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Mathematical Programming Problems on an Infinite Network
Maretsugu YAMASAKI

School of Engineering,
Okayama University,

Okayama, JAPAN

§ 1. Introduction and network definitions

In the present paper, we shall study the following mathematical
prograﬁming problems on an infinite network: (1) Min-work problem,
(2) Max-potential problem, (3) Max-flow problem, (4) Min-cut problem,
(5) Extremal distance, (6) Extremal width. We shall discuss some
duality relations of those problems. In relation to those problems,
we shall classify the set of all infinite networks into parabolic
‘nétworks and hyperbolié networks of order’p and define a parabolic
index of an iﬁfinite network.

Most of the results in this paper are extracted from (61, (7],
[9] and [10].

We begin with sSome network definitions.

Let X and Y be countable (infinite) sets and K be a function
on X x Y satiéfying the following conditions:

(N. 1) The range of K is {- 1, 0, 1}.

(N. 2) For each y ¢ Y, e(y) = {x ¢ X; K(x, y) # 0} consists of

exactly two points.xl,‘x2 and K(Xl’ y)K(x2, y) - 1.
(N. 3) For each x ¢ X, Y(x) = {y « Y; K(x, y) # 0} is a nonempty
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finite set.

"(N. 4) For any x, x' € X, there are Xyseees X € X and Yyseees
Vo471 € Y such that e(yj) = {Xj—l’ Xj}’ J=1,..., n+1with x5 =x
and x = x!',

n+1
Let r be a strictly positive function on Y. Then N = {X, Y,

K, r} is called an infinite network.

Let X' and Y' be subsets of X and Y respectively and let K!
and r' be the restrictions of K and r onto X' x Y' and Y' respec-
tively. Then N' = {X', Y', K', r'} is called a subnetwork of the
network N if conditions (N. 2) - (N. 4) are fulfilled replacing |
X, Y and K by X', Y' and K' respectively. Let us put for simpli-
city <X', ¥'> = N'. 1In case X' (or Y') is a finite set, <X', Y'>
is a finite subnetwork.

A sequence {<Xn, Yn>} of finite subnetworks of N is called an

exhaustion of N if X = v X, ¥ =
=1 n

Il <8

Y and Y(x) < ¥
n n

+1 for all~"

1
x e X .

n

A path P from x ¢ X to x' ¢ X is the triple (Cy(P), Cy(P), p)
150 Xn+1} of X, a finite

} of Y and a function p on Y;

of a finite ordered set Cy(P) = {x, x

ordered set CY(P) = {yl, Yosewes You

called the index of P such that

33

X

Xy = X, X =x', x; # x 1f 1 #k, e(yj) = {xj_l,

n+1

p(yj) =~ K(Xj—l’ yj) and p(y) = 0 if y £ CY(P).

A path P from x ¢ X to the ideal boundary « of N is the triple

(P)

(CX(P), CY(P), p) of an infinite ordered set CX(P) = {XO, Xl,...h

of X, an infinite ordered set CY(P) = {yl, yz,...} of Y and a

function p on Y which satisfies condition (P) except the terminaﬁ
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condition X 41 = x'.

Denote by PX o (resp. PX ») the set of all paths from x to

3 3
x! (resp. ©). Note that condition (N. 4) means PX <! # @ for any
S

x, x' € X. For mutually disjoint nonempty subsets A and B of X,
denote by PA,B the set of all paths P such that P e Px,x" CX(P) n A
= {x} and CX(P) n B = {x'} for some x ¢ A and x' ¢ B. Let A be a

nonempty finite subset of X and let P, _ be the set of all paths P

A,

guch that P « PX and CX(P) n A = {x} for some x € A.

