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§2. ALGOL®RT—t A /b OWK

Formation of Algol-like Statements

Alphabet
Iet £, VY, %, and R Dbe four disjoint sets whose elements
are called label symbols, variable symbols, function symbols, and

predicate symbols, respectively. The set % is the union of disjoint
~0) (L n
50 (D (m)

sets and the elements of & are called n-ary

function symbols. Similarly, @ is the union of disjoint sets
P(O),F(l),.. and the elements of P(n) are calied n-ar& predicete
symbols. The alphabet of Algol-like statements consie?s of all the

elements of £, V , % ,‘and P, together,with the following special

symbols.

LX]
1]

At (
In some cases described below the logical symbols:
- A VvV ¥ &

will be also contained:

Algol-like Statements

Algol-like stetements, or statements, are defined together with a
- function denoted by ( )_ which sends each statement onto a finite

subset pf £ , by generalized inductive definition as follows.k
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- Atomic Statements

{al) A is an stomic statement. (A)” =9 .

(a2) For each o0ef , ¢ and o

()" =p. (Y ={a} .

are both atomic statements.

(a3) 'For each xe¥ and each yeV , x :=y is ai stomic statement.

(x:=y)" =p .

Statements

An atomic statement is a statement. Any other word on the above
alphabet is a statement if and only if it is defined to be a statement

by a repeated use of the following rules.

(bl) If A and B are two statements such that (A)" N (B) =6,
then A;B is a statement. (A;B)” = (&)™ +(B)™ .
n)
.9

(p2) If x := [ERERTRES :=.fn aré n 'stataments a.ﬁd ) n<n)e"¢'(

.o 1) Vo=
£, is a statement. (x:=n/f,...f)" =p .
(p3) If x := fi5-+5x :=f , A, and B are n+2 statements
such that (A)" N (B)” = §  and ’p(n)e@(n) , then .

(p<n)fl"‘fn - A,B) is a statement. ((Vp(n)fl.h--fn = A,B)) "= (A)+(B)™

A statement which is defined to be so only by the above rules will be

called a basic statement.

(c1) If (p —A,B) is a statement, then (~p~-A,B) is a statement.

((hp = 4,B)) = ((» = AB) .



(¢2) If (p - A,B) and (q —f’A,B) .are two statements,: then
(pAg=A,3B) and (pV q-A,B) are both statements. The

values of ( )~ are both ;dentical with ((p - 4,B)) .

(e3) I (p - AB) is a statement such that xeV occurs in b
and neither V¥x nor Hx occurs in p , then (Vxp = A,B)

and (¥xp.— A,B) are both statements. The values of ( )

are both identical with ((p = A4,B)) .

Parentheses and commas will be used also auXilia,riy to avoid
syntactic ambiguity and to improve readability. Especi‘é,lly :r(n) fl. . .fn’

(n),

and p 10

.f are written as x(n)(fl, ...,fn) and p(n) (£, ,fn) s
respectively. Semicolons will be abbreviated if there is no possibility

of ambiguity.

Representation by ALGOL 60

- The statements in the above sense are intended to mean the statements

in the sense of ALGOL 60 (Naur et al., 1960) as follows.

A éori‘eéponds to a dummy statement (empty).
P corresponds to go to G . |
| ot .éorresponds to o : (dummy statement labelled by o ). .
(p - A,B) corresponds to -i_i_‘ p then A Q._gg B.
1= ,’ P —1 s A ,vva.nd v meén the sameyé.s in ALGOL €0.
The parentheses used to avoid ‘a:n‘biugity\ either cbrr_espénd to begin
and end delimiting ccmgdund staternents or ‘mean the bame a8 k
in ALGOL 60. |

(A)” denotes the set of labels standing in A .

87



88

say A and' B are iso@orphic.

