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Oscillatory Property of Solutions of Second Order

Differential Equations
Taro Yoshizawa

I this paper we shall discuss oscillatory property of solutions of second order differential

equations by applying Liapunov's sccond method. Consider an equation
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where 1(t)> 0 is continuous on =40, e ) and i(t, x, u) is defined and continuous on
IXR XR, R=(~00,00), To discuss oscillatory property of soiutions of (1), we consider
\\\,,

an equivalent system.

Y - , Yo
(2) X= r(t) y YT f(t’ X, T(f) )~

A solution x(t) of (1) which exists in the future is said to be oscillatory if for every T> 0
there exists a vt0> T such that x{ to) =0. Moreover, the equation (1) is said to be oscillatory

if every solution of (1) which exists in the future is osciilatory.

Theorem 1. = Assume that there exist two continuous functions V{t, x, y) and W({t, x, y)



which are defined on t>T, x>0, lyl<e and t 2T, x<0, lyl<eo, respectively,
where T can be large, and assume that V{t, x,y) and Wit x, y) satisfy the following
conditions;

[6)) V{t,x,y) > o uniformly for x>0 and ~eo<y<oo g5 t s oo and
W({t,x,y) = oo uniformly for x <0 and ~o<ly<oo a5 t = oo,

(ii) \./(2)(t, x(1), y(1)) £ 0 for all sufficiently large t, where {x(1),y(t)} isa solution

of (2) such that x(t)>0 foralllarge t and
. .
Vioy (6 x(0), y(©) = fim =+ { V(t+h, x(t+h), y(t+h)) - V(t, x(1), y(t) },
(2) h—o* h

(iii) W(z)(t, x(1), y(£3) <0 forall sufficiently laree t, where {x(1), y(t)} isa

solution of (2) such that x(t) <0 forall large t and
Wea) (6 x(0, y(0) = T L (Wteh | x(e+h), yereny) - W(t, x(t), y(t)) }.
h—Qt h
Then the equation (1) is oscillatory.

Proof. Let x(t) be asolution of (1) which is defined on [ ty,°9), and suppose
that x(t) is not oscilla tory. Then x(t) iscither positive or negative for gl large t. Now
assume that x(t)> 0 for zli t 20, where we can assume g to be sufficiently large. By

the condition (i), if t is suificiently lurge, sa t>t,, we have
s < s
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V(o,x(0), y(0)) < V(t,%x,y)
forall x>0, lyl <ee, However, by the condition (ii), we have
V(t, x(1), y(t)) £ V(o,x(0),y(0)) forall t2uo,

which contradicts V(o, x(0), y(0)) < V(t, x(t;),y(t;)). When we assume that x(t) <0
for all large t, we have also a contradiction by considering W(t, x(t), y(t)). Thus we sce
that x(t) is oscillatory. .

To apply this theorem, the following\l’emmas play an important role, In the foildwing,
a scalar function v(t, X,y) will be called a Liapz;nov function for (2), if v(t, x,y) is

continuousin (t,x,y) in the domain of definition and is locally Lipschitzian in (x, ¥).

" Morcover, we define \}(2)(t,x,y) by
: = Tiem L 1 Y .__Y_... .
3 vtxy) x}—?ﬁ) « i (V0 xthors » y+RECt, x, = D - v X, y)} .

If {'(2)(t, x,y) £ 0, v, x(®), y(t)) isnonincreasingin t, where { x(t), y(t)} is a solution

of (2), see [5],

Lemma 1. For t gT*, x>0, ~o<y<oo, where T* can be large, we assume that .
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there exists a Liapunov function v(t, X, y) which satisfies the following conditions;
M ywt,x,¥)>0 for y¥0, t>T* x>0,

(ii) "/Q)(t, X, ¥) £=A(t), where A(t) isa continuous function defined on t >T" and
4 Jim fjf A(s)ds >0 for all large T.
t—>oo

Morcover, we assume that there cxists a 7and a w(t, X, y) forall large T such that
72T and w(t, x, y) is a Liapunov function defined on t 27 x>0, y <0, which satisfics
the following conditions; |
(iii) Yy Ew(t, x,y) and w(r, X,y) <b{y), where b(y) is continuous, b{0) =0
and b(y) <0 (y¥*0),

@iv) \;va)(t, X, ¥) £= p(OW(t, X, y), where p(t) =0 is continuous and
. v
') f:°7(—t—)— exp{ - f:p(s)ds} dt =00,

Then, if {x(t), y(t)} is a solution of (2) such that x(t) > 0 for all large t, then y(t) 20

for all large t.