RS
Let A and B be mutually disjoint nonempty subsets of X. We say
that a subset Q of Y is a cut between A and B if there exist mutually
disjoint subsets Q(A) and Q(B) of X such that A < Q(A), B < Q(B),
X = Q(A) v Q(B) and the set -
Q(A) 8 Q(B) = {y ¢ ¥; e(y) n Q(A) # @ and e(y) n Q(B) # #)
is equal to Q.
Let A be a nonempty finite subset of X. We say that a subset
Qof Y is a cup between A and the ideal boundary « of N if there
exist mutually disjoint subsets Q(A) and Q(«x) of X such thgt,A
< Q(A), X = Q(A) u Q(x=), Q(A) is a finite set énd Q = Q(A) ) Q(w).
. Denote by QA,B (resp. QA’M) the set of all cuts between‘A and B’

(£) _ . . ..
AB = {Q « QA,B’ Q is a finite set}.

t(resp. ®) and put Q
Let L(X) and L(Y) be the sets of all real functions on X and

%Y respectively, let LO(X) and LO(Y) be the subsets of L(X) and L(Y)

%respectively which consist of functions with finite support and

ilet L*(Y) be the subset of L(Y) which consists of non-negative

functions.
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§ 2. Min-work problem and max-potential problem

Let ¢ ¢ L*(Y) and let A and B be mutually disjoint nonempty
subsets of X. Let us consider the following mathematical programming
problems on N:
(MP. 1) (Min-work problem) Find

N(A, B; c) = inf{) c(y); P « P, gl-
P 3

(MP. 2) (Max-potential problem) Find

N¥(A, B; c) = sup{inf u(x) - sup u(x); u ¢ S¥*},
XeB Xeh

where S*¥ = {u ¢ L(X); | } K(x, y)u(x)| < c(y) on Y}.
xeX

We proved in [9]

Theorem 1. N(A, B; ¢c) = N¥(A, B; c¢) holds and there exists an

optimal solution u of (MP. 2) such that u = 0 on A.

Remark 1. There is no optimal solution of (MP. 1) in general.

§ 3. Max-flow problem and min-cut problem
Let A and B be mutually disjoint nonempty finite subsets of X.
We say that w e L(Y) is a flow from A to B of strength I(w) if

) K(x, y)w(y) = 0 for x ¢ X - A - B,
ye¥Y

I(w) = - ) ] K(x, yiwly) = § ¥ Kz, y)wly).
xeh ye¥Y xeB ye¥Y

Denote by F(A, B) the set of all flows from A to B and put G(A, B)f

7

= F(A, B) n LO(Y). The spaces of flows on an infinite network haV§
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peen analyzed by H. Flanders [2] and A. H. Zemanian [11].
Let W e LY(Y) and consider the following mathematical prégram—
ming problems:
(MP. 3) (Méx-flow problem) Find
M(W; G(&, B)) = sup{I(w); w ¢ G(A, B) and |w| < W on Y}.
(MP. 4)‘(Min—cut problem)j Find

ME(W; Q) g) = inf{] W(y); Q ¢ Q, pl.
: T = P Q ‘ > ‘ ) ‘ i

We can define M(W; F(A, B)) and M*(W; Q(f)) similarly.

We proved in [9]

Theorem 2. M(Wé G(A, B)) =JM*(W; QA,B) holds and tﬁere exists
an optimal solution of (MP. 4).

Proof. We only prove the inequality M(W; G(A, B)) > M*(W; QA,B)'
Let {<X , Y, >} be an exhaustion of N Such that A v B < X; and define
W« L(Y) by W, =W on ¥, and W= 0 on ¥ - i . By a well- known
result which states that max-flow equals min-cut in a finite network
(ef. [3]), we have

M(W; G(A, B)) 2 M(W_; G(A, B)) = M¥(W 5 Q4 o).

Since lim M¥ (W 5 QA B) > M¥ (w QA B) (cf. [9]), we obtain the ine-

n—)-oo

quality.

Notice that M(W; G(A, B)) £ M(W; F(a, B)) and M*(w;‘QA’B)
< M¥(W; Q(f)) and the equalities do not hold in general To give
a sufficient condition for the equalities, we consider the value

M¥ (W, Qg ) of a mathematical programming problem similar to (MP. 4).
3

. + ‘ »
Definition 1. We say that W ¢ L (Y) satisfies condition (=)
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if M¥(W; Q ) = 0 for all nonempty finite subsets F of X.

