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Abstract This paper deals with the Firing Squad Synchro~+;
nization problem for some classes of digraph structures and
graph structures. The first part of this paper gives solutions
for the classes of circult structures, quasi-circuit strﬁétureé,
and some other extended digraph structures. The second part
gives a solution for the class of connected graph structﬁresgr
whose synchronization time for a graph structure with radiusr

is 3r+1 or 3r time units.

1. Introduction

The problem of synchronizing a finite (but arbitrarily -
long) one-dimensional array of finite automata, known as the
firing squad synchronization problem, was proposéd by Myhill
and Moore [8]. Consider a one-dimensional array of ideﬁtiéél

finite automata. The state of each automaton at time ¢+1
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depends on its own state and those of its two neighbdurs at time
t.. The problem consists of defining the structure of automata
80 that one end automaton of the array, called the general, can
cause all automata to enter a particular state, called the
firing state, all at once. |

It can easily be shown that the minimal time required to
synchronize an "-element array 1s 2n-2 time units. The first
minimal-time solution was obtained by Goto [2]. Waksman [13]
has produced a minimal-time solutioﬁ with 16 states and Balzer
[1] has reduced the complexity to 8 states. The problem was
generalized in many different ways by Moore and Langdon [9],
Herman [3, 4], Rosenstiehl [11,12], Kobayashi [5, 6, 7], and
Rdmani [10].

This paper‘deals with the firing squad synchronization‘
problem for d-digraph struqtures and d-graph structures.
Informally, a d—digraphistructure (d-graph structure) is a net-
wark of identical finite automata in which an automaton is‘
placed at each vertex of a digraph,(graph) and the automata are
connected along every arcs (edges) of the-digraph (gfaph).“ |

We present solutions of the problém for some subclasses bf

d-digraph structures in section 3 and for the class Hd of

connected d-graph structures 1n sections 4 and 5.

Rosenstiehl and Romani studiled the problem éf synchronizing
a network of finite automata however connected. Rosenstiehl's
solution obtains a synchronization time of 27, where 7 is the

number of automata in the network, and Romani's solution
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obtains a synchronization time shorter than or equal to*that of
RoSenstiehl' '~ The class of networks studied by Rosenstiehl and
‘Romani is the same class as Hdin our formulation. - Our solutlon
obtains a synchronization time of 3» or 3r+l1, where » 1is the
longest distance between the general and any other element in‘

the network.

2. Preliminaries
~In this section, we give definitions and notations used in
A dlgraph (or directed graph) is a palr (x, U), where X 1is
a set of elements called vertices and U is a set of ordered
pairs of distnect vertices oalled arcs.
o graph (or undirected graph) G is a pair (X, E) where X
is a set of vertices and F is a set of unordered pairs of
distinot vertices called edges. VA graph G is also regarded as -
a .symmetric digraph G¥ that has two oppositely diréC@ed'éroS -
corresponding to each edge of ¢. In this paper weladopt this
Yiewpoint. The order of a digraph (graph) G, denoted’by[Gf, 1s
the number of vertices in G. » St -
The distance from a vertex z to a vertex y in G, denoted
by distG (x,4y), is the shortest iength among the pathes from
x to y. Note that generally dist, (x, y) # distév(y,‘x)‘in afﬂ
digraph G.

d

A d-finite automaton M¥“ is a 6—tuple (s, se; eq, sg,'sf,”X),

where (1) s is a finite set of states, (2) 8, is an element not -

in s (the external signal), (3) 8,5 84 and s, are particular

f
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distinct elements in § (the quiescent state, the general state,
and the firing state respectively), and (4) X is a transition’
function from S x (S L/{se})d~into S .such that A (sq, 8,5 7%,

Informally,

§4) = $q 1f each of sy, +++, 8,4 is;either sq“or S,

¥? is an automaton with d input terminal. A d-tuple (s;, R
sd) in the set (S U {se})d is called an input letter.

A d-digraph structures is a 3-tuple (@G, z d), where d is
a positive integer, G is a digraph such that dé’s d where da is
the in-degree of &, and xg is a particulaf vertex of G calléd
the general. On a d-digraph structure, a d-finite automaton}Md
is placed at each vertex of G. A vertex x installed with a d-
finite automaton is called a cell z. Cells are connected along
arcs in G. Let x be a vertex with dé'(x) into-arcs. Among d
input terminals of a cell x,vdé'(x) of them are connected with
the output terminals of the predecessor cells of x and the
remaining d - dé‘(x) ( 20) input terminals are connected to the
external world.

In order to describe clearly how the input terminals of =
are connected to the predecessors of x or the external world,
each input terminal is labeled a distinct integer 7 (1 < 7 < d).
If the input terminal of x, labeled <, is conﬁected to a pre-
decessor y of x, y 1s called the Z th predecessor cell of x.

‘If the igput terminal labeled 7 1s connected to the external
world, we say that the < th predecessor does not exist. The 7 -
th component of an input letter (s,, °*°*, Sd) of a cell x is

the state of the 7 th predecessor cell of = (if it exists) or the

external signal s, (if not).
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A d—digraph‘struptufe,(q,fxg,fdf'is called a connected d-
digraph structure if there is at least oneupath“f?om @, to y
fbr ény vértexfy in d.~AIn the followings; we shall deal with
connected digraph structures, so we.call them simply digraph
structures. _

Suppose4that a d—digraph structure (@, Z s d) is given énd}
a d-finite automaton Mdiis placed on each vertex of G.: Then the
state of a cell z at time ¢, denoted by s (x, t, G, xé, Md),miST
defined by the following rules.