Proof.  Suppose that there is a sequence {t,} such that t, = as n—eo and

y(t,) < 0. We can assume that ty gT* and t, is sufficiently large so that

6) Jim f* Ms)ds 20, x()>0 fort>t,. -
t=—o0 tn = =
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Consider the function v(t, x(t), y(t)) for t2>t,. Then we have

Vit x(®), y©) € v, x(t), y(t)) = f: A(s)ds.

From (6) it follows that there isa Tj >0 such that forall t2>Ty,

A 2 Vit x(t), YD)
N

because  v{t,, x(t,), y(t;)) < 0. Therefore, for t2>T;, we have
vt x(®), Y(©) £ 5V, X(), ¥ty <0,
which implies that . y(i) <0 forall t2T;.

For T;, thcereisa 7 such that 72 T; and there is a Liapunov function w(t, X, ¥)

defined on t>7, x>0, y<0. For this w(t, X, y),-v we have

"‘ft p(s)ds '-ft p(s)ds
vy £ wit, x(®,y®) £ wir, x@,y®)e 7 < bly@e 7
for t>r Since x"(t) =r(/tt) , we have
Lt
’ 1 -/ p(s)ds
) x'(t) £ b(y®) o ° T ,
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and hence

1 Lewds
XO xSy e °

du.

Since x(t)>0 for t>7 and b(y(n) <0, there arises a contfadiction by (5). ‘Thus we see '

that y(t) 20 for all large t.

Remaik. In the case where r(§)=1 and p(t) =0, condition (iii) can be replaced by
(i) aly) £wit,x,y) and \'N(T, X, ¥) £b(y), where a(y) is monotone, continuous,
a(0) =0, a(y)<0 (y ¥0) and b(y) is continuous, b(0)=0, b{y)<0 (v ¥0).

By the same argument, we can prove the foliowing lemma.

Lemma 2. For th*,‘ x<0, ~e<y < ‘% where T can be large, we assume that
there exists a Liapunov function v(t, x, y) which satisfies the following conditions;
@  yvt,x,y)<0 for y¥0, t>T* x<0,

(ii) ﬁ(z)(t, X,Y) g—)\(t), where A(t) is a continuous function defined on th* and.

. t \ -
lim 1 N(s)ds 20 forall large T. -
t—>o0 T

Moreover, we assume that there existsa 7 anda w(t, x,y) foralllarge T such that 7 2T
and w(t, X, y) is a Liapunov function defined on t2>7, x <@, y > 0, which satisfies the
following conditions;

(i) -y £w(t,x,y) and w(r, x,y) <b(y), where b(y) is.continuous, b(0)=0 and



b(y) <0 (y*¥0),

(v)  wltx,y) €= pOW(, x,y), where p(t) 20 is continuous and

o ] - t w
{ 0 oXp {~- ,£ p(s)ds} = oo,
NS
Then, if {x(t), y(t)} isasolution of (2) such that x(t) <0 foralllarge t, then y(t) <0
for all large t.
If we can find Liapunov functions which satisfy the conditions in Lemmas 1 and 2, we can

prove the following theorem by the same idea as in the proof of Theorem 1.