F,»

The following two theorems were proved in [7].

Theorem 3. Let W ¢ LY(Y). Then W satisfies condition (®) if
and only if there exists an exhaustion {<Xn’ Yn>} of N such that

lim ! W(y) = 0 with 2, =Y -Y o (Y, =0@).
n Zn

Theorem 4. If W e L¥(Y) satisfies condition (), then M¥(W; QA B)
b

= wrqa; ¢f)) = mew; Fea, B)).
A,B .
Let A be a nonempty finite subset of X. We say that w e L(Y)
is a flow from A to the ideal boundary «® of N of strength I(w) if

Z K(x, y)w(y) = 0 for x € X - A,
yey

I(w) = - ) 1 K(x, y)w(y).
X€eA yeY

Denote by F(A, ®) the set of all flows from A to . We can define
M(W; F(A, «)) similarly to- (MP. 3).

We shall prove -

Theorem 5. M(W; F(A, «)) = M¥*(W, QA ) -
: )
Proof. Let w € F(A, ®) such that |w| < W on Y and let Q
= Q(A) © Q(x») € QA o+ Define u ¢ L(X) by u =1 on Q(A) and u = 0
: >

on Q(®), Then u e LO(X) and

I(w) = - § u(x) ) K, ywly) = - § w(y) ) K(x, y)u(x)
xeX yeY yeY xeX
< L lwMI I Kx, yulx)] g ] Wy,
yeyY xeX Q

‘so that M(W; F(A, =)) < M%(W; Q) o) Let {<X_, Y >} be an exhaustion
3

x )

of N such that A < X,. Then M(W; G(A, X
1 - n -
nt+l n

- Xn)) = M*(w; Q

+1 A,X
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> M¥(W; QA ) by Theorem 2. There exists W o« F(A, Xn - Xn) such
= > E

+1

' < = : -
that 1w | < W on Y and T(w, ) = M(W; G(A, X X )). We may assume

n +1

that wn(y) converges to Q(y) as n * ® for each y ¢ Y. It follows that
A o oL .
#e P, =), |w| <Won Y and M*(w; QA’w) < iiﬁ M(W; G(A, X 5 - X))

= 1im I(w ) = I(W) < M(W; F(A, =)), and hence M(W; F(A, =)) = M¥(W;

n>e

QA’OO) *
§ 4. Path-cut inequalities
We shall improve the path-cut inequalities in [9]. ‘Let'V, W
¢ LY(Y) and let A and B be mutually disjoint nonempty finite subsets
of X.

We shall prove
Theorem 6. N(A, B; V)M¥(W; Q, 1) < § V(y)u(y),
A,B’ = yey

or equivalently

(inf{] V(y); P « P, g1 inf{] W(y); Q Q gt) 2 I V(muy).
P 5 Q H er

Proof. On account of Theorem 2, it suffices to show that
N(A, B; V)M(W; G(A, B)) < ] V(y)W(y). By means of Theorem 1,
we can find v ¢ L(X) such %ﬁzt v=0on A, v = N(A, B; V) on B and
| I K(x, y)v(x)] S V(y) on Y. For any w « G(A, B) such that
lﬁiy)l < W(y) on Y, we have

}ovi(x) I K(x, y)w(y)
xeB yeY

N(A, B; V)I(w)

) ow(y) } K(x, y)v(x) < )1 Wyvy),
yeY XeX yeY

which leads to the desired inequality.
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By Theorem 4, we can similarly prove

Theorem 7. If W satisfies condition («), then

N(a, By WmEns o{f)) < ] V@IWE).
. 3 y €

Let A be a nonempty finite subset of X and let {<x_, Y >} be *

‘an exhaustion of N such that A < X,. Then N(A, X - X ; V)
1 n+l n

= N(A, X = X_3 V) » N(A, ©3 V) as n >~ » (Lemma 2. 4 in [6]) and

n
M¥(W; Q, ) < ME(W; Q ) (cf. Lemma 5.3 in [6]). We have

AsXpi1~ %y

by Theorem 6 with the understanding that 0 + o = 0

Theorem 8. N(A, *5 V)M¥(W; Q, ) ¢ 1 V(y)W(y).
2 T yeY
§ 5. Extremal distance and extremal width
Hereafter let 1 < p < » and 1/p + 1/qg = 1 (1 < p < ), For

