC-series which propagate with the same velocities as those of the above BC-series but are delayed one time unit, an A_1 -series consisting of $A_{1\,0}$ and $A_{1\,1}$ signals which propagates with v = 1, and RS-series. A subgeneral signal P_{2l} (l=0 or 1) at (z,t) generates P_{ll} signal at (z+1, t+1) and a P_2 -series consisting of P_2 signals which does not propagate. A $(BC)_i$ -series is obtained if we delay a series, which propagates with v=1/2, one unit time on every 2^{i-1} -l cells. It is shown that a $(BC)_{i+1}$ -series is produced by a $(BC)_i$ -series inductively. A $(RS)_i$ -series is obtained if we advance a series, which propagates with v=1/2, one unit time on every 2^i cells. It is shown that a $(RS)_{i+1}$ series is produced by a $(RS)_i$ -series inductively. We shall show how general and subgeneral signals and are generated on boundaries of subdivision. General and subgeneral signals are generated according to the following rules. - (1) When an A_0 -series meets C_2 of a BC-series, P_{00} is generated. - (2) When an A_0 -series meets B_2 of a BC-series, P_{11} is generated. - (3) When an A_1 -series meets C_3 or C_0 of a BC-series, P_{20} is generated. - (4) When an A_1 -series meets B_3 or B_0 of a BC-series, P_{21} is generated. - (5) When a P-series meets S_2 or S_0 of an RS-series, P_{00} is generated. - (6) When a P-series meets R_2 of an RS-series, P_{11} is generated. - (7) When a P_2 -series meets S_2 or S_0 of an RS-series, P_{20} is generated. - (8) When a P_2 -series meets R_2 of an RS-series, $P_{2,1}$ is generated. - (9) When a P-series meets A_{0} of an A_{0} -series, P_{**} is generated (* = 0 or 1). Four cases are to be considered. Case 1. let n be an integer represented by $\langle a_0, \dots, a_m \rangle$, and suppose that P_{00} is generated at (0, 0) and $P_{a_0a_0}$ is generated at (n, n). It is shown that $P_{a_ia_i}$ is generated at $(n, 2n - \langle a_i, \dots, a_m \rangle)$ $(i = 1, 2, \dots)$. Case 2. Suppose that P_{00} is generated at (0, 0) and $P_{a_0a_0}$ is generated at (0, n). It is shown that $P_{a_ia_i}$ is generated at $(n - \langle a_i, \dots, a_m \rangle, 2n - \langle a_i, \dots, a_m \rangle)$, and if $a_{i-1} = 1$, P_{2a_i} is generated at $(n - \langle a_i, \dots, a_m \rangle - 1$, $2n - \langle a_i, \dots, a_m \rangle - 1$. Case 3. Suppose that P_{11} is generated at (0, 0), P_{2a_0} is generated at (n, n), and $P_{a_0a_0}$ is generated at (n+1, n+1). It is shown that P_{2a_i} is generated at $(n, \langle a_i, \ldots, a_m \rangle)$ by the similar way as in case 1 and $P_{a_ia_i}$ is generated at $(n+1, 2n-\langle a_i, \cdots, a_m \rangle + 1)$. Case 4. Suppose that P_{11} is generated at (0, 0) and $P_{a_0} a_0$ is generated at (0, n+1). By the similar way as in case 2 and by considering that the BC-series generated by P_{11} propagate with one time unit delay, it is shown that $P_{a_i a_i}$ is generated at $(n - \langle a_i, \cdots, a_m \rangle, 2n - \langle a_i, \cdots, a_m \rangle + 1)$ and if $a_{i-1} = 1$, P_{2a_i} is generated at $(n - \langle a_i, \cdots, a_m \rangle - 1$, $2n - \langle a_i, \cdots, a_m \rangle$. From the above consideration, we conclude that the general or subgeneral signals are generated synchronously at boundaries of subdivisions. Then, it is seen that all cells fire at time (2n-1) for $(c_n, x_0, 1)$ and thus M_c is a solution for θ_c . Theorem 3.1. $M_c = (s_c, s_e, s_g, s_q, s_f, \lambda_c)$ is a solution for the class θ_c of circuit structures and its synchronization time for $(c_n, x_0, 1)$ is 2n-1 time units. The number of states of M_c is 38. The evolution of the circuit solution $^{M}_{c}$ for $(c_{13}, x_{0}, 1)$ is given in Fig. 2, where s_{g} , s_{f} , and s_{q} are denoted by P_{00} , F, and blank respectively. 3.2. We consider a digraph $C_n^1=(X_n^1,\,U_n^1)$ which is called a quasi-circuit. A quasi-circuit $C_n^1=(X_n^1,U_n^1)$ is defined as follows. (1) $$X_n^i = \{x_{i,j} \mid 0 \le i \le n-1, 0 \le j \le h_i, h_0 = 0\}.