Theorem 2.  Under the assumptions of Lemmas 1 and 2, we assume that for each
6> 0, thereexista T(8) > 0 and Liapunov funciions V({,x,y) and W(, x,y) which are
defined on t >T(8), x2>8, y 20 and t2>T(), x< -8, y L0, respectively, and assume
that V({t,x,y) and W(t, x,y) satisfy the following conditions;
() V(i, x,y) and W(t, X,y) tend to infinity uniformly for x and y as t-> oo,
(i) V(z)(t, x,y) £0, as long as \./(2) is defined,
() Wo(txy) SO aslongasWy, isdefined.
Then the equation (1) is oscillatory.
Since we assume the existence of Liapunov functions satisfying the conditions in Léxﬁmas

land 2, if x(1)>0 in the future, ‘then x(t) >8 in the future forsome &> 0, because

t
()

x'(®) = 2 0 in the future, and the similar for a solution x(t) <O.

. Example 1. ~ Consider the equation (1) and assume that the following conditions are
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satisfied: -

(@)
) 5 o=

(b) For t20 and x 20, there exists a continuous function: a(t.)' and an «a(x) such

that
) lim ft a(s)ds >0 foralliarge T
t—roo T

and that xa(x) > 0 (x ¥0), &’'(x) 20 and foraillarge t, x 20, lui<eo

(10) a(Ha(x) <Kt x,u).
() For t 20 and x L0, there exists a continuous function b(t) and a §(x) such
that
11 lim fL b(s)ds20 foralllarge T
t—roo

and that xB(x)>0 (x¥ 0), §'(x) 20 and for all large t, x <0, lu [<os

(12) {(t, x, u) LB ).
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Under the assun{ptions above, if {x(t), y(1)} is a solution of (2) such that x(t)>0 for all
large t, then y(t) 20 for Bn large t. To see this, we canassume that (9) through (12) hold

good for all th* and all TQT* . For th*, x>0, lyl<eo, define v(t, x,y) by

v{t, x,y) = &f;'(—)- .

Then, we have

Y2yt X, Y) =&51&') (- 162, %, 75— Jatx) = yo (05—

$-a{t)

Hence this v(t, x, y) satisfics the conditions in Lemma 1 with’ A(t) = a(t).

Since the condition (9) implies that forall T gT*, there is a 7 such that 72>T and
f; a(s)ds 2 0 forull t27,
a function w(t, x,y) =y + ax) f,; a(s)ds defined on t>7,x> 0,y <O satisfies the conditions
in Lemma 1 with p(®)=0. Thus the conclus_ion follows from Lemma l.j

If we consider functions

v(t,'x.y)=B—(%—, t>T* x<0, lyl<es, -
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Wt X, y) ==y - B(x) [[ b(s)ds, t27, x<0, y>0,

from Lemmia 2 it follows that if [x(t), y( )} is a solution of l(2) such that x(t) < 0 for al] 1&1‘g§
t, then y(t) 0 forall large t.

Under the assumptions (a), (b) and (c), we shall discuss oscillatory property of solutions
of (1). The following results contain Macki and Wong's result [3 J, Coles’ result [2 ]-and others. |

(¢9) If we have

(13) G alss=ee, [ b(s)ds=oo,
then the equation (1) is oscillatory .

For t2T%, x>0 and -0 <y < oo, sct

r

aog te ads (y20)
V(t, x, ) = | '

o

Kfot a(s)ds ¥<0).

Then, clearly V('t, X,¥) = unifomiy for x>0 and-< y <o, and we have
a2 (x) T

Veay(t X, y) = —— (- fit, x, R 200 - Y (O +al)

<- a(t) +a(t)
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for th", x>b and y 20. Thercfore, V(t, x,y) satisfies the conditions in Theorem 1.
Similarly,
‘_ (f b(s)ds (y>0)
W(t,x,y) = {
g *+ £ ods - (rg0)
.satisfies the conditions in Theorem 1. Thus:the conclusion follows from Theorem 1,
In If we have

(19 [ a(s)ds < oo, f (=5

r(s) fs a(u)du)ds > oo as t=> oo,

15) £ visids < e, f‘ ( l(s) [b(u)du)ds > e as f»oo,_

~ _du _ '
(16) { ) < oo for some e>0
and
(e QU
$¥)) L ﬁfu) forsome €>0,

the equation (1) is oscillatory;

* For t2T", x>0, lyl<es, sct

a8 Vexy = [ 7“(‘1‘1—) § (R [aaduyas.