At ¢ = O,ron1y §ﬁ§7geheral cell xg is in the,generai‘éﬁégé
s, and all .other cells are in the guiescent state sq."That”ié;’

g (x, O, S,‘xg,_Md} is sg,if,x,=‘xg,and is sq otherwise. .Let. ...

s, = 8 (xi, t, G, g Md) if the 7 th predecessor x, of =
exists
=8, ' if it does not exist.

Then the state of z at time t + 1 is determined as
g (x, t +1, 6, T Md) = ) (s(x, t, G, xg,‘Md)ims;,
. , sd).

If the state of x at time ¢ is 5, We say thét z firéé at |
time ¢. The‘problem is to specify a automaton Md which makes
all cells in (g, T d) to fire at once. A d-finite automaton
Md is called a solution of the firing squad syndhfonization
probiem for a sﬁbclaés Od of d-digraph étructurésw(siﬁply a ,
solution for ed) if, for each d-digraph structures (G, Ty d) in
ed, there exists a time ¢t (G, xé, d, Md) such that all cells in
G fire at time ¢t (G, xg, d, Md) and do not fire priQr to time

t (G, s d, Md). The time ¢ (G, g d, Md) is-called the



212

synchronization time of Md for firing a d-digraph structures
(G,ﬂxg, d) é @d, (simply the synchronization time of Md for
(¢, z s d)).

Next, we define a d-graph structure(G,xg,d). Let G be a graph
with dG < d, and let xg be a particular vertex of G. For G, we
define the symmetric digraph ¢* that has two oppositely directed
o# = dg;.

Then a d-graph structure (G, g d) 1s defined to be the d-

arcs corresponding to each edge in &¢. Thus dG =

digraph structure (G¥, o d).

A d-graph structure (G, T d) is called a connected d-
graph structure 1f there is at least one path from'x to y for
any pair of distinct vertices. The class of connected d-graph
structures and the corresponding d-digraph structures are

' ¥
denoted as Hd and Hd respéectively. In the followings,
connected graph structures are called simply graph structures.

A d-finite automaton‘Mdfis called a solutilon of the firing

squad synchronization problem for Hd if.Md

ak

is a solution for

d

I The synchronization time t(@G, T d, Md) of ¥~ for a d-

graph structure (G, T d) is defined by the synchronization
time ¢(G¥, xg, d, Md) for the corresponding d-digraph structure

(G*,xg, d). TFor a d=graph structures (G, z s d), let tin (6,

7

z _, d) be the minimum value of t(§&, T d, u%) over all solutions

b

u? for 19, Given (a, 2,5 d), let L(G, =, d) be

max {dist, (x,, #) + dist, (z, y)}. Kobayashl gave the follow=:
THY G g° G
i (€5 @ 5 d) [5]

ing result abqut tm¢

d

Theorem 2.1. For (G, P d) ell” with |G] = 1,

tmin (G, xg,, d) =.1.
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For (G, g 4) e 14 with gl = 2, _
?min (a, xg’V#? 2 L(G? xg’ d)"

Especially, if there are three cells x, ', and y such that z
and x' are adjacent, distG,(xg, ?) = distG (xg, z'), and |
dist,, (xg, x) + dist, (z, y) = distGk(xg, z') + dist, (xf,'y)-é

L(a, x‘gk, d), then

tin (¢, xg, d) = L(a, Ty d) + 1.

Ihtuitively, L.(a, xg, d),is the time required for x to recéiﬁé
a signal from xg ahd leave-the quiescent state, and then for y -

to recelve a signal from x for any vertices x and y in G.

3. Solutions for certain subclasses of d-digraph structures. -
3.1 In this section, we give solutions for certain sub-
classes of d-digraph structures. A digraph c, =H(Xn, Un),isAu_;

called a circuit if x = {ey, **°, xn_l}, v, = {ug, "5 u :,}’

. = o . ’ < 1 < = Y
U, (x%-x’ xi) for each 7 (0 < ¢ n), and u, (xn_l,xo)‘

A circuit structure (C,, xb, 1) is a 1l-digraph structure in
which Cn is a circuit. Let ®, be the class of circult structures.
A solution for @c was given by Kobayashi. Its synchroni-

zation time for (Cn’ x 1) is 2n-1 time units. It is easily

02

1)

shown that the minimum time required to synchronize (Cn, Zgs

is 2n-1.time units. So the solution given by Kobayashi -is-a = -
minimum time solution. The authors have obtained independently

a similar solution. Here we give our solution”Mc = (5,, s

e’ Sq’

8y Sps Xc) which 1s called the circuit solution.
The evolution of the solution’Mc is depicted in Fig. 1.

The horizontal axis represents the circuilt of cells in Cn and

7
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the vertical axis represents time. The (z, ¢t) entry represents
the state of thez thcell at time ¢.