§3. 7O7540NT Y —

Cea-zgory of Programs

Programs in the General Sense

It seems to be convenient for us to consider more‘geherql programs

as the béckground for the treatments of the properties of Algol-like

statements. By a program, let us mean & partial functibn'frcm an ,
arbitréry set to another set together with itsﬂdenotaxion.;’This
definition does notrexclude those partial functions which cannot be
defined'effectively. Instead, we shall describe‘it explicitly whenever
the definabiiity or constructiveness matters. v . | ’
- Programs will be denoted by A,B,C,... . For each A , J[A]

denotés the partial function corresponding to A, and G[A] the graph
of J[A] . Let D be an Algol-like statement such that Dy »

and (U,K,R,T°,J) be an interpretation. Then the pair (D, (U,K,R,TO,J))

¥

is a program, for a unique partial function J[D] , namely Dy s is

detgrmined by it. Therefore we shall assume the interpretation is
fixed hereafter,'so that each Deab represegésﬂa unique progrém. Thus
we identify an Algol-like statement with the program represeﬁted bybit,
and the set of such programs will be denoted by ¢ .

What we shall do firstly is almost the same as considering a sub-

- category of ¢€ns (the category of sets) whose objects are graphs of

partial functions. The only difference lies in that the denotations
are distinguished in our treatments. For instance, we do not say . A

and B are identical nor A = B., even if J[A] = J[B] , while we may



Category Pr

Each program will be called an o‘ojec‘b of‘ category fr . The class
of all the objects, namely programs, is denoted by O‘b Pr For each
"pair A and B  belonging to ObPr, Hompr(A,B) denotes the set of

triples of the form (A,§,B) such that
¢ : afa] - a[B]

and that { is a total function. The elements of i{ompr(A,B) are

‘ called morphisms of Pr . If there is no possibility of confusion

the morphism (A;§,B) wili be abbreviated by VC We frequently

write §{ : A=B or A 4 B instead of 'QeHoxr‘pr'(vA,B) . If A £31¢,

then (4,ME,C) eHom,,Jr(A,C) is defined as the composition of morphisms

(A,€,B) and (B,1M,C) ; where T¢ in (4,ME,C) denotes the composition .

of functions £ and "ﬂ in the usual sense. Let idG{A]- denote the
identity function of G[A] onto itself. The morphism (4, idé[A],A) is
" called the identity morphism of A and is denoted by lA .

We shall see that {r ‘satisfies the axioms of category as follows:

1. Associativity of Composition. If

: .
A-'BB-C

So

then C('ﬂ;) = (tne as morphisms;

- 2. Identrbz. ‘Ii‘ A—o‘Bk,‘ then §=§,1A .. If C=-4A, ‘then’ T]=1A'I] .
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3. If the pairs (Al’B7> and (A2’32> are distinct, then
HomPr(Al’Bl) N HornPT(A2,BQ) =0 .

Category pr
Let Pr% denote the full subcategory of @Pr such that Ob Pr

cohsists of only those programs A such that
pom(J(A]) < |5 »
vhere
9] = {alac|s| and s, = ¢} . (See the below modification of J.) :

For esch AecOb®Pr? and Be OB Prz’ ’

Hea “L(A,B) = Hompr(A,B) R

by definition (of full subcategory).

We consider ba map:
Ob @#r —~ Ob prv
which sends eich AeObfPr onto Z‘AeOb Pr® such that
J{LA] = Jgla] |5

That is to say we shall forget computational processes starting from
any entry different from the normal one, namely the leftmost point, if

A is an Algol-like program modifying J[A] into J[A] lﬁbl .

/0
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Hereafter we shall be concerned with PrL , so that A,B,C,...
will be understood as LA,LB,ZQ,... if the former do not belong to
ob PrY . Apparently the morphism (4,(,B) 1is a monomorphism,
¢

epinorphism, or isomorphism, according as the function ¢ is univelent
b S T e e e

(1-1)s onto, or univalent and onto. We shall write § : A= B or

g

A =B to express that § : A =B is an isomorphism, and A =B +to

express that there 1s an isomorphism from A to B , namely A and

Vaelue-Preserving Monomorphisms

»

We pay special attention to such a monomorphism ¢ that has the
following property:
Suppose { : A = B, and the function § : G[A] — G[B] sends