$$ (2) $$U_n^i = \{(x_{i-1}, x_{i0}) \mid 0 \le i \le n-1, x_{-1} = x_{n-1}\}$$ $$U_0 = \{(x_{i-1}, x_{i0}) \mid 0 \le i \le n-1, x_{-1} = x_{n-1}\}$$ $$0 \le i \le n-1, 0 \le i \le h, i$$ where U_{ij} is the set of arcs of the form (x_{i-1}, k, x_{ij}) for some k. (3) There exists at least one path from x_{00} to x_{ij} for all vertices x_{ij} . From the definition, it is shown that - (1) $dist_{C_n^i}(x_{00}, x_{ij}) = i < n$, - (2) there exists at least one circuit in \mathcal{C}_n^1 , and - (3) all circuits of C_n^1 pass through x_{00} and their length are n. A d-quasi-circuit structure is a d-digraph structure $(\mathcal{C}_n^1, x_{00}, d) \text{ where } \mathcal{C}_n^1 \text{ is a quasi-circuit. Let } \theta_{c1}^d \text{ be the class of d-quasi-circuit structures.} A solution for } \theta_{c1}^d \text{ can be obtained by slightly modifying the circuit solution } M_c. Let <math display="block"> M_{c1}^d = (S_c, s_e, s_g, s_q, s_f, \lambda_{c1}^d) \text{ be a d-finite automaton whose input letters are d-tuples. The state transition function } \lambda_{c1}^d \text{ is defined only for such input letters that all components other than } s_e \text{ are identical signals.} For these defined inputs, } M_{c1}^d \text{ behaves as } M_c \text{ does. In more detail, let an input letter of } M_{c1}^d \text{ whose every component is either } s \in S_c \text{ or } s_e \text{ be expressed as } s^d. \text{ We define } \lambda_{c1}^d \text{ (s', s^d)} = \lambda_c \text{ (s', s) for all s', s} \in S_c \text{ where } \lambda_c \text{ is the state transition function of } M_c.$ Theorem 3.2 M_{c1}^d is a solution for Θ_{c1}^d and its synchronization time for $(G_n^1, x_{00}, d) \in \Theta_{c1}^d$ is 2n-1 time units. Proof. It is easily proved by the induction on t that at any time t and for each i (0 $\leq i$ \leq n-1), the state of the automaton at x_{ij} is independent of j, that is, $s(x_{ij}, t, C_n^1, x_{00}, M_{c_1}^d)$ is identical for all j(0 \leq j \leq h_i). Since there is at least one circuit in (C_n^1, x_{00}, d) , all cells on the circuit fire at time 2n-1. Hence all cells in (c_n^1, x_{00}, d) fire at time 2n-1. M_{c1}^d is called the quasi-circuit solution. - 3.3 We consider a digraph $C_n^2 = (x_n^2, U_n^2)$ which is defined as follows. - (1) There is at least one circuit in C_n^2 and all circuits in C_n^2 pass through a designated vertex x_{00} . - (2) The maximum length of circuits in C_n^2 is n. - (3) For each vertex x, there is at least one path from x_{00} to x and the maximum length of paths, in which no vertex is encountered more than once, is less than n. In other words, C_n^2 is obtained by adding arcs of the form $(x_{ij}, x_i'_j')$ with i < i'-1 to a quasi-circuit C_n^1 . Let θ^d_{c2} be the class of d-digraph structures $(\mathcal{C}^2_n, x_{00}, d)$ and \mathcal{M}^d_{c2} be the d-finite automaton which is obtained by modifying the quasi-circuit solution \mathcal{M}^d_{c1} as explained below. \mathcal{M}^d_{c2} consists of \mathcal{M}^d_{c1} and the processer for the input signal. The processor finds which predecessor cells move to non-quiecent state in \mathcal{M}^d_{c1} lastly. Since then, the processor regards the signals from the predecessors other than the lastly activated ones as external signals. In other words, \mathcal{M}^d_{c2} disregards input signals received through arcs $(x_{ij}, x_{i'j'})$ with i < i'-1 stated for defining \mathcal{C}^2_n from \mathcal{C}^1_n . Then Theorem 3.3 is easily proved Theorem 3.3 $M_{c^{\frac{3}{2}}}^d$ is a solution for $\Theta_{c^{\frac{3}{2}}}^d$ and its synchronization time for $(C_n^2, x_{00}, d) \in \Theta_{c^{\frac{3}{2}}}^d$ is 2n-1 time units. - 3.4 We consider a digraph $C_n^{\frac{3}{3}}=(X_n^{\frac{3}{3}},\,U_n^{\frac{3}{3}})$ which is defined as follows. - (1) There exists at least one circuit which pass through a designated vertex $x_{0,0}$. - (2) The minimum length of circuits passing through $x_{0\,0}$ is $n\,\cdot$ - (3) For each x, there exists at least one path from $x_{0\,0}$ to x and $dist_C^{\,3}$ $(x_{0\,0}\,,\,x)$ < n. Let $\theta_{\widehat{\mathcal{C}}}^d$ be the class of d-digraph structures $(\mathcal{C}_n^3, x_{00}, d)$ and $M_{\mathcal{C}_3}^d$ be the d-finite automaton which consists of the quasicircuit solution $M_{\mathcal{C}_1}^d$ and the processor