Let us divide cells in Cn into two equal parts. We shall
represent a binary number n-= aq; + a,2 + **° + am2m (ai“= 0 or
1) as n = <a , <+, a,>. In dividing n cells into two equai~
parts, each part is considered to contain <a;, **-, a,> cells.
We divide the two halves into“two parts each so that the size
of each subdivision is <a,, ---, a >-. In similar fashion, the

size of the k th subdivision is <a

s, a_>.
> 'm

e

We use four signals Pygy, P11, P2g, and Py, for marking the
boundaries between subdivisions and also for generating the
following series of signals which propagate along the circuit.
Pyo and P;, are called general signals, and P,, and P, are
called subgeneral signals. .

A general signal Py, generates following series of signals:
a P-series consisting of P, and Pl‘signals which does not pro-
pagate,
BC-seriles consisting of By, By, Bz, Bsas Cos C15 Cas and Cs
signals which propagate with velocities v = 1/3, 3/7, -,
(2%-1)/(2%* 21), +-+ (cellsftime unit), (a BC-series which
propagates with v = (2i+l)/(2i+1—l) is called a (BC)i—series),
an 4,-serles consisting of 4,, and 4,; signals which propagates
with » = 1, and
RS-series consisting of R, R,, Sy, S;, and S, signals which
propagate with v = 2/3, U/7, -+-, 2t/2**' 21y, -2 = 1, 2,
«++), (an RS-series which propagates with v = 2i/(2i+;-1) is

called an (Rs)i—series).
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A general‘sighal Py gehefates following series of signals:
a P—seriés,
'BC—Seriésrwhich propagate with the same velocilities as those of
the above BC-series but are delayed one time unit,
an Al—series consisting of 4,, and 4;; signals which propagates
with v =1, and RS-series. |

A subgeneral signal P,; (L°= 0 or 1) at (#,) generates
p,, signal at (2+1, t+1) and a P, -series consisting of P, signals
which does not. propagate.

Av(Bc)i—series ié thained if we delay‘a serieé, whiéh“‘
propagates with v = 1/2, one unit time on every 2£_1—1 cells.

It is shown that a (BC).

;41 —Serles is produced by a,(BC)i—series'

inductively.
A (Rs)i—Séries is obtained if we advance a series, which.
propagates with v = 1/2, one unit time on every 2L cells.

It is shown that a (RS)i+ series is produced by a (RS)i—series?

i
inductively.

We shall show how general and subgeneral Signaiswand7aré‘>
generated on boundaries of subdivision. Gehéféiréﬁd subgeﬁeralb
signals are generated according to the following rules.
(1) When an A -series meets C, of a BC-series, P, 1s
generated.
(2) When an Ao—séries meets B, ofra BC;sefies;rPll is
generated.
(3) When an Al—séries meets ¢, or ¢, of a BC—éériés; Py
1s generated.

(4) When an A, -serles meets B, or B of a BC-series, P,

a
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is generated.

(5) When a P-series meets 5, or §, of an RS-series, P ,
is generated. |

(6) When a P-series meets R, of an’RS-series, P , 1is
generated.

(7) When a Pz—series meets S2 or So of an RS-series, on
is generated.

(8) When a p,-series meets R, of an RS-series, P, is
generated.

(9) When a P-serles meets A 4 of an A -series, Pyy 1is
generated (¥ = 0 or 1).

Four cases are to be considered.

Case 1. 1let n be an integer represented by Ays oty ap>,
and suppose that P 1s generated at (0, 0) and Paoa0 is
generated at (n, n). It is shown that P is
generated at (n, 2n- <@gyttt am>) (2=1, 2, =), v

Case 2. Suppose that P,, 1s generated at (0,-0) and

Pa@ao is generafted at (0, 7). It is shown that
Paiai is generated at (n - <a., ..., a.>, 2” - <AL, eee, Q)
and if aiq = 1,'Pga£ is generated at (n - <a,, ..., a > -1,
21 = <Ay, e, Ap> - 1).

Case 3. Suppose that P, is generated at (0, 0), P is

éao

genératedrat (n, n), and P is generated at (n+l, n+l). It

Agay

i1s shown that Pzai is generated at (n, <a . am>) by the =

19 o

similar way as in case 1 and Pa a is generated at (n+l, 2n -
171

<ag, U, Ay +1).

Case 4. Suppose that P,; is generated at (0, 0) and

|0
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.G %

is-generated at (0, n+l). .By-the similar - -
way as in case 2 and by considering that the BC-serles generated

by P, propagate with one time unit delay, it is shown that
1

Paiai is generated at (n - a;s s @,>, 2n a;s soa>
+°1) and if a. =1, P is-generated at (n - <a.,, ***, a >

. -1 2a, _ ; i’ >
-1, 2n~—<a7:,.... ,am>)_

From the above consideration, we conclude that the general
or subgeneral signals are generated synchronously at . }jﬁmwﬁ
boundaries of subdivisions. Then, it 1s seen that all cells

fire at_time (2n-1) for (e , g, 1) and thus ¥ 1is a solutlon .

for @cﬁ | | )

"~ Theorem 3.1. M = (S , 8 5 8 5 8 5 8,5 A ) 1s-a solution-

e e’ e’ "g” "q” "f° e ]

for the class o, of circult structures and its synchronization

time foér (cn, zgs 1) 1s 21-1 time units. The number of states.
of M_ 1is 38. | |

The evolution of the circuit solution ¥, for (ey3, Ty, 1)

'is given in Fig: 2, where ég, sp, and sq'are denoted by Py,, F,

and blank respectively. | i

3.2. We consider a digraph C; = (X;, U%) which is called

a quasi-circult. A quasi-circuit C; (x},U}) 1s defined as’

n’n
follows.
(1) X! = {xij o < it <n-1, 0 <4 =< hi)'h& =~O};j“‘
(2) vl = ey s 2;) 10 < sl 2y =2, )
v v U, a
“0sism-y  0<igh, J,
where U, 1s the set of arcs of the form (z, ; 2, ,:)

1d
for some k. o

"
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(3) There exists at least one path from Tqee FtO xij for all
vertices ..