- 11 -



Fora solution x(t) which satisfics x(t)> 0 for all large t, we can assume that x(t) >0, .

y(t) 20 for t2>¢, o sufficiently large, and hence

. ) 1 Y- o
Ve, X0, Y(0) == s Y e o an

sl ), e
TRy Uy T A

CIf we set V¥(t, x,y) =~ O—ML)— + I atwdu, VI, x(1), y(9) £ £ a(u)du, and hence
B Vi, x(@), (@) 50,

On the other hand, we have.

Vi x )= = (- 0% a0 - va 00 - )

= 0.

=

Thercfore V*(t, x(t), y(t)) £ 0 and consequently \./(t, x(t), y(D) L0 for t2>o0. '

Similazly, if we define W(t, x, y) by

= % _du t 1 = PN
W(t, x,y) j: BG) + fb (i'(S) .'; blu)du)ds,
this W(t,x,y) satisfies the conditions in Theorem 1. Thus the conclusion follows from

- 12 -



Theorem 1.

It is clear that we can combine the conditions in (I) and (II). For example,

Remark 1.
if
o0
b(u)du)ds > o as 1>

L

7 alds=o0, [ (7

and

oo MU <o forsome €0,

Lo By

then the equation (1) is oscillatory.

. . . OO -
Remark 2. If a continuous funciion a(t) satisfies (9), then fo a(s)ds = o0 or
fo a(s)ds exists. Mackiand Wong assumed a(x) and B(x) to be nondecieasing, but we can

find an a(x) anda B(x) which have their derivatives, because a(t), b(t) are nonnegative in their

case.
If there cxist a constant m > 0 and two positive differentiable functions h(t) and

(1)
g(t) defined on I such that o'(x) 2m, f'(x) Zm and

Jyn(s){as) - %; -r-,(sl(;‘l(%l—)z} ds-> o0 as t—> oo,

f: g(S){b(S)'-'zlf Ir(nﬂ(gé?-ﬁds»w as t=> oo,

- 13 -
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the equation (1) is oscillatory .

This is a generalization of a result of Opial [4], and in this case,

Vit xy) = G5 b0+ L 06) 60 - T e (x>0, y20),

Wet,x,y) = g am + [ 86 (b6) -4 Sk () ) ds (x<0, S 0)

satisfy the conditions in Theorem 1.

Lemma 3. In addition to the assumption of Lemma 1, assume that there exists a Liapunov
function L;(t, X,y) definedon t2>T*, x>0, y> R (R>0: large), which satisfies

(i) u(t, x,y) = oo uniformly for t, x as y — oo, and u(t,x,y) < v(y), where
v(r) > 0 is continuous,

(i) fl(g)(t,x,Y)S 0.
Then, if {x(t),y(t)} is a solution of (2) such that x(t)> O' for all large t, then y(t) is

bounded for all large t.

Proof. Let x(t)>0 and y(t)2 0 for t> o0, ¢ > T*. By Lemma 1, thereissucha
g. Let K besuchthat y(o)<K, K>R. Thereisaconstant y*>0 such that u(t, x,
K) £ 7*, and there also existsan M >0 for which we have * <u(t,x,M) forall t 20
and x>0 by the condition (i). But there aﬁses a contradiction byb (ii), which shows that |

0Ly)<M forall t2> 0.
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Lemma 4. In addition to the assumption of Lemma 2/, assume that there exists a
Liapunov function u(t,x,y) definedon t2> T*, x<0, y < -R (R>0: large), which
satisfies

) u(t, x,y) = o uniformly for t, x as y —-o0, and u(t, x,y) £ ¥( ty D),
where v(r) > 0 is continuous,

() Gy tx,y) £ 0.

Then, if {x(t),y(t)} isasolution of (2) such that x(t) <O for all large t, then y(t) is

bounded for all largé t.