(a,0) eG[A] onto (c,d) eG[B] such that

a=c
and
b =d  for each ueX + {x1 ,

for a subset X of U , for any ac 5

In such a case, ¢ (as a morphism and as a function) will be said to
preserve the values of X , or to preserve X , and we shall frequently

write instead of { in order to indicate that { preserves X .

gX
Moreover, if the choice of ¢{ itself does not matter, we write A 3 B

X
instead of Qx : A - 3B . Similarly we shall frequently write

AZB or A% B instead of gX:A:':B,and A = B instead of

QU:A—'B, that is AZ 3B .

[/



4. RIER

Axioms and Inference Rules

Axiom 1.(a) (AB)C = A(RC)
(v)  o((aB)C) = o(A(XC))

Axiom 2.(a)

[

AN = A
(b) AMTA.
. -1 .
Axiom 3.(a) c=A.
* (v) stz
Axiom L. oA = ¢
ofA”
Axiom 5. AN = A
Nl 4.
Axiom 6. X :=xZA .

Axiom 7.(a)

Xx:=f3A;x:=g = Ax[f]q;x :=gx[f]° .
s

oy
LAl N (VI£fl U (x}) =9 .

(b) X =

=T3A5y 1=g = x:=13A [T]5y =g [£]
X and y are distinct.

LAl n (VI£1.U {x}) =8 .
xfV[£] .

[2

(1a7)

(1v%)

(1c")

(1e")
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Axiom 8. Az A o * (@)
L@A]ﬂx—-;b‘..
Af+ _ 4.
AT =g .

E(rery function or predicate symbol occurring in A represents

a total function or predicate, by the interpretation.

Axiom 9. (1 -4,B) TA . (IIIm')
' » ) . +‘
Axiom 10. (p=4A,B) 2 (=p~BA) . . (IIT0)

« | o,
Axijom 11.(a) (p -~ (2 = A4,B),C) 2 (p.AQ~4(PA=q~B,C)) : (IIip)

()  (p~ (¢ ~4B8),C) = (p~4C) .
| P> V4 -
Axiom 12.(a) (p - A,3)C = (p ~ AC,5C7) . | e ' ('Iin%)
| (b)  o(p ~ A,B)C = o(p ~ AC,BC'») .

e .

- Axiom 13. x ;=*;(p - A,B) = (px[f'] ~ x :=1f3A,%x :=£3B). (IIIt+)

* ‘ ! . .
1t xevlf] , then p [£]. is restricted to be p [£]° .

Axiom 1h. @~ 43) = (2 ~4,(p - ¢,5)1,3)

LAl nvipl =§ .



ut

Axiom 15.(a) (p =X = f,A)

(b)  (p~-x:=5A) = (p~4,A) .
p>o> Vr ..
Axiom 16.(a) A= Af[g]
f=g
() A= Ap{q] .
P=Egq
Inference Rule 1.
A=ZB )
X ) -
sl (157)
Bx
Inference Rule 2.
AzZB BZC
X X
. : (1K)
A X C
Inference Rule 3.
A 3 B A ¥ B
A Z B
ZzcXuy.

/4



Inference Rule L.
e ———— e ————

(p ~40C) 7 (»-8,C) (q¢~4D) % (¢ -35,D)

(r - A,E) ):{ (r = B,E)
ropVvag .

Inference Rule 5. (&)

A and B end with go-tos.

A and B occur in C .

(v)
OA = B
C =C _[B]
3 ends with a go-to.
A occurs in C, or, A is
CA LA [Ay«eesA] , Where A.,..
1 n v
are preceded by go-tos in C .
Inference Rule 6.
A-X-B
A pige
R[C]cX .
++ - ++

C NA =C NB =p¢.

/5
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Inference Rule 7.

.:,(_ -
B ciA }—( aiB

CAZ CB

A

=

Q

D
=3
it
Q

D
W
i

= {ul,...,on} .
++ - - -
A NC =B nc¢ =¢
If C ends with a go-to, or A and B both begin with
labellings, then the upper left formula may be omitted,

provided that n >1 .