, iJ
From the definition, it is. shown that

(1) diSt‘C}; (zgq ,x,LJ) = 7 < s

(2) there exists at least one circuit in G;, and

(3) all circults of C; pass through xoo and their length,

.are n.

A d—quasi—circuit structure is a d-digraph structure
(C%, z s d) where Cé is a quasi-circuit. Let Oii be the class
of d-quasi-circuit structures. A solution for Gi} can be

obtained by slightly modifying the circuit solution Mc. Let‘
d

M
cl

= (S 5 8 5 8 5 8.5 8,5 Ad ) be a d-finite automaton whose
e e g q° f vea
input letters are d-tuples. The state transition function Ail

is'defined only for such input letters that all components

other than s, are identical signals. For these defined inputs,

Mii behaves as Mc does. In more detail, let an input letter of

MZ1 whose every component 1is either s € Sc or s, be expressed .

d d d)

as g~. We define Xc1 (s', s = A (s', g¢) for all s', s € Sc i
. e A

where Ac is the state transition function of M.

Theorem 3.2. Mi1 is a solution for @ii and its synchro-
nization time for (G%, %, d) € @il is 2n-1 time units.

Proof. It is easily proved by the induction on t that at
any time ¢ and for each 7 (0 </7Z < n-1), the state of the auto=:

1
,'b,C’ L oo

maton at Py is independent of J, that is, s(x, o

| id
ul ) 1s 1dentical for all j(0 < § < ).
Since therée is at least one circuit in (C;, oo, d), all

cells on the circult fire at time 2n-1. Hence all cells in

12
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1 , d
(¢, Tyo s 4 ) fire at time 2n—1.7 Mcf1

" is called the =~ quasi-cir-

cuit ‘solution.

3.3 We consider a digraph c; = (), Ul) which is defined
as follows. A R N O

(1) There is at least one circuit in CZ and all circuits
in Cé'pass-through a designated vertex zgq.

' (2) The maximum length bf'circuits in C; is n.

(3) For each vertex x, there is at least one path fromrxo;
to x and the maximum 1éngth of paths, in which no vertex is
encountered more than once, is less than n.

In other words, C; is obtained by adding arcs of the form
<xij’ xi'j')‘with i < i'-1 to a quasi-circuit Cé.'

Let eié be the &lass of d-digraph structures (cf, x
d

c2

d)

00?2

be the d-finite automaton which is obtained by modify—

d as explained below. Md
ci c2

and M

ing the‘quasi—circuit solution M
d

ci

consists of ¥y~ and the processer for the input signal. The

processor finds which predecessor cells move to non-quiecent

state 1in Mi lastly. Since then, the processor regards the
1

signals from the predecessors other than the lastly activated
. - d ,
ones as external signals. In other words, Mcz disregards input

signals received throughjarcs (xij> xi'j') with7z < 7'-1 stated

for defining C: from C;. Then Theorem 3.3 1s easily proved

d

d o,
o3 is a solution for @éz and its synchroni-

Theorem 3.3 M

: 2
zation time for (Cn, moo,'d) € @iz is 2n-1 time units.

>
3

2 U;) which is defined

3.4 We consider a digraph C; = (X
as follows. | 1

(1) Tﬁefé'éxiéﬁs'at.leéét‘Bne’éircuif'WHich"péés through a

13
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designated vertex z,, .

(2) The minimum length of circuits passing through %y, is

(3) For each x, there exists at least one path from x,, to
x and distci (25465 ) < n.
n

Let eg be the class of d-digraph structures (C;, Zoos d)
and Mga be the d-finite automaton which consists of the quasi-
circuit solution M§1 and the processor for the input signal.
The processor finds which predecessor cells move to non-quiecent
states first. Since then, the processor regards the signalsi

from the predecessors other than the first activated ones as

external signals. Then Theorem 3.4 is easily proved.

d

23 is a solution for Ois and its synchroni-

Theorem 3.4 M

zation time for (C;, z o d) is 2n-1 time units.

0

4, Two preliminary solutions for d-graph structures.

. d
4.1. 1In this section, we shall consider the cilass I of

d-graph structures, and give two preliminary solutionsler and

) d

for ", Let (Gr’ x d) be a d-graph structure with.the

8 r+1 g’

radius r. Here, the radius r of a graph structure (G, xg, d) is

defined by » = max distG(xg,rx). It will be shown that the -
xe@ -

synchronization time of M for (G,,

3 p+1

g° d) is 3r+1 time units.

We call M?r a 3r+l1 solution.