for the input signal. The processor finds which predecessor cells move to non-quiecent states first. Since then, the processor regards the signals from the predecessors other than the first activated ones as external signals. Then Theorem 3.4 is easily proved. Theorem 3.4 M_{c3}^d is a solution for θ_{c3}^d and its synchronization time for (C_n^3, x_{00}, d) is 2n-1 time units. - 4. Two preliminary solutions for d-graph structures. - 4.1. In this section, we shall consider the class \mathbb{T}^d of d-graph structures, and give two preliminary solutions \mathcal{M}^d_{*r} and \mathcal{M}^d_{*r+1} for \mathbb{T}^d . Let (G_r, x_g, d) be a d-graph structure with the radius r. Here, the radius r of a graph structure (G, x_g, d) is defined by $r = \max_{x \in G} dist_G(x_g, x_x)$. It will be shown that the synchronization time of \mathcal{M}^d_{3r+1} for (G_r, x_g, d) is 3r+1 time units. We call \mathcal{M}^d_{3r+1} a 3r+1 solution. Before explaining the essential idea for constructing $M_{3\,r\pm1}^d$, we shall give a preliminary solution $M_{4\,r}^d$ whose synchronization time for $(G_r,\,x_g,\,d)$ is 4r time units. We call $M_{4\,r}^d$ a 4r solution. The principal idea is to construct the automaton which reduces a given d-graph structure to a d-quasi-circuit structures and then simulate the quasi-circuit solution M_{ci}^d . In $(g, x_g, d) \in \mathbb{R}^d$, if a cell x has no adjacent cell y such that $dist_G(x_g, y) > dist_G(x_g, x)$, then x is called a terminal cell. For each cell x, there is at least one path $\mu = [x_0 \ x_1 \ \cdots \ x_l]$ such that $x_0 = x$, x_l is a terminal cell, and for all j $(0 \le j < l)$, $dist_G(x_g, x_j) < dist_G(x_g, x_{j+1})$. When x_l is the i th adjacent cell of $x = x_0$, the path μ is called the i th path of x. The maximum length of the i th paths of x is denoted by m(x, i). Note that if x is a terminal cell, m(x, i) is 0 for all i. A d-graph structure $(G_r, x_g, d) \in \mathbb{I}^d$ is reduced to a d-quasi-circuit structure $(C_{2r}^1, x_g, d) \in \Theta_{c1}^d$ as follows. (See Fig. 3.) First, we remove every edge e = [x, y] in G_r such that $dist_{G_r}(x_g, x)^{\bullet} = dist_{G_r}(x_g, y)$ and obtain an d-graph G_r^{\bullet} . Then we divide each cell x other than the general cell x_g and terminal cells into two subcells x^1 and x^2 called the first subcell and the second subcell respectively and replace each edge e = [x, y] in G_r^{\bullet} , for which $dist_{G_r^{\bullet}}(x_g, x) < dist_{G_r^{\bullet}}(x_g, y)$, with two arcs $u^1 = (x^1, y^1)$ and $u^2 = (y^2, x^2)$. (For the general cell (terminal cells), $x^1(y^1) = x^2(y^2) = x(y)$.) Finally, for each x in G_r^{\bullet} and i ($1 \le i \le d$), if there exists j such that m(x, i) < m(x, j), then we remove (x_i^2, x) where x_i^2 is the second subcell of the i th adjacent cell x_i of x. Then we obtain a quasi-circuit C_{2r}^1 . The solution $M_{4r}^d = (s_{4r}, s_e, s_g, s_q, s_f, \lambda_{4r})$ first simulates the above reducing process. Its state set $S_{i,r}$ is given by $S_1 \times S_2 \times S_3 \times S_4$ u $\{s_f\}$. s_f is the firing state of $M_{i,r}^d$. S_1 and S_2 are used to simulate the reducing process. S_3 and S_4 are used to simulate $M_{c\,i}^d$ on the d-quasi-circuit structure reduced from a given d-graph structure. We put $$S_1 = \{G_0, G_1, G_2, H_0, H_1, I, J, Q_0\},\$$ $S_2 = \{0, 1, 2, 3\}^d,$ $S_3 = S_4 = S_2 - \{F\},$ where s_c is the state set of the quasi-circuit solution s_c^d and s_c^d is its firing state. The general cell starts from G_0 and reaches to G_2 via G_1 and each terminal cell starts from Q_0 and reaches to I via H_0 . Each non-terminal cell starts from Q_0 and reaches to J through H_0 and H_1 . Each element of S_2 is expressed as $(m_1, \cdots, m_i, \cdots, m_d)$ where $m_i \in \{0, 1, 2, 3\} (1 \le i \le d)$. Let x be a cell and x_i be the i th adjacent cell of x. Let the S_2 component of x is (m_1, \cdots, m_d) . The value of m_i has the following meaning. $m_i = 1$ means that $dist_G(x_g, x) < dist_G(x_g, x_i)$ and thus the arcs (x_i^1, x^1) exists in C_{2r}^1 . $m_2 = 2$ means that $dist_G(x_g, x) < dist(x_g, x_i)$ and thus the arcs (x^1, x_i^1) and (x_i^2, x^2) exist in C_{2r}^1 . $m_i = 3$ means either that $dist_G(x_g, x) = dist_G(x_g, x_i)$ or x_i does not exist and thus the edge (x, x_i) is removed from G_r , or that there exists i such that m(x, j) > m(x, i) and thus the arc (x_i^2, x^2) is removed from G_1 . $m_i = 0$ means that the connection between x and x_i is not yet determined. Initially, the general cell is in the state $(G_0, (0, \dots, 0))$ and other cells are in $(Q_0, (0, \dots, 0))$. In simulating the behaviors of M_{c1}^d , M_{4r}^d makes each subcell to receive input signals only from its predecessor subcells in c_{2r}^1 and ignore those from other subcells. It is shown that M_{4r}^d can simulate the reduction from G_r to C_{2r}^1 and the solution M_{c1}^d on the d-quasi-circuit structure (C_{2r}^1, x_g, d) . Fig. 3 illustrates the solution $M_{\frac{1}{4}r}^d$ on a $(G_3, x_g, 3)$. Let $dist_G$ (x_g, x) and $\max_i m(x, i)$ be denoted by l_x^1 and l_x^2 . It is seen that the arcs incident into x^1 are established at $t = l_x^1$ and arcs incident into x^2 are established at $t = l_x^1 + 2l_x^2 + 1$. Hence, the general cell can start to simulate $M_{G^1}^d$ at t = 1. We define that each cell moves to s_f when its two subcells move to F. Then the synchronization time of $M_{\mbox{\mbox{$\downarrow$}},r}^d$ for $(G_r,\,x_g,\,d)$ is 1+(2(2r)-1)=4r time units. Theorem 4.1 M_{4r}^d is a solution for Π^d and its synchronization time for (G_r, x_g, d) is 4r time units if $|G_r| \ge 2$ and 1 if |G| = 1. Next, we shall describe the 3r+1 solution M_{3r+1}^d . M_{3r+1}^d simulates the reduction from (G_r, x_g, d) to (C_{2r}^1, x_g, d) as M_{4r}^d does. Kobayashi pointed out the following two facts about (C_{2r}^1, x_g, d) and suggested that the synchronization time for (G_r, x_g, d) is improved to about 3r time units. (1) Synchronization of (a_r, x_g, d) is achieved by synchonizing the subdigraph structure of (c_{2r}^1, x_g, d) consisting only of the first cells. (2) A terminal cell x_M farthest from x_g devides a circuit in $(\mathcal{C}_{\underline{q}\,\underline{r}}^1,\,x_g\,,\,d)$ into two halves. x_M is called the center of $\mathcal{C}_{\underline{q}\,\underline{r}}^1$. We can find the center of $\mathcal{C}_{\underline{q}\,\underline{r}}^1$ at time \underline{r} in the reduction process. Considering the two facts, we have the following modified problem. Let $(C_{2n}, x_0, x_n, 1)$ be a circuit structure in which the center x_n of C_{2n} is designated. Let $(x_0, x_1, \ldots, x_n, \ldots, x_{2n-1})$ be the circuit. Find a solution of synchronizing all cells on the semicircuit (x_0, x_1, \ldots, x_n) for the class of $(C_{2n}, x_0, x_n, 1)$. We shall give a 1-finite automaton $^{M}{}_{h} = (^{S}{}_{h}, ^{S}{}_{e}, ^{S}{}_{q}, ^{S}{}_{g},$ $s_{f}, \lambda_{h})$, called the semicircuit solution whose synchronization time for $(^{C}{}_{2n}, x_{0}, x_{n}, 1)$ is 3n-1 time units. $^{M}{}_{h}$ is essentially similar to the circuit solution $^{M}{}_{c}$, and $^{S}{}_{h}$ includes $^{S}{}_{c}$. The evolution of the solution M_h on $(C_{2n}, x_0, x_n, 1)$ is depicted in Fig. 4, in which the evolution of M_c on $(C_n, x_0, 1)$ is also shown for the reference. It is shown that the signals generated at (z, t) in $(C_{2n}, x_0, x_n, 1)$ is identical to those at (z, t-n) in $(C_n, x_0, 1)$ for $0 \le z \le n-1$ and $2n + z \le t$. Moreover, the center cell x_n fires at t=3n-1. Hence all cells on the semicircuit (x_0,\ldots,x_n) of C_{2n} fire at time 3n-1 simultaneously. Fig. 5 gives the semicircuit solution for $(C_{12},x_0,x_6,1)$. Next, we consider a d-quasi-circuit structure $(C_{2n}^1, x_{00}^n, X_n, d)$ in which X_n is the set $\{x_{nj}\}$ of the center of circuits in C_{2n}^1 and all x_{nj} 's are designated. A solution for synchronizing all cells in X_n and all cells x_{ij} 's, where $0 \le i \le n-1$, $0 \le j \le h_i$, is given by an d-finite automaton M_h^d which is obtained by slightly modifying M_h . M_h^d is defined from M_h by the same way as the quasi circuit solution M_c^d is defined from the circuit solution M_c . That is, the state transition function of M_h^d is defined for such input letters