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aAbstract. In this paper, function space bounded phase coordinate
'cpntrol problems are considered by a functional analysls approach.
Concepts of regularity and normality are defined and'unde?~these
conditions,.exisyence and uniqueness of solutiéns are discussed.
Complete characterization 6f‘the solution is given in terms of a
hypefplane. Furthermore, the relation of the normality condition
to a finction space version of the Bang~Bang steering principle '

is pointed out.

1. xntrodudtion.

In recent years, consideréble attention.has been focused upon
the method of funét;onal analysis ih the study of optimal control
problems which are, in many cases, describable in terms of the
optimization of functionals on Banach spaces. This functional analysis
method, though applicable to a wide range of problems, seems t0o be
best suited for the investigation of optimization problems arising
frem linear control systems, since linearity plays an essential role
in funectional analysis}‘

In the articles [9] and [10], W.A.Porter formulated Neustadt's
minimum effort control problem [8] in Banach space and presented the
complete analysis of the abstract problem by using techniquea of func=
b;onal analysis._Alsg, én fi2], a related Banach space minimization
problem was considered. ) ‘

' In the present paper, we shall formulate and solve the abstract
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version of the corresponding bounded phase control problems.
Specifically, let X,Y and Z be real Banach spaces. Let S:X-»Y and
T:X—+Z be bounded linear transformations. A

Problem I With T onto, E€Y and neZ, find an element, called an
optimal solution, (if one exists) ueX satisfying the constraints n=Tfu
and j¢-Sul=se (€>0) which minimizes jul.

Froblem II With § and 7T into, find an element (if one exists)

ucpUy={u|julsp, ueX} satisfying J£-Sufge which minimizes n-Tulf,

2. Some preliminaries.
"Let us introduce notations and conventions adhered to throughout
the paper. Let B be a real Banach space. Let C and D be two sets 1n13.
By the vectér sum C+D§is meant C+D={c+d|ceC,deD}, by int(C) the interior
of ¢, by 3¢ the boundary of ¢ and by cxD the rectangular set, i.e.,
ch={(a,d)|cec;deD}. Let B' be the conjugate of B. For each ¢eB’,
suppose thdt there exists a vector zely, a closed unit ball in &, ‘
such that <z,é>=j¢j. Here, <e,$> denotes the value of a linear functional

¢eB’ at a point #eX. The set of all such vectors z in Uy is called an

extremal of ¢ and is denoted by ¢ (see [9]). For convenience, we
sometimes identify a suitable element xed with the set §. It will be
obvious from the context whether ¢ indicates the member or the set.
If, for example, ¢=0, then § denotes a suitaﬁle element in Upg, or the
set Up itself. Note that if 9%0, then $ Cavg.

A convex body is a convex set having a non-empty interior. A convex
body X in a Banach space B 1is called smooth if at each of its boundary
points, there is a unique hyperplane of support of K. Also, a convex
body X in B 1s called rotund if X contains no stralght-line segments
in its boundary (see [14]). A Banach space B is célled smooth or rotund
according as its unit ball is smooth or fotund. Note thét there exists

at most one extremal § of $(%0)eB’ if B is rotund.
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3. Minimum effort control problem with bounded phase coordinate.

In this section, we shall consider Problem I in which T is assumed
to be an onto mapping. The methods used in this and the next section
are closely related‘mainly to [11] and others [4],[7].

Let § be a linear mapping‘of X into ¥xZ defined by §:u—+(5u,ru),
where ¥xZ denotes a product Banach space equipped with the usual product
topology; Let §(Uy) denote the image of the unit ball Uy under 5.
Motivated by the geometrical interpretation of Problem I, we shall
examine the properties ?f the set {ad(Uyg)+(cUyx(0})}=Cc(a,0) for a>0
(C.f. Porter [9]). Let us begin by introducing the following definition.

Definition: We shall say that a pair (f,n) 1s regular if there
. exlsts at least one element ueX satisfying bhe constraint n=Ty and the -
strict inequality [{-Suf<e. ) '

Note that if 5 has_gensé;range; an arbitrary pair ?E,n) in ¥xZ is

regular.

Lemma 3.1. The set Cg¢(®,0) ie a convex body.