+1 :
Before explaining the essential idea for constructing
‘ d -
'Mfr+1’ we shall give a preliminary solution M“r whose synchroni-
zation time for (G, T d) is Ur time units. We call Mfrfa hr

solution. The principal idea 1is to construct the automaton

14
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3

which reduces a given d—graph structure to a d-quasi—circuit”
structures and then simulate the quasi-circuit solution Mii.w
In (g, s d) ¢ Hd, if a cell z# has no adjacent cell ¥ such
that dist, (xg,,y) > dist, (xg, ), then x is called a terminal
cell. For each cell x, there is at least one path W = [z, x,
xZ] such that z, = x, #, 1s a terminal cell, and for all

xj) < distG (ﬁg, xj+1)° When %, is

3

Jg (0 <d <1), dzstG (xg
the 7 th adjacent cell of x = x;, the path M is called the 7 th

path of x. The maximum length of the % th paths of x is denoted

by m(x, Z). Note that if x is a terminal cell, m(x, ¢) is 0
for all <<
A d-graph structure (Gr’ s dYee Hd'is reduced to a d-

quasi-circuit structure (C;P, Z s d) e Gi as follows.

1
(See Fig. 3.)
First, we remove every édge e = [z, y] in G, such that

dist, (xg, z)' = dist, (xg, y) and obtain an d-graph
r r

G;; Then we divide each cell x other than the general cell xg
and terminal cells into two subcells xl and x2 called the
first subcell and the second subecell respectively and replace

“each edge e = [x, y] in,G;,‘for which distG' (xg, x) < distG,
r : r

1

(mg, y), with two arcs u' = (z!', y') and u2‘= (yz, ©?).

(For the general cell (terminal cells), xl(ylj = xz(yz) = x (y).)
Finally, for each xwin G, and < (1 <17 =d), if thefé exists J
such that m(x, <) < m(m, J), then we remove (mz, x) Wﬁere x; is
the second subcell of the < th adjaceht cell x of «x. Theh we

. . s . 1
obtain-a quasi-circuit Czr
d

up Akp) first

The solution M = (8 s s

%4 g’ q’ sf-‘,

15
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simulates the above reducing process. Its state set Shr is

glven by 5 x S, x5 x 5, u {sf}. Sp is the firing state of

d

M“P. S1 and S2 are used to simulate the reducing process. Sy

and Sq are used to simulate Mii on the d-quasi-circuit structure

reduced from a given d-graph structure.

We put

t
1

, =Gy, Gys Gy Hyy Hyy I, J, 9o},
, = {0, 1, 2, 3}%

Ty
|

[95)
]

s =8, =5, - {F},

where Sc is the state set of the quasi-cireult solution Mii and
F is its firing state.

The general cell starts from G, and reaches to G, via G,
and each termiﬁal cell sﬁarts from @, and réaches'to I via Hy.
Each non-terminal cell starts from ¢, and reaches to J through

H, and .

Fach element of S, is expressed as (m,, Ceea, e, md)

where mie{O, 1, 2, 3}(1 <2 <d). Let ¥ be a cell and . be the

1. th adjacent cell of 2. Let the S, component of = 1is (ml, s

3

md). The value of m. has the following meaning. m, = 1 means

; : . . ol 1
that dzstG (xg, x) < dzstG (xg, xi) and thus thé arcs (xi’ x )

: 1 L Ve - - 4 g > &
exists in Cope My = 2 means  that dzstG (xg, x) <‘dzst(mg, xi)

and thus the arcs (z?, x;) and (xz, x?) exist in C;r. m, =3

means either that dtstG (xg, x) = dist, (mg

exist and thus the edge (z, xi) is removed from Gr’ or that

, x.) or x. does not
i 7
there exists < such that m(x, j) > m(x, <) and thus the arc

2 2
(xi’ x ) 1s removed from G . m, = 0 means that the connection

betwéen z and X; is not yet determined.

[6
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Initially, the general cell is in the state (Go, (0, »»+, 0))

and othef-cells’arevin (Qa, (O, ey 0)).

d d

In simulating the behaviors of MCI, Mw makes each subcell

to receive input signals only from its predecessor subcells in

. .
Czr and ignore those from other subcells.
d

br

d
el

It is shown that u can simulate the reduction from Gr to

C:r and the solution ¥

1
(02 s, x » d). Fig. 3 illustrates the solution n
r g

pr
3).

on the d-quasi-circuilt structure

on a (G,, T s

Let dist, (&g, x) and max m(x, ) be denoted by Z; and Z;.
1
It is seen that the arcs incident into z! are established at

t = Z; and arcs incident into xz are established at t =

1 2

Zx + ZZx + 1. Hence, the general cell can start to simulate

Md at t = 1.

et

We define that each cell moves-to Sf when its two subcells
move to F. Then the synchronization time of Mfr for (Gr? xg, d)
is 1 + (2(2r) - 1) = Ur time wunits.

Theorem .1 Mfr is a solution for Hd and its synchroni-

zation time for (G, s d) is Uy time units if iGri 2 2 and

1 if |6l = 1.

d - d

Next, we shall descrihe the 3» + 1 solution M3r+1. a7+

simulates the reduction from (Gr’ xg’ d) to (C:P, z d) as
Md does. KXobayashi pointed out the following two facts about

L7
1 . -
(¢ p? xg’ d) and suggested that the synchronization time for
2
(Gr’ xg’ d) 1s improved to about 3r time units.
(1) Synchronization of (Gr’ xg’ d) is achleved by

synchonizing the subdigraph. structure of (c;r, xg’ d) consisting

ir
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only of the first cells.