Inference Rule 8.

(1ve")

A . R - _
CA[A] na aCALA] n B ={Gl,...,c_rn

*
Same as above.

Inference Rule 9.

1, ~ i, i ~ i, 1 o ~ 0 . i 1. i
DA =A"A DB =3BB Ao’...c[g"’gn]XB BXC
1 n
k~~1
DAXD‘B
keln] .

/6



(ii1) =®[c

The set S = {0,,..., cn} is a non-empty subset of A ,
and a total function
£ : 8¢
sends each o, omto T, . § together with S, setisfies

the following conditions:

S o 8!
and
{(g) =¢ for each geS N 8",
where
st =y (AH AT
i
and

st =y (WH™ n At
i

The following conditions are satisfied for each ieln] .

(i) D' is of the form (p. - 0.,87) and D- is of the
o de
form (pi - 51,61) , where ®> is either T, or

-1 + +
T,77; such that Ti,éA’ Uz’ .

-

- . 1 n ‘s
(ii)  All the occurrences of o, in A7,...,A” are within

the statements of the form (pi - 0y e) , or all the

. ~ . 1 el s .
occurrences of Gi in B,...,B are within the

statements of the form (pi - Ei’ el) where € subjects

, . s i
to the same restriction as & above.

If A does not begin with a labelling ot such that oeS ,

then all of Al, . ..,An must end with go-tos. If B does not

begin With a labelling o such that oget(S) , then all of

Bl, ...,B% must end with go-tos.

/17
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§5. 7075 LDARE

Decomposivion of Statements

Let 'V be a subset of V¥ such that V-V contains infinite
elements Vs Wy e e, andé L be a subset of £ such that £-L contains
By ab is denoted the set of statements

infinite elements SINLEPEED

defined by induction as follows.
(d1) A belongs to dy -
5 - N -1 A “
(d2) TFor each 0ecf ,” ¢ and O© belong to 4, -

(d3) Tor each x=e¥ and a fixed element w. of V-V, x :=w

0 C

and Wy 1= X belong to &b .

(al)  TFor eamch n(n>e$(n) and e,...,e , such that either
(0) . CY
- 1 Y P - -~ r v .

e, ¥ or e;e¥ for each ieln ;} y Wy = iuae el g

belongs to ab "
(as) Tor each p(n)eﬁxn) , 0ef , and €scees€ o @S above,

n X
(9<A)Woel"'enélﬁd’A) belongs to &b .

(el) If A and B belong to ab , then AB Dbelongs to ab .
(A" NB =9 should be satisfied. Otherwise, AB is not

e statement.)

CLet &i be the set of statements consisting of all - A suck that
V[Al €V, A" C L, and that the logical symbols other than — and V
do not occur in A .

We shall establish a function

which has the following characteristics.

/8



l; Constructiveness:

¢ 1s total and effectively defined.

2. Correctness:
- A:\;@(A) for any Aed; -

In other words, ® 1is an algorithm that carries out a translation
of "1 l:‘Lnto ao > of which the latter consists of sequenceé of
relatively simple statements. Moreover, we can formally prove that ¢
aiways gives a statement equivalent to the original one in so far as
the values of variables belonging to V and the destinations of exits
are concerned. (Actually we prove the above also for each entry. cf.
proof of Theorem 26).

For the convenience of description, we introduce two sets of

statements, as follows:

d, = {x = fl|xe¥ and V[£]lc V) .
ds = {(p =%,A)|reg and Vplg V) .
* ¥ ¥ ]
Besicdes, dl N 5('2 , and ¢, will be used, whose elements differ
S
from dl 5 42 , and 575 » respectively, only in that scme suffixes

are added. (See Definition of & below.)