Proof. The lemma is an easy consequence of the assumption that T
is an onto mapping and the interior mapping principle (see [3], PP.55).
Lemma 3.2. Suppoee that (E,n)€dC (a,0) {8 a regular pair, Then

any hypérplane (¢y,$2) (¥0)€(¥%3)" of support of Cgl{a,0) at (§,n)

satisfice
(1) <UE,N), (41, 02)>=x0lS 9147 92 +el 1] 5 (3:1)
- (2) IS 'dr1+T¢,)l %0, (3.2)

where S' denotes the conjugate of S. :

Proof. By Lemma 3.1 and the Hahn-Banach theorem ([3], pp.58), such
a2 hyperplane stated in the lemma exists: A -
<(E,n),(éx,¢z)f2:<a(8u,Tu)+e(y,0),(¢n,¢z)>, for all uely, yely,
Hence takiﬁg the supremum of the éight Bide yields (3.1). To see (3.2),
suppose contrary that-s'¢;+r'gg=0. Then we necessarily-have $15%0 and,
for all uef?(n)a{u|n=Tu, uex}, '
ag-au!H¢aﬂ§3<6ﬂ5y;¢1>=<E,¢z>+<u,T'¢z>ﬂ<(€sﬂ),(¢ns¢z)%5?£!¢x& (3.3)
Hence |
fe-Sul=¢, for all uer*(n), (3.4)
Which contradicts the regularity of the pair !E,ﬁ). |
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The following lemma lists one property of the set Cegla,0).

Lemma 3.3. Let (£,?)eace(a,0) be a regular pair. Tﬁen for all ueX
satiefying n=Tu and jE-Sulsec, we have ‘
ju i=e. (3.5)
Proof. Let ($31,¢2) be the hyperpiane in Lemma 3.2. Then for all
uer?(n), we have " .
?uﬂﬂs'¢l+T'¢aﬁ+BE#3uﬂﬁ¢xﬂa=<u;5'¢t*ffﬁa>+<5-3uy¢x>
=<(E,n), (d1,02)> a8 b1+ 4ol +ell 91l - (3.6)
Hence ' '
(Bul-a)i5 ¢ 1+T ¢l = (e~ HE=Sull ) ¢ll , for all uer?(nji (3.7)
'Since we have §5'¢1+T'¢20 %0, this proves the lemma. | »
Lemma 3.4. Suppose that (E,n) ie regular and that (E,n)€306(9,015
Then for all 8>a, we have
(E,n)€int(C.(8,0)) CC (8,0).
Proof. We first note that the assumption (£,n)edCc(a,0) and continuity
of the linear form < , > imply _ '
<(E,M), (P1,92)>SalS V1+T Yok +eh¥nl, for all (¥i,¢a2Je(rxz)’.. (3.8)
Suppose now that the conclusion of the lemma is false and that there
exists an &>« such that (E,n)&int{Ce(&,0))}. Then a separating hyperplane
(b1,$2)(¥0)€(¥xZ) "' exists: B
<(E,n) 5 (01,02)5BUS 14T bal +elbal, (3+9)
_ which, combined with the result of Lemma 3.2, contradiste (3.8).
Combining Lemma 3.3 and 3,“; we have the following theorem.
Theorem 3.1. Problem I haé a solution for each regulaer pair'
(E,n)edCel(a,0) if and only if (E,n)eCel(a,0). »
Theorem 3.1 indicates that existence of solutions to Problem I
depends upon whether or not the set. asra;o) is closed in yxZ. We now

state sufficlent conditions to guarantee this situation.

Corollary. (C.f. [11]) Suppose that either of the fallowing‘holaé:

(A1) X is a reflezive Bangch space.

{42) Each Bunash epace i@ thclaonjugate of another normed spave, i.e.,
- normed spaces X, Iy‘and 2y exist such that XI=X1’, ¥=¥;' and %=2,°, respsc-
tively. | |

Then Problem I has a solution for every regular pair.

4



~ 5]
proof. For each regular pair (E,n), let oe denote the infimum over

the set of all real numbers &20 such that;{(E,n)ece(u,ol}. It then follows

easily that (E;n)€dCc(ws,0). Hence, it is sufficlent to show that € (a,0)

‘(u;o) is closed in YxZ. We shall do this by assuming (A1). The case (A:)
may be treated simllarly. Note first that g(Ux) is weakly compact as the
continuous image of the weakly compact set Uy when Banach spaces X and
yxZ are equipped with their weak topologles (se= [9]). Now, it is known
(L33, pp-U414) that if A and X are closed subsets of an additive topological
group G, with X compact, then A+X 1s closed. Since Uyx{0} is convex,
closed, hence weakly closed in ¥x2 ([3], pp. 422), it followe'fhat Cela,0)
is weakly closed, whence closed in ¥YxZ,
The fo}lowing lemma characterizes the regular pair (E;n) in the dual
space.
Lemma 3.5. A pair (§,n) ie regular if and only if
<(En)s (41,02)><efoall (3.10)
holds for all ($r,02)(%0)€(¥x2)" satiafying §'$1+T"¢2=0.
Proof. "Only if part". If (E,n) is a regular pair, then there
exists an element yeX such that |E-Syl<e and n=Ty. Hence it ré;lows
from Lemma 3.4 that for e=jujf, (E,n)