Theorem 3.  Under the assumptions of Lemmas 3 and 4, we assume that for each
5>0 and m>0, thereexista T(8, m)>0 and two Liapunov functions V(t, x,y) and
W(t, x,y) suchthat V(t,x,y) isdefinedon t>T(5, m), x> 6, 0 § y<m and W({,Xx,y)
isdefinedon t2 T(8,m), x< -8, -m <y £ 0, and we assume that V(t, x,y) and.
W(t, x,y) satisfy the following conditions;

1) V(t, x,y) and W(t, x,y) tend to infinity uniformly for x, y as t = oo,

(i) \./(2)(t, X,y) £ 0 aslongas \./(2) is defined,

(iit) W(Z)(t,x,y) < 0 aslongas “{2) is defined.

Then the equation (1) is oscillatory.

Proof. Let x(t) be a solution of (1) which exists in the future, and suppose théxt
x(t) isnot osdllafory. Then x(t) iseither positivé or negative for all large t. Now
assume that x(t)>0 foralllarge t. By Lemma 1, we can see that thereisa t; >0 such
that x(t) >0, y(t) 2 0 forall t2>t,, where we can assume that tlg.T*. By Lemma 3,
thereisan m>0 suchthat 0L y(t)<m forall t>t;. Since x'(t) =¥(%lgo for
t2t,, wehave x(t)2x(t)> 0 for t2>t;. Consider the Liapunov function Vit x,¥)

' defined for t> T(8,m), x>, |
- 15 -
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0Ly <m, where 6= 5 and we can assume T2t . Then, by the same argument as in the
proof of Theorem 1, ticre arises a contradiction.  When x{t) <O for all large t, we have also
a contradiction by using Lemma 4 and W(t, X, y). 'Thus we can see that the equation (1) is

oscillatory.
Example 2. (Bobisud [1]). Consider an equation
(19) x"+alt, x, XX+ (¢, x,x)=0
and an equivalent system
(20) X’= Y, y':-; _a(tr X, Y))/ - f(t: X, Y)
The following assumptions will be made;
@ . i, x,y) is continuous on IXRXR and xf(t,x,y)>0 for x %0,
(i) a(t, X, y) is continuouson I X R X R and there exist continuous nonnegative
functions k(t) and p(t) such that N

-k(t) Sa(t,x,y) Sp(t) for tELxER, yER,

(ili) forany §>0 and m>0, thercexistsa T(§,m) anda g(t; §, m) 20' defined

for t >T(8, m) such that
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L;(a . n)g(s;‘&,m)ds-->°° as t->oo

and that 1x[28, lyl<m and xy 20 imply 1£(t, %, VI>a(t; 8, m),
@) |

"~ % n(o)do
f:ok(s)ds<°°, ligm jot e Jp o) ds=

Then the equation (19) is oscillatory.
For this equation, it is not difficult to find Liapunov functions which satisfy the conditions
. inTheorem 3. For t>0, x>0, lyl<ee, the function
i —J; k(s)ds
y

¢

yz0

v(t, X, y) =

s A et

t
o PO <o

\

satisfies the conditions in Lemma 1 with A(t)=0. Forany 720, the function w(t,x, y)=Y

defined for t2>7, x>0, y <0 satisfies the conditions in Lemma 1, siace
Wi gy (6 %, ¥) == alt, %, Y)Y - £(t, %, )
S pltly

<= p(wL, X, Y)

- ]_7..
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and

ot T1a .
e Jpls)ds o

T

Morcover, it is casily seen that u(i, x, y) = yzexp( -2 fot k{s)ds ) satisfies the conditionsin