(2) A terminal cell Zy farthest from xg devides a circuit

1
in (Cgﬁ, o d) into two halves. &, is called the center of

’ 1
C;r' We can find the center of Car at time ¥ in the reduction
process.

Considering the two facts, we have the following modified

problem. Let (an, Loy T, 1) be a circuit structure in which

the center = of ¢, 1s designated. Let (x,, x, , ..., @ , .o\,

xzn—l) be the circuit. Find a solution of synchronizing all

cells on the semicircuit (x;, =, , ..., # ) for the class of

(¢, = 1).

2n

X

0’ n’

We shall give a 1-finite automaton ¥, = (Sh, ]

o? Sq’ sg,
%f’ Ah), called the semicircult solution whose synchronization
time for (Czn’ Tys Ty 1) is 37n-1 time units. M, is essentially
similar to’the cifcuiﬁ solution Mc’ and Sh includes»Sc.‘

The evolution of the solution M, on (C, , %,,  , 1) is

. n >
depicted in Fig. 4, in which the evolution of Mc on (Cn, zy, 1)
i1s also shown for the reference. It is shown that the signals

generated at (z, ¢) in (¢ , =z , x=_,
’ 2n 0 n

1) is identical to those at
(z, t-n) in (Cn’ z s 1) for 0 < 2 < n-1 and 2n + 2 < t,
Moreover, the center cell & fires at ¢ = 3n-1. Hence all

cells on the semicircuit (xo, ceny xn) of C fire at time 3n-1

2n
simultaneously. Fig. 5 gives the semicircuit solution for
(012’ xo, xs, 1)0
1
Next, we consider a d-quasi-circult structure (Czn’ T og 5

Xn, d) in which Xn is the set {xnj}ﬁof the center of circults in

1 .
c n-and all xnj's are designated. A solution for synchronizing
2

1%
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all cells iannrand all cells xing, where 0 < 7 £ n=-1, Q0 < 4

< h;, 1s given by an d-finite automaton MZ which is obtained

by slightly modifying Mh;

M% is defined from Mh by the same way as fherquasi circuit .
solution Mi is defined from the circult solution Mc. That is, |
the state transition functlon of Miris defined for such inputr
letters that all components other than the external siéﬂél are

identical signals, and for these input letters Mi behaves as

‘Mh does.

By the similar arguments used for proving Theorem 3.2, it iz

is easily shown that Mi is a solution for the above problem and

1

its synchronization time for (C x Xn, d) is 3n-1 time units.

2n’ To0’
Mi is called the quasi-semlcircuit solution.
Now, we shall give. a 3r+l solution Mfr+1 for the class of
d-graph structures (Gr’ xg, d) by using the concept of Mfr and
d d . g
My - The state set 5, pty f Moy 18 expressed,as (S1 % SgZ x2S
x S ) u {s,} where S and S 1s the same set as S  of M _ ,
40 f 1 2 p . S L ¥ 4
S =S is the same set as Sd of M, and e, 1s the filring state.
30 w0 h h f »
Given a d-graph structure (&,, s d), Mfr+l>starts ati

t = 0 to reduce (GP, s d) to a d-quasi-cirsult structure
1

(Czr’ xg,

d) as Mfr does and also starts at ¢ = 1 to simulaté

the quasi-semicircuit solution Mi. The synchronlizing time of

Mfr+1 appears to be 3r time units, but it is not.

Let ¢ be a terminal cell fér which distG (xg, x) =r' < p,/
Since xz moves to (H , @, #, %) at time r' and moves to (T, #,

%, %) at time r' + 1 for

d
ir+1’

z moves to (I, %, P}

oo’ P3o)>at e

time r' + 1 for M .Then the subcells of # move to the

E%
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firing state F of Mi at time 37" < 37, while all other subcells

move to F at time 3». Thus it failévto synchroniée all the &
L3 . . .

first subcells of Gr.

Since x has at least one adjacent cell e.g. 7 th cell with
m. = 1 which does not move to F prior to time 37, (mi is the ¢
th component of C I mi) € 8, of x=.) We define the firing

of Md as follows. Let x be any cell in (G

apt d). When

r? xg’

the first subcell of x is F and the first subcells of all

adjacent cells of x are also in F at time ¢, x moves to the

d

firing state Sf of Mar+1 at time ¢ + 1. It requires one more

time unit.

d

Theorem 4 .2 The d-finlte automaton M§r+1

is a solution

‘ d
for 1% and its synchronization time for (Gr,'xg, d) € " is

3r+l time units.

5. A 3r solution for d-graph structures.

In this section, we give a improved solution Mir for nd
whose synchronization time for (Gr, @ s d) e Hi is 3r time units,
where Hi is a subclass of ﬁé.

We call a cell x in G, for which dist (xg, z) = 7, g

2
GI’

radial cell. A cell z in G, for which there exists no cell B
such that dist, (xg, y) 2 dist, (xg: x), is called a solitary - -

cell.
d

The reason why M3p+1

requires one more time unit for the
synchronization is that the first subcells of non-radial terminal
cells moVejto F e_Sh beforevtime 3r. We shall consider to over-

come this difficulty without loss of a time unit.

20



Let x be a terminal\cell‘for which disz,
In Mff, the first and second .subcells of z-move respectively to.

(xg, . .I.') = 1""».