‘w e L(Y), its energy Hp(w) of order p is defined by

H () = ] r(y) |w(y)|®? (1 <p < =),
yeY :

H (W) = sup |w(y)|.
yeY

Denote by Lp(Y; r) the set‘of all w e L(Y) such that Hp(w) < ¥ a
by L;(Y; r) the subset of Lp(Y; r) which consists of non—negatiye
functions. For u e L(X), its Dirichlet integral Db(u) of order
is defined by

D (u) = H (r(y)™7 7 K(x, y)ul(x)).
b 4p ng

Denote by D(p)(N) the set of all u € L(X) such that Dp(u) < o,

Let A and B be mutually disjoint nonempty subsets of X and
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nsider the following mathematical programming problems:

cO
. -1 _ . i
p. 5) Find ELp(A, B) = 1nf{Hp(W), W e Ep(PAsB)}’
= + . . .
wnere E_(Py p) e Lh(Y; r)? J r(y)W(y) > 1 for all P <P, o}

P ~ >
(p. 6) Find EW (4, B)™1 = inf {6 (W) W < BX(Q, )}, :
where EX(Qy p) = (i « Ly (Y r);’% W(y) z 1 for all @ < @y gl
ﬁéfe we use the convention that the infimum of a real function on
tne empty set § is equal to ®.

Notice that Ep(P ) = {W e L (Y, r); N(A, B; W) > 1} and

A,B
EZ(QA’B) = {0 e L;(Y, r); M¥(W; QA,B) > 1}, |

In case A is a nonempty finite subset of X? ELp(A, ©) and
qu(A, ) gre defined as above replecing PA,B and'QA’B by'PA”°° and
QA,” respectively. ‘

We call EL (A, B) (resp. EL (A, «)) the extremal distance of
order p of N relatlve to A and B (resp A and ©) and EW (A, B)
(resp. EWq(A, ©)) the'extremal w;dth of order q of N nelatlve to
A and B (reép. A and‘w). ' R B

We proved in [8]

Theorem 9. Let A and B be mutually disjoint nonempty subsets
of X and let {an, Y >} be an exhaustion of N such that A n X # g
and B n‘X‘ # B and put A = A n X and B = B n X Denote by ‘
EL (A ’,Bn; N ) and EW (A R Bn; N ) the values Of (MP 5) and (MP 6)
rep1a01ng A, B and N by A 0> Bn and N = <Xn’ Y >. Then EL (A n? n3
N > ELp(A,‘B) and qu(An; Bng Nn) ~ EW (A, B) as n f,mii» |

The following three theorems were proved in [6].
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Theorem 10. Let A be a nonempty finite subset of X and let
{<Xn, Yn>} be an exhaustion of N such that A < X,. Then
ELp(A, X - Xn) > ELp(A, ©) and qu(A, X - Xn) > EWq(A, ©®) as n > «,

By the aid of Theorem 1, we have

Theorem 11. ELp(A, B)_1 = inf{Dp(u); ue L(X), u=20on A and
N :
u = 1 on B}.

By the aid of Theorem 2, we have

Theorem 12. Let A and B be mutually disjoint'nonempty finite

subsets of X. Then

EW (4, B)™1 = inf{H (w); w € G(A, B) and I(w) = 1}.

We have

Theorem 13. Let A and B be mutuallly disjoint nonempty sub-
sets of X. Then [ELp(A, B)]l/p[qu(A, B)1+/% = 1.
Proof. We proved this theorem in [6] in the case where A and

B are finite sets. Our assertion follows from Theorem 9.

Remark 2. R. J. Duffin [1] proved Theorem 13 in the case

where p = 2 and N is a finite network.