Le:nma 3, since j:’.k(t)dt <o and f(t, x,y)>0. Furthermore, we can sce that |
t o(s)ds ’
hPIECy iz0, x<0, y20)

v(t, X, y) = :
~rt k(s
!f’ LK%y g0 x<o, y<o),

wt,x,Y)==y (t>7, x<0, y>0)

and

-2 [ k(s)ds
0 y2

u(t, x,y)=c (t20, x<0, y<0)

satisfy the conditions in Lemma 4. Next, foreach § >0 and m> 0, define V(t, x, y)
for t2T(6, m), x>5, 0<y <m by

t -
"fo I\(S)ds

Vi, x, y)=¢ y+L

[r (5, my8(83 8, m)ds,

- f;°!<(s)ds

where L=¢ > 0. Then we have

- 18 -
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o ~frG)Ms . o
Vo)t x, Y)=e { =%y = alt, x, Yy - 1(t, X, ¥)} + Lg(t; §, m)

“= fk(s)ds . L
e 0 (- k{t)y + k(tly - &t; 8, m)} + Lg(t; 8, m)

fg k(s)ds

<-¢ g(t; 8, m) + Lg(t; 6, m) £0.

Thus ‘'we sce that V(t, x, y) satisfics the conditions in Theorem 3.  Similarly,

- fg k(s)ds

W, x, y)=c (-y) + Lt

6 ’m)g(s;' 5, m)ds -

is the desired one.  Thus it follows from Theorem 3 that the equation (19) is oscillatory.

| Examplc 3. For the equation (19), we assume (i) »and (i), and instead of (iii), (iv),
we assume that
(iii)  for any & > 0,there exists a T(8) > 0 and a g(t; 8) 20 defined for
t>T(5) such that |

. .
-tk(s)d
@n e fpkds t(s)g(s; 5)ds = o0 as.t=>o

~ and that [x128, xy 20 imply Lt %, I 2 et 6),

)

=S plo)do
tim fte 0P
{=>oo °0
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Then the equation (19) is oscillatory.

From coaditions (i) and (ii), it foliows that therc are Liapunov functions which satisfy
‘the conditions in Lemmas 1 and 2, as was seen in Bxample 2.  For t 2 T(6), x2>8,
y 20, dcfine |

k(s)ds - ['k(s)ds
V(t, x,y)=¢ 0 yte fpk®) Jf;(s)g(s; 8)ds.

Thén we have’

: : t
. ~ [ k(s)ds :
Vot X, ¥) = e JokGs { -k(t)y - alt, X, y)y = f(t, x, y) }

.- tk . )
+e % (S)G{S_- k(t) fT‘mg(s; 6)ds + g(t; 8) 3

<o Wy + k- st 6y
Lt o
. - : - d
ke DO 1 ayas e TR g
<0.

For t2T(8), x £-8, y £0, if we define W(t, x, y) by

- [k(s)d = [ik(s)d
Wt x, y) = o 05Oy 4 ThEO,

T(‘s)g(ss; 8)ds, -

~y)
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we have also W(zo-,(t,' x,y) £0. Therefore we can conclude by Theorem 2 that the equation

(19) is oscillatory.

Remark. For the equation (19), Dobisud claimed in [1 ] that the equation (19) is
oscillatory under the assumptions (i), (ii) in Example 2 and
(i) given & > 0 there exists a T(6) > 0 and a g(t; 8) 20 defined for t2>T(6)
with
LA oo cofe
(22) t %_(6)(1 s)a(s; 8)ds = o as t—> o

and such that Ix1>8, xy >0 imply [i(t, x, y)i > a(t; 8),

Gv)" forany t, t,.>0,

k{s)ds
(23) N k(a)ef:z © “do
t
is bounded from above and
=JF p(o)do
.I t —
gt o s =

However, there is a mistake in his proof, and actually his result is not necessarily true as
the following example shows. ~ Consider an equation
xl
" y - .
X 't+l+f(t’x) 0,

- 21 -



where

T kL=

~—
+

This equation satisfics the conditions above, but it has solutions x =t+1 aund x = -t - i
which are not oscillatory.
Under the condition (iv)"”, which is cquivalent to

(iv)"* - for some tg >0

' k(s)ds '
24) LAFO% cm tor 13y,
and
-2 plo)do

if we assume

(25) %—;‘fmg(s; §)ds = o0 as t - oo



1395

in place of (22), the equation (19) is oscillatory, because (24) and (25) imply (21).

- 23 -
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