4 andfP;a Elsh at” time r‘+1l' This is achieved by slightly . »°

d

modifying M3r+1’ In other words, the first subcell behaves as °

if x is non-radial and the second one does as if x is radial.

For a”h6h—radiai0términal cell y,'the first subcell of y
moveé to F at time 3r and the second-one moves to F at time 37'.
For a radial cell z, the first subcell of x does nOtw@de to‘F 
prior to time 3r and the second one moves to F at time 3r.

For a non-terminal cell, the first subcell moves to P at t = 3r.,

From the‘above consideration, if each cell x recognizés“
prior to time 3r' (»' = distg (x?, x)) whether it is radial or

n

not ﬁhen all cells can fire once at time 3r.

Usually, a terminal cell * requires r' time units (7' = distG
r

(xg, z)) to recognize that it is terminal and hence requires
3p' time units to recognize whether it is radial or not. But
a solitary non-radial cell x requires r'-1 time units to recog;‘
nize that iﬁ is non-radial br there exists at least one ndﬁ—v,‘
solilary terminal cell y such that distGr (xg,'y) =r', If ail

radial cells are solitary, then each of them recognizes at time

3r-1 that it is radial and all other cells recognize prior to

time 3r-1 that all radial cells are solitary. Thus for (GP, xg’

d) in which every radial cell is solitary, we can obtain a
solution whose synchronization time is 3r time units.

d pe a subclass of N9

Let Hs

consisting of d-graph structures

in which all radial cells are solitary. We shall give a solution

-2}
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d

175 whose synchronization time for (G?, xg,'d) of 14 d

s and 1™ -
nf are respectively 3r» and 3r+l1 time units.

The fundamental behaviors of Mgr
ir+1' Mir simulates the reduction from a d-connected graph

structure to a d-quasi circult structure and then simulates

1s identical to that of

M

the behaviors of the quasi-semicircult solution. Beside these
behaviors, when the general cell recognizes that all radial
cells are solitary, it sends signals about this knowledge to all
other cells.

The state set of Md is (8 x § x g x g )vu {s.}. s
3r 10 2 3 &

f 10
= Sl‘uk{G“, Tos Ios I, I, J0s J0s I, J,e}. S, and §, are
X d _ _ - -
given in Mur and S3 = Sk = s, are given in Mh' sf 1s the firing
d

state of Mar' The states in S10 play the following roles. The
general cell moves to G2 when 1t recognizes all radial cells to
be solitary, or moves fo G20 when it finds at least one non-
solitary’radial cell. If a terminal cell z recognlzes 1tself to
be solitary, then é moves to I2 via Io.and I1’ else x moves to

I. When x in I, recognlzes itself not to be radilal or it finds

at least one non-solitary terminal cell y such that dist, (xg,
r
y) = distG (xg, x), x moves to I. When a cell in I recognizes
r
that all radial cells are solitary, it moves to Izo' gy Jgs.d,

and J, play the same roles for non-terminal cells as I, I,, I,
and I2 do for terminal cells. When a cell in J2 recognizeé that
all radial cells are solitary, it moves to J,,. Thus, for any
d-graph structure in Hg ,» the general cell, radial cells, non-
radial terminal cells, and the notherminal cells move res-

pectively to Gpos I,, I,,s and J,, one time unit before their

22
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firing.
Signals in S, play the same roles for M%P as 1t does for
Mif' Signals'IO, I1’ and 12 are generated at solitary cells.

Signals Gzo’ J

20 ? and I20 are generated when all radial cells

are found to be solitary and afe used‘to transmit this knowledge.
Initially, the general cell is in the state (¢, (0, ..., 0) @,
Q) and other cells are in (QoP (0{ ceey, 0), @, Q).

In simulatiﬁg the behaviors of the d—quasi—semicircuit
solutioh Mi,.Mfr makes each subcell to receive input signals
only from its predecessof subcells and ignore inputvsignals from
‘other subcells. Thislcan be achiéved by the method similar to
those used in ¥%_. |

B S

If a cell‘x in (Gr, s d) with distG (xg,_x) =r'is
solitary,  moves to I0 at time r' and sends a J° sefiesAto the
genéral cell'xg. Thus, if all radial cells are solitary, then
xg moves to Géovat timg 2r and seﬁds J;O signals to all cells in
(Gr; &g, d), else xg moves to ¢, at time 2r+l. As a :esult, if
all radial cells are solitary, they are in I, and all other cells
are in“Gzog J »

are in I, s instead of Ii) On the otherhand, if not all of radial

,o» OF I, at time 3r-1. (For r = 1, radial cells

cells are solitary, then solitary radial cells are in I, and all
other cells are in G¢,, J, or I at time 35—1. (For » = 1,
solitéry radial cells move to Il.)

Note that if all radial celis are‘solitary, then they can
recognize themselves to be radial at time 3r«l. Hence we define
the firing of Mfr.és follows. »

(1) Ifx isinG, , 7. ,or I. at time ¢ and the first

20°% "20° 20

23
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subcell of  moves to F ¢ S, =5, at time * + 1, then ¥ moves

to s, at time ¢ + 1.

f

(2) Ifxz is in I, or I, , all = 's withm, =1 are in J,,

10
or G,, at time ¢, and the second subcell of ¥ moves to F at time
t + 1, then x 'moves-to sftatltime t + 1.

(3) If =z is in G, or J and the first subcell of * moves
to F at time ¢, then x moves to Sﬁ at time £ + 1.