Remark 3. Even in the case where N is not locally finite,
Theorem 13 also holds (ef. [8]). (MP. 5) and (MP. 6) can be
defined even in the case where p = 1 and g = 1, ® respectively.
We have EL (A, B) = EW_(A, B)"! ana EL_(a, B) = EW, (A, B)"L (cf. [81).

By Theorems 10 and 13, we have

Theorem 14. Let A be a nonempty finite subset of X. Then

- 10 -~
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oo - oo l-p
ELp(A, ) [qu(A, )] .

Remark 4. 1In the cése where N is not locally finite, Theorems
10 and 14 do not hold in general. We proved in [8] that they hold

if N is p-almost locally finite, i.e., ) r(y)l"p < ® for all
ye¥(x)
x € X (1 <p < =),

We shall prove

Theorem 15. EW_ (4, oy~ 1 - inf{H (w); w ¢ F(A, ®) and I(w) = 1}.

Proof. Put EW k6 = EW (A, «) and d*¥ = inf{H (w); w e F(A, =)
q q q q

and I(w) = 1}. To prove the inequality Ew&1 < dé, we may assume
that d% < =, i.e., there is w ¢ F(A, =) such that I(w) = 1 and

-1
< ©, Then W = E# and EW_~ < H (W) = H (w
Ho (W) en lwl e 5(Qy o) and BV~ < q( ) q(W)s

1

so that Ew; < d*¥. To prove the converse inequality, we may

suppose that EW_© < =, i.e., there is W ¢ L;(Y;’r) such that

ME(W; Q) ) 2 1. On account of Theorem 5, we can find w ¢ F(A, =)
b .

0

such that |w| < W on Y and I(w) > 1. Writing w' = w/I(w), we have
WeF(, ®), TGr) = 1and af g B (n1) Hq(w) s H (W), Thus
6t < Ewgl. o

For a nonempty finite subset A of X, let us consider the fol-
lowing mathematiéal programming problem: |
(MP. 7) Find ‘dp(A, ®) = inf{Dp(u); u e Ly(X) and u = 1 on A}.

By Theorems 10 and 11, we have
Theorem 16. a (A, =) = EL (4, )7L,
§ 6. Parabolic and hyperbolic infinite networks

Let A and A' be nonempty finite subsets of X. Then dp(A, ©) =
- 11 -
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if and only 1if dp(A‘, ©) = 0 (ef. [101). Thus we can classify the

set of all infinite networks as follows;

Definition 2. We say that an infinite network N = {X, Y, K, r}
ié{of parabolic type of order p if there exists a nonempty finite
sﬁbset A of X Suéh that dp(A, ©) = 0. We say that N is of hyper-
bolic type of order p if it is not of parabolic type of order p.

For a fixed x, ¢ X, we define Hu“p by

Jul, = [D (w) + lulx,) [°P1H/P (1<p <),

ol = D)+ Julx ) |

Lemma 1. For every finite subset F of X, there exists a

constant M(F) such that

I luo ] s m ]
xeF :

for all u e D(p)(N).i
"~ We ‘can prove‘by—Lémmé 1 and a standard argument'that‘D(p§(N)
is a Banach space with respect to the horm/Hqu.’ Denote by Dép)(N)
the closure of LO(X) in D(p)(N) with respect t; the norm. NOtiée'
that'Dép)(N) does not depend on the choice of Xg- L

By Theorems 14, 15 and 16 and Theorem 3Q2 in [10], we have

’Theorem 17. Let 1 < p < « aﬁd let A be a ﬂonempty finite
subset of X. An infinite network N is of parabolic type of order
P if and only if any one of‘the following conditioﬁé is fﬁlfilled:
(C. 1) 1« Dép)(N).

c. 2) Dép)(N) = pP)l oy,

- 12 -
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]

o]
.

3) ELp(A, ®)

oo i * =
vu) qu(A, ) 0, i.e., Eq(QA,w) a.