that all components other than the external signal are identical signals, and for these input letters M_h^d behaves as M_h does. By the similar arguments used for proving Theorem 3.2, it is is easily shown that M_h^d is a solution for the above problem and its synchronization time for $(c_{2n}^1, x_{00}, X_n, d)$ is 3n-1 time units. M_h^d is called the quasi-semicircuit solution. Now, we shall give a 3r+1 solution M_{3r+1}^d for the class of d-graph structures (G_r, x_g, d) by using the concept of M_{4r}^d and M_h^d . The state set S_{3r+1} of M_{3r+1}^d is expressed as $(S_1 \times S_2 \times \times S_3) \times S_{40} \times S_4$ where S_1 and S_2 is the same set as S_{4r} of M_{4r}^d , $S_{30} = S_{40}$ is the same set as S_h^d of M_h^d , and S_f is the firing state. Given a d-graph structure (\mathcal{E}_r, x_g, d) , M_{3r+1}^d starts at t = 0 to reduce (\mathcal{E}_r, x_g, d) to a d-quasi-cirsuit structure $(\mathcal{E}_{r}^1, x_g, d)$ as M_{r}^d does and also starts at t = 1 to simulate the quasi-semicircuit solution M_h^d . The synchronizing time of M_{3r+1}^d appears to be 3r time units, but it is not. Let x be a terminal cell for which $dist_G(x_g, x) = r' < r$. Since x moves to $(H_0, *, *, *)$ at time r' and moves to (I, *, *, *) at time r' + 1 for M_{*r}^d , x moves to $(I, *, P_{00}^i, P_{00}^i)$ at time r' + 1 for M_{3r+1}^d . Then the subcells of x move to the firing state F of M_h^d at time 3^r ! < 3^r , while all other subcells move to F at time 3^r . Thus it fails to synchronize all the first subcells of G_r . Since x has at least one adjacent cell e.g. i th cell with $m_i = 1$ which does not move to F prior to time 3^r . $(m_i$ is the i th component of $(m_1, \cdots, m_d) \in S_2$ of x.) We define the firing of M_{3r+1}^d as follows. Let x be any cell in (G_r, x_g, d) . When the first subcell of x is F and the first subcells of all adjacent cells of x are also in F at time t, x moves to the firing state s_f of M_{3r+1}^d at time t+1. It requires one more time unit. Theorem 4.2 The d-finite automaton $M_{\frac{3}{3}r+1}^d$ is a solution for Π^d and its synchronization time for $(G_r, x_g, d) \in \Pi^d$ is 3r+1 time units. # 5. A 3r solution for d-graph structures. In this section, we give a improved solution M_{3r}^d for \mathbb{R}^d whose synchronization time for $(G_r, x_g, d) \in \mathbb{R}^d_s$ is 3r time units, where \mathbb{R}^d_s is a subclass of \mathbb{R}^d . We call a cell x in G_r , for which $dist_{G_r}(x_g, x) = r$, a radial cell. A cell x in G, for which there exists no cell such that $dist_G(x_g, y) \ge dist_G(x_g, x)$, is called a solitary cell. The reason why M_{3r+1}^d requires one more time unit for the synchronization is that the first subcells of non-radial terminal cells move to $F \in \mathcal{S}_h$ before time 3r. We shall consider to overcome this difficulty without loss of a time unit. Let x be a terminal cell for which $dist_{G_r}(x_g, x) = r'$. In M_{3r}^d , the first and second subcells of x move respectively to A and $P_{00}^{\dagger} \in S_h$ at time r'+1. This is achieved by slightly modifying M_{3r+1}^d . In other words, the first subcell behaves as if x is non-radial and the second one does as if x is radial. For a non-radial terminal cell y, the first subcell of y moves to F at time 3r and the second one moves to F at time 3r. For a radial cell x, the first subcell of x does not move to F prior to time 3r and the second one moves to F at time 3r. For a non-terminal cell, the first subcell moves to F at t = 3r. From the above consideration, if each cell x recognizes prior to time 3r' ($r' = dist_{G_n}^+$ (x_g , x)) whether it is radial or not then all cells can fire once at time 3r. Usually, a terminal cell x requires r' time units ($r' = dist_{G_r}(x_g,x)$) to recognize that it is terminal and hence requires 3r' time units to recognize whether it is radial or not. But a solitary non-radial cell x requires r'-1 time units to recognize that it is non-radial or there exists at least one non-solilary terminal cell y such that $dist_{G_r}(x_g,y)=r'$. If all radial cells are solitary, then each of them recognizes at time 3r-1 that