Definition of 3

Let ® and ¥ be two functions as defined below. Then

§(a) = \Y(@O(A)) for each AeZ; -

/9
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1. Definition of @

We define the function
.‘/:
®:dxn~dy

*
where the elements of ai are statements whose symbols are possibly

- suffixed. For each A and each ven , @V(A) denotes the image

of  (4,v) . Actually, however, ® is extended so that, for each

arithmetic expression f such that V[f] € V and for each Boolean
expressien p such that V[plc Vv, ®v(f) and @v(p) are

defined. Besides, two auxiliary functions

AU {plvipl € V) -7

g {g|viel < v} -7

are defined.

P . ~ . N -
- Practical meaning of these functions are as follows.

u(f) . The number of required working storages to compute f .

® (£f) : The result of suffixing function symbols occurring in f
v

s0 as to specify the allocation of working storages.

(v. is irrelevant.)

NoDp) The number of auxiliary labels to compute p , which is-the

number of occurrences of symbol — in p .

u(p) : The number of required working storages to compute p .

20



@ (p) : The result of suffixing p to specify all the
v

auxiliary labels using index greater than v .

&)
and Similar to A(p) and ®v(p)
0, (4)

Functions ® , AN, and p are defined simultaneously by

-nduction on statements as follows.

tomic Statements

(al) C =AM, 0, Or ot
. and

(a2) @v(C) =C for each v .
NC) =0

(a3) C =x:=f, where f =y :
w(f) =0 .
@v(f) = { ~for each v .
® (C) =x := ®v(f) . (1)
aMS) =0 . (@)

Statements (non-atomic)

(bl) C = AB :
@":r‘»/H'
Uv(b) OV\A)Ov+x(A)(B)

ACY = NMA) +NE) .

pa
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: s 5 n
(b2) ' C =x :=f , where f = n( )fo"'fn-l :

p(f) = Mm ,
where

M= omax u(f) B (3)
0<i<n-1

is the mumber of f, such that £ 4V .

v]
o
jel)
#

(n) |
£ = 717 f s a e . !
Gv(‘> ﬁM+l,...,M+m ®v( O> ®v(fﬁ-l) (+)

8,(C) and AM(C) are defined by (1) and (2) above.

\ . n) . .
(b3, C = (p - A,B) , where p = p( )LO-.-Ln_l :

whera M and n are defined by (3) and (4) abvove.
’ v

{ o .
0, @) = ), e S (E) -8, (2, )

(i) If A is T and B is A, then

6,(C) = (e,(p) ~T50) , (5)
and

AC) = A(p) . . (6)

(i1) If A is not of the form T or B is not A , then

%w)=wwumﬂ@ym—mLm2%ML%ﬂ@ﬂm), (1)

22
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§ | 103
: vhere
N = v +N(&) *A(B) +N(D)
and

AC) = 2 . | 8)

8,(C) and AM(C) are defined by (5)-(8) above. (Substitute —p

in place of p .)

(c2) C=(pvg—=AB) :

>

(pva) =Npj+Ma) -

@v(C) and MN(C) are defined by (5)-(8) above. (Subsitute p VvV g

in place of p .)

2. Definition of v

We definé the function

) ; % * *
¥Yoa U,&é U 45 —'&b .

* R * . ) )
By A , f , and p will be denoted @v(A) s ®v'(f)f, and

®v(P) B respectively, for certain values of v . Thus, for instance,

23
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(bl) velow, i.e.,
. * W, * *
¥(A'B) = ¥(a)¥(B)
i‘eads as follows:

‘ ' T % %
Since .C = AB , @v(C) is of the form A B . Defin

“:’(A*)Y(B*) as ‘i’(@v(C)) .

v plays the role of an accumulator.

¥ is defined by induction as follows.

Atomic Statements

(al) ¥(A) =4A .

(a2) ¥(o) =0 .

(a3) (1) ‘i'('.»a'o = y) = W, =y .

. Ly
(i1) If x £ Wy > then ¥(x :=y) is defined by (1) below.

(Substitute y 1in place of £ .)