(4) If x is in I and the first subcells of x.'s with

m. = 1 move to F at time t, then x moves to 8p at time ¢t + 1.

If all radial cells are=solitary, then all cells in (GP,

s 1) fire at time 3r according to (1) and (2), else all cells
fire at time 3r+l according to (3) and (4). (See Figs. 6 and: 7;)
Theorem 4.1 Mfr is a solution for Hd. The synchronization

time of Mfr is 1 time unit for (G, o d) e i with [G] =1, 3r

time units for (Gr, xg, d) e'Hé with 1¢l 2 2, and 3r+1 time

8
4 _ 19 y1en |6l 2 2.

units for (Gr’ s d) e I s

Finally, we shall show that M?r give the minimum synchroni-
zation time for some subclasses of‘Hg. Let (Gr, s d) be a
member of Hiwhich has two radial cells such that dist, (€, =,)
= 2r, We denote the set of such d-connected graph structures
by Hfr' Theorem 1.1 shows that

(G, L d) 2 L (Gr’ z ,d) = 3r

t .
min r g’

for any (G,, s d) in Hfr. Obviously Theorem 4.1 gives the

d
synchronization time of 3r time units for any (Gr’ xg, d) in Hap’
d d

Thus, Mar is a minimum time solution for Har‘
Let (Gr’ L d) be a member of nd - Hi which has three

radial cells Loy Xy and x, such that x| and x, are adjacent

2

24
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each other and dist, (x,, x,) =dist, (z,, x5) = 2r.

r
We denote the set of these d-connected graph structures
d
by,H3P+1. Theorem 1.1 shows that
tin (Gr, s d) =2 L (Gr, P d) + 1 =3r + 1

d

iyt Theorem 4.1 gives the

for any (Gr’ Ty d) in I

synchronization time of 3r+l time units for any (Gr’ P d) in

né d d

. Thus, M is a minimum time solution for I .
sr+1 3y v 3y +1

There results giVe Theorem 4.2,

d d d _
Theorem 4.2 Let I be I’y ~u T . u {(c, z s d)|lel= 1}.
Mfr gives the minimum synchronization time for any (GP, o d)
in 9. S
m
Conclusion

We have examined solutidons of the firing-squad synchroni-
zation problem for some classes of d-graph structures and
gfaph structures.

In the first part, we have given solutions forrthe classes
of circult structures, quasi-circuit structures, and some other
digraph structures.

In the second part, we have given two solutions for the = .
class of connected graph structures whose synchronization time

for (Gr’ z , d) are respectively 4r and 3r+l time units where

g)
Gr is a graph with the radius r.

In the final part, we have given a improved solution for
connected graph structures whose synchronization time for

(GP, x d) is 3r or 3r+l time units depending upon the property

g’
of radial cells. Moreover, we have shown that our solution give

b

2k
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the minimum synchronization time for a subclass of connected

graph structures.
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the second subceil 21 u:.__
Fig. 3 The illustration of the solution Fig. 4 The scheme of the solution
d
M,, for ng Z g 3). M, for Aqgv Tos T, 1).
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X3 X2 X Xo Xa X5 Xe

0O I 2 3 4 5 6 7 8 9 10 11
o{p Xo is the general cell.
1]Po]A Xe X7 Xo  Xio “ﬂ“ﬂ_“@:“a
7 . X4 Xs Xe )
2 v\_ VilA . Xo Xi Xz X3 X7 Xe X Xo
3 vw \ A 0|6o
41P3|V A 1]G1iHo| |- Ho Ho
5| P% <a<_ A 2|6 1|Hi[Ho HifIo HlHo
\ 2 3 3G ([Hi|Hi]To Jo| T Hill
61Pi VoY _ Poo sl W]To1] [T12) [T]1
7 vm Wi woogmo 516, |To[T1[12| [T |12} (T {1
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7w - 2 8 | G20 J20{ J20} 1 2 20] I20] 20{ I 20}
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P2z Wo|ValY Péo So Aoo oxkoxb otk g b x xbxb g
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FIF|FIFIFIFIF sles[va[¥TT Trsdizlaal [Ve[YTF
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Sq is denofed by the blank . 9(F F [FIVIF FIFIF
d
Fig. 5 The solution ¥, for Fig. 6 The solution R@% for (G,, g 3)

(Cags Togs Tygs 1) whose all radial cells are solitary.
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Xs Xz Xt Xo Xe Xs Xe
Xois the generai cefl.
X3, Xe, and X are
Xu Xe X7 Xs  Xwo rodial cells . but
Xaand Xuare not
) Xu solitary.
X0 X1 X2 X3 Xa X5 Xe X7 Xs X3 X0
0lGo
1161]Ho Hol . Hol Ho
216G {HiiHo H i Hof HitTo] [H1Ho
3161 {Hi|HI[Ho HijHij To Jo 11 Hil
41Gi HiH | T Hi{Jof T Ji Iz J 11
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T162|T |T i1 T 13212 g1 J 1
8162|7 (J I JJ|12 il Jil
91627 jJ i1 JIT]1 J |1 J|I
10]S1[S¢[S+|St S¢[S¢|S¢ St{S¢ St|S¢

The diograms for subcells are the same as
in Fig.2|

Fig. 7 The solution My,
has non-solitary radilal cells.
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