it is radial and all other cells recognize prior to time 3r-1 that all radial cells are solitary. Thus for (G_r,x_g,d) in which every radial cell is solitary, we can obtain a solution whose synchronization time is 3r time units. Let Π_s^d be a subclass of Π^d consisting of d-graph structures in which all radial cells are solitary. We shall give a solution M_{3r}^d whose synchronization time for (G_r, x_g, d) of Π_s^d and $\Pi^d - \Pi_s^d$ are respectively 3r and 3r+1 time units. The fundamental behaviors of M_{3r}^d is identical to that of M_{3r+1}^d . M_{3r}^d simulates the reduction from a d-connected graph structure to a d-quasi circuit structure and then simulates the behaviors of the quasi-semicircuit solution. Beside these behaviors, when the general cell recognizes that all radial cells are solitary, it sends signals about this knowledge to all other cells. The state set of M_{3P}^d is $(S_{10} \times S_2 \times S_3 \times S_4) \cup \{s_f\}$. S_{10} = S_1 \cup $\{G_{20}, I_0, I_1, I_2, I_{20}, J_0, J_1, J_2, J_{20}\}$. S_1 and S_2 are given in M_{4r}^d and $S_3 = S_4 = S_h$ are given in M_h . S_f is the firing state of M_{ap}^d . The states in S_{10} play the following roles. The general cell moves to G, when it recognizes all radial cells to be solitary, or moves to G_{20} when it finds at least one nonsolitary radial cell. If a terminal cell x recognizes itself to be solitary, then x moves to I_{1} via I_{1} and I_{1} , else x moves to I. When x in I_2 recognizes itself not to be radial or it finds at least one non-solitary terminal cell y such that $dist_{G_n}$ (x_g , $y) = dist_{G_n}(x_g, x), x$ moves to I. When a cell in I recognizes that all radial cells are solitary, it moves to I_{20} . J, J_{0} , J_{1} and $\boldsymbol{J}_{\mathbf{2}}$ play the same roles for non-terminal cells as $\boldsymbol{I}_{\mathbf{0}}$, $\boldsymbol{I}_{\mathbf{1}}$ and I_2 do for terminal cells. When a cell in I_2 recognizes that all radial cells are solitary, it moves to J_{20} . Thus, for any d-graph structure in \mathbb{I}_s^d , the general cell, radial cells, nonradial terminal cells, and the non-terminal cells move respectively to G_{20} , I_{2} , I_{20} , and J_{20} one time unit before their firing. Signals in S_1 play the same roles for M_{3r}^d as it does for M_{4r}^d . Signals I_0 , I_1 , and I_2 are generated at solitary cells. Signals G_{20} , J_{20} , and I_{20} are generated when all radial cells are found to be solitary and are used to transmit this knowledge. Initially, the general cell is in the state $(G_0, (0, \cdots, 0), Q, Q)$. In simulating the behaviors of the d-quasi-semicircuit solution M_h^d , M_{3r}^d makes each subcell to receive input signals only from its predecessor subcells and ignore input signals from other subcells. This can be achieved by the method similar to those used in M_{4r}^d . If a cell x in (G_r, x_g, d) with $dist_G$ $(x_g, x) = r$ ' is solitary, x moves to I_0 at time r' and sends a J_0 series to the general cell x_g . Thus, if all radial cells are solitary, then x_g moves to G_{20} at time 2r and sends J_{20} signals to all cells in (G_r, x_g, d) , else x_g moves to G_2 at time 2r+1. As a result, if all radial cells are solitary, they are in I_2 and all other cells are in G_{20} , J_{20} , or I_{20} at time 3r-1. (For r=1, radial cells are in I_1 , instead of I_2) On the other and, if not all of radial cells are solitary, then solitary radial cells are in I_2 and all other cells are in G_{20} , G_{20} , or G_{20} at time , or G_{20} , at time G_{20} , G_{20} , or G_{20} , or G_{20} , at time G_{20} , G_{20} , or G_{20} , or G_{20} , at time G_{20} , G_{20} , or G_{20} , at time G_{20} , G_{20} , or G_{20} , or G_{20} , at time G_{20} , G_{20} , or Note that if all radial cells are solitary, then they can recognize themselves to be radial at time 3r-1. Hence we define the firing of M_{3r}^d as follows. (1) If x is in G_{20} , J_{20} , or I_{20} at time t and the first subcell of x moves to F ϵ S_{30} = S_h at time t + 1, then x moves to s_f at time t + 1. - (2) If x is in I_2 or I_1 , all x_i 's with m_i = 1 are in I_{20} or G_{20} at time