Statements (non-atomic)

(n) K &
0 "= Ma(1)...o(m) TorrFa-r)

- R ¢ ) ;
=0 g0 Cgs Wy =T Wolqeesty 5 5 (0 >1)
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where
gfi £,V
u, = < for ie[n-1] ,
i W . £ AV '
Wata()) %o
CO is WO 1= fo 5
and
~
P A eV ‘
C. =4 : for each iein-1] ,
Todu, =, £V
L i i i

B{i) being defined by the following induction:

.

g(0) =0
B(1) £, eV
B(itl) = -
B(i)+1 £ AV
(111) ¥(x = ) = ¥(w, := N ) ()

w3 @) w6 2o = 6O~

(1) ‘k’((pg(l%).”a(m)f:....fz_l = (1)7(2) 7,1)), (n >1)

=0 G (PMweuy Unei > T A)
where CO""’Cn-l’ S ERRRELWEY are the same &s ab?ve.
(ef. (02)(ii).)
* * _#*
iii } - \ B
( ,1) Y((P 7(1)7,(2/ A’ )
* . * -1 % -1
= VY — : /(B )o - A . 2
W2 = 1)y(2) Ty MYE 0@ A )% - @)

(A is met of the form T , or B is not A .)

25
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(c1) (4)

C(4i1)

(c2) (1)

(i1)

Examole

We

PP e
WalCn Was

I
-,
»

used as an exampie of compilation in

*
¥((= 2 = 7,0))
L ¥ -1
=¥((» - Gé,A))TG5

If A is not of the form 7 , or B is not A , ‘then

¥
k4 - i £ir ko] .
~((ﬂ5 P 1)y(2) A,B)) is defined by (2) abvove

* *
Substitute - P in place of p .)
* *
¥((p va =~7,4))

=v((p ~ma)¥(d ~T,A) .

If A is not of the form T , or B is not A , then

* * . :
v((p Va A,B)) is defined by (2) above.

* "
in place of p .)

7 (2)7(2)
(Substitute p* Vv ¢*

consider the statement.

< O then x := -x ,

(2)

(Igarashi, 1968).

Here, let us allow only binary - , and see how the statement

namely

if x <0 then x :=

2)

O-x ,

(3)

(x <0 = x := 0-x,A)

in our notation, is treated.

Let

A be (p(l)x - X := n(g)n(o)x,A) . Then,

6



* 1 2 0
®O(A) =A = ( )x 1,2 * n( ) n(~)x,A)
and
* 1, -1
v(A) = Wy '-X,(p( )wo = 0,Mo 0T
0 2 -
iy = n( ), LA n( )wox, X 1= W3 cel

Especially, we define x <O as p(L>X R 0 as n(o) , and x-y

0y

as T so that A becomes (3).

- - 0 » - * - 3 L )
For readability's sake, 3(A) i.e., ¥(A) -will be written

in AIGOL 60 and listed with corresponding actions, symbols LA o, 5

~

and 9, being replaced by acc, L1, and 12, respectively.

ace = X3 ) load x
if acc < O then go to Ll; Jjump on minus L1l
£0 to 1L2; Jump L2

L1 .insert label L1
ace := 0; load O
GCC 1= 8l - Xj subtract x
X := acc; , store x

L2: ‘ insert label 12

(%)

Statement (4) is different only in trivial points from program B

(in the above paper) for which

27
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@ =5
}-_(){x}

is proved as an example of derivation; That proof, for this particular
pair of statéments,needed two pages of derivation (20 steps) preceded
. by one page (10 steps) for an auxiliary formula, being derived directly
from the previous formai system. In the present paper, however, we,

shall prove, also formally, that

AZ @(A)

is valid for every Aeq, , wnich implies that (@ = (4.
. v-{ace}

E U
 AKAEITEROB 3,

' S. Igarashi, Semantics of Algol-like Statements,

Semantics of Algorithmic Languages, (E. Engeler, ed.),

Lecture Note in Mathematics, vol. 188, Springer Verlag
Berlin-heidelberg-New York, (1971), pp. 117-177. Also,

Stanford Artificial Intelligence Project Memo AIM-129,

or Computer Science Department Report No. CS167,

Stanford University, (1970).
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