5) There is no w ¢ F(A, =) such that I(w) = 1 and Hq(w) < o,

Corollary 1. ‘'Let 1 <'p < o, 1If there exists an exhaustion

(<X, Yn>} of N such that

oo}

) [uép)]l-q = © with ur(lp) - 3 r(y) 1P,
n=1 Y 2y

§then N is of parabolic type of order p.

Corollary 2. Assume that N is of parabolic type of order p.

W e LY(Y; r), then W satisfies condition ().
If q .

Remark 5. For u e L(X), its p-Laplacian Bp(u) e L(X) is

. defined Dby

[Bp(u)](x) = - ) Kz, y)g (r(y)_l~Z K(z, -ylulz)),
yeY p zeX

where gp(t) = ltlp—lsigh(t){(t,e R). We say that u e L(X) is

p-superharmonic on X if Bp(u) < 0 on X. Denote by SHY(N) the set

of
. An
if
. In
“in

all non-negative functions on X which are p—superharmonic'on X.
infinite network N is of parabolic type of order p (1 < p < «)
and only if SHY(N) consists only of constant functions (ef. [5]).

case p = 2, this is a discrete analogy of a well-known result

the classification theory of Riemann surfaces}

We proved in [10]

Theorem 18. An infinite network N is of parabolic type of

:order o if and only if there exists a nonempty finite subset_A

;of

X such that } r(y) = = for all P ¢ P, _.
R . 3

P
- 13 =
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Corollary. If N is of hyperbolic type of order «, then it ig

of hyperbolic type of order p for all p > 1.

§ 7. Parabolic index of an infinite network

We proved in [10]

Theorem 19. Let 1 < P4 < Ps- If N is of hyperbolic type of
order Py then N 1s of hyperbolic type of order pq-

By this fact, we can define a parabolic index ind N of an
infinite network N which 1s of parabolic type of order «:

ind N = inf{p > 1; N is of parabolic type of order p}.

A geometriq meaning of ind N may be seen by the following

examples:

Example 1. Let {tn} be a sequence of pésitive integers and

denote by J the set of all positive integers. Let us take

X = {xn; nedl, Y= {yin), yén),..., yén); nedl,
n
(n)y _ - (n)y _
K(Xn’ vy ) = ... = K(xn, ytn ) = -1 forned,
(n)\ _ _ (n)y _
K(xn+1, v 7)== K(x 49, ytn ) =1 forned,

K(x, y) = 0 for any other pair (x, y).
Let = 1 on Y. Then N = {X, Y, K, r} is an infinite network. Let
o be a non-negative number and let tn be the greatest integer less
than or equal to n®. Then we have ind N = a + 1. 1In case tn = 2n,

ind N = o,

Example 2. Let X = U C, and Y = i

Z_, where C_ =
n n
0 n
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(n),

. n =
{X§n>3 i=1, 2,..., 2"} and Z_ = {yg

For each n ¢ J, we define

K(xin),'yin)) =1fori=1, 2,..., 2",

K(x§n‘1), yin)) - K(xin-l), y;231+.) =-1fori=1,2,.., "%
1

For any other pair (x, y), we set K(x, y) = 0. Let {rn;'n e J} be

a set of positive numbers and define r ¢ L(Y) by r(y) r_ on Zn‘

n
for each n ¢ J. Then N = {X, Y, K, r} is an infinite network which
may be called a binary tree stemmed from xio). It is shown that N

is of parabolic type of order p (1 < p < «) if and only if

) 2n(1—q)rn = ®, Thus we can calculate ind N for several choices
n=1

of {rn; ned}. In éase r. =1forneJ, ind N = w, .In\césé ro
=o™% (4 >0) forned, ind N =a + 1 and N is of pérabolié type
of order ind N. In case r = n~2o0/@ (o > 0) for n « J; ind N = a
+ 1 and N is of hyperbolic type of order ind Nf In case r. = 2

forn e J, ind N = 1.

Remark 6. F-Y. Maeda [U4] proved that the infinite network
formed by the lattice points and the segments pafallel to coordi-
nate axes in the d-dimensional euclidean space has parabolic index
equal to the dimension. This result implies that the dimension

of a general infinite network may be defined by its parabolic index.
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