t, and the second subcell of x moves to F at time t+1, then x moves to s_f at time t+1. - (3) If x is in G_2 or J and the first subcell of x moves to F at time t, then x moves to s_f at time t+1. - (4) If x is in I and the first subcells of x_i 's with $m_i = 1$ move to F at time t, then x moves to s_f at time t + 1. If all radial cells are solitary, then all cells in $(G_r, x_g, 1)$ fire at time 3r according to (1) and (2), else all cells fire at time 3r+1 according to (3) and (4). (See Figs. 6 and 7)) Theorem 4.1 M_{3r}^d is a solution for Π^d . The synchronization time of M_{3r}^d is 1 time unit for $(G, x_g, d) \in \mathbb{R}^d$ with |G| = 1, 3r time units for $(G_r, x_g, d) \in \Pi_s^d$ with $|G| \geq 2$, and 3r+1 time units for $(G_r, x_g, d) \in \Pi^d = \Pi_s^d$ with $|G| \geq 2$. Finally, we shall show that $M_{\hat{3}r}^d$ give the minimum synchronization time for some subclasses of Π_s^d . Let (G_r, x_g, d) be a member of Π_s^d which has two radial cells such that $dist_G(x_1, x_2)$ = 2r. We denote the set of such d-connected graph structures by Π_{3r}^d . Theorem 1.1 shows that $t_{min} \ (\textit{G}_r, \textit{x}_g, \textit{d}) \geq \textit{L} \ (\textit{G}_r, \textit{x}_g, \textit{d}) = 3r$ for any $(\textit{G}_r, \textit{x}_g, \textit{d})$ in Π^d_{3r} . Obviously Theorem 4.1 gives the synchronization time of 3r time units for any $(\textit{G}_r, \textit{x}_g, \textit{d})$ in Π^d_{3r} . Thus, \textit{M}^d_{3r} is a minimum time solution for Π^d_{3r} . Let (G_r, x_g, d) be a member of $\Pi^d - \Pi^d_s$ which has three radial cells x_1, x_2 , and x_3 such that x_1 and x_2 are adjacent each other and $dist_{G_n}(x_1, x_3) = dist_{G_n}(x_2, x_3) = 2^n$. We denote the set of these d-connected graph structures by $\Pi^d_{\mathfrak{z}_{n+1}}$. Theorem 1.1 shows that $t_{min} \ (\textit{G}_r, \textit{x}_g, \textit{d}) \geq \textit{L} \ (\textit{G}_r, \textit{x}_g, \textit{d}) + 1 = 3r + 1$ for any $(\textit{G}_r, \textit{x}_g, \textit{d})$ in Π^d_{3r+1} . Theorem 4.1 gives the synchronization time of 3r+1 time units for any $(\textit{G}_r, \textit{x}_g, \textit{d})$ in Π^d_{3r+1} . Thus, M^d_{3r} is a minimum time solution for Π^d_{3r+1} . There results give Theorem 4.2. Theorem 4.2 Let Π_m^d be Π_{3r}^d u Π_{3r+1}^d u $\{(G, x_g, d) \mid |G| = 1\}$. M_{3r}^d gives the minimum synchronization time for any (G_r, x_g, d) in Π_m^d . ### Conclusion We have examined solutions of the firing-squad synchronization problem for some classes of d-graph structures and graph structures. In the first part, we have given solutions for the classes of circuit structures, quasi-circuit structures, and some other digraph structures. In the second part, we have given two solutions for the class of connected graph structures whose synchronization time for (G_r, x_g, d) are respectively 4r and 3r+1 time units where G_r is a graph with the radius r. In the final part, we have given a improved solution for connected graph structures whose synchronization time for $(G_r,\,x_g,\,d)$ is 3r or 3r+1 time units depending upon the property of radial cells. Moreover, we have shown that our solution give the minimum synchronization time for a subclass of connected graph structures. ## Acknowledgement The authors would like to thank Professors M. Kimura, M. Nasu, and A. Maruoka, and Mr. S. Okawa in Tohoku University for their useful discussions. Also they are grateful to Professor K. Kobayashi in Tokyo Institute of Technology for his helpful suggestions by which the 4r solution is improved to the 3r+1 and the 3r solutions. #### References - 1. Balzer, R. (1967), An 8-state minimal time solution to the firing squad synchronization problem, *Information and Control* 10, 22-42. - 2. Goto, E. (1962), A minimal-time solution of the firing squad problem, Course notes for Applied Mathematics 298, Harvard University, pp. 52-59. - 3. Herman, G.T. (1972), Models for cellular interactions in development without polarity of individual cell, Part II: Problems of synchronization and reguration, Int. J. Systems Sci. 3, 149-175. - 4. Herman, G.T. et al. (1974), Synchronization of growing Cellular Arrays, Information and Control 25, 103-122. - 5. Kobayashi, K. (1974), The firing squad synchronization problem for arbitrary two-dimensional arrays, Research Reports on Information Science C-3, Department of Information - Science, Tokyo Institute of Technology. - 6. Kobayashi, K. (1975), Minimum firing time of two-dimensional firing squad synchronization problem, Research Reports on Information Science C-5, Department of Information Science, Tokyo Institute of Technology. - 7. Kobayashi, K. (1976), A minimal time solution to the firing squad synchronization problem of rings with one-way information flow, Research Reports on Information Sciences C-8, Department of Information Science, Tokyo Institute of Technology. - 8. Moore, E.F. (1964), "Sequential Machines, Selected Papers," pp.213-214, Addison-Wesley, Reading, Massachusetts. - 9. Moore, F.R., and Langdon, G.G. (1968), A generalized firing squad problem, *Information and Control* 12, 212-220. - 10. Romani, F. (1976), Cellular Automata Synchronization, Information Sciences 10, 299-318. - 11. Rosenstiehl, P. (1966), Existence d'automates finis capables de s'accorder bien qu'arbitraiment connectes et nombreux, Int. Computation Centre Bull. 5, 245-261. - 12. Rosenstiehl, P., et al. (1973), Intelligent graphs: Networks of finite automata capable of solving graph problems, in Graph Theory and Computing, R.C. Read, Ed., Academic, New York, pp. 219-265. - 13. Waksman, A. (1966), An optimum solution to the firing squad synchronization problem, *Information and Control*, 9, 66-78. (Received March 14, 1977) ig. 1 The scheme of the solution ${}^{M}_{\mathcal{C}}$ for $({}^{C}_{n}, x_{0}, 1)$. 5. 2 The solution M_c for $(C_{13}, x_0, 1)$. $S_{\mbox{\scriptsize q}}$ is denoted by the blank. | | | <u>time</u> | | | | | | | | | | | | | | | | | | | | | | | | | | |-----------------------------|----|-----------------|----------|--------|----------------|----------------|-----------------|----------|----------|----------------|------------------|----------------|--------|-----|---------|----------------|-----------------------|----------------|------------------|-----|----------------|-----|----|------|---|---|----| | | 25 | 24 | 23 | 22 | 2 | 20 | | -8 | 7 | 5 | 5 | 4 | - 3 | -2 | _ | | 9 | 8 | 7 | 6 | O1 | 4 | u | 2 | _ | 0 | | | $n=13$, $S_g=P_{\infty}$, | 77 | Po | P | Po | -
- | 8 | P
- | Po | 9 | Po | ъ
- | Po | P
= | Po | P)
- | Po | P
- | Po | P
- | Po | 70 | Po | P | Po | 0 | 8 | 0 | | | T | P22 | Во | B 2 | A | | ~ | | 80 | 82 | B -2 | Aio | ~ | | ~ | | ~ | | ~ | | ~ | | Во | B 22 | 8 | |]- | | | п | C-2 | <u>_</u> | Ð | | င္၀ | C2 | <u>_</u> | ۲2 | _ | P | ~ | | ~ | | ~ | | ~ | | င္ပ | C ₂ | C 2 | ۲, | ₫ | | | ~ | | | 77 | Po | P | 82 | Bıs | 82 | B-2 | S | -1 | Aio | ~ | | ~ | | ~ | 1 | Во | 82 | B ₁₃ | Bž | So | 7 | Ασ | | | | u | | | т | 办 | 83 | 82 | L2 | S | S | | A.11 | ~ | | ~ | | င္ပ | C2 | <u>င</u> | B ₃ | 88 | S ₂ ~ | S | | Ð | | | | | 4 | | | П | B 2 | ۲2 | _ | R ₂ | - | - | Aio | ~ | | Во | 82 | 8 | | 9 | B 2 | _ | R ₂ | 7 | -1 | Αœ | | | | | | տ | | | 77 | P22 | P2 | P2: | P ₂ | P2 | P ₂₀ | င္၀ | C_2 | 2 | | C3 | C2 | C 2 | r_ | R ₂ | 20 | | | ₽ | | | | | | | 6 | | St = E | m | Po | P
= | Po | P | ਲ੍ਹ | | | ~ | C ₃ | C23 | B
22 | S | 7 | So | - | - | 7 | Αœ | | | Γ | | | | | 7 | | | 77 | P22 | 80 | B2 | ð | | | င္ပ | C_{23} | B2 | S ₂ - | S | S2 | S | | | | ₽ | | | | | | | | | œ | | | 'n | C ² | r_ | δ | 83 | 82 | Bis | 82 | SZ | <u>-</u> | | R ₂ | - | | -1 | - | B | | | | | | | | | | ြဖ | | | m | Po | ~
≃ | 82 | В | 82 | S | S | | R ₂ | 20 | | | | | ₽ | | | | | | | | | | | ō | | | T | P ₂₂ | Вз | Βź | _ | R ₂ | - | 7 | So | - | -1 | -1 | - | - | B | | | | | | | | | | | | = | | | 77 | B 22 | _ | R
2 | 20
 | | S2 | S | | | | | | Ð | | | | | | | | | | | | | ≅ | | | | ٠. | | | | | _ | Fig. 3 The illustration of the solution M_{+r}^d for $(G_3, x_g, 3)$. Fig. 4 The scheme of the solution M_h for $(C_{2n}, x_0, x_n, 1)$. Fig. 5 The solution M_h for $(C_{2.0}, x_0, x_{10}, 1)$. ig. 6 The solution $M_{\frac{3}{2}r}^d$ for $(G_*, x_g, 3)$ whose all radial cells are solitary. Fig. 7 The solution M_{3r}^d for $(G_*, x_g, 3)$ which has non-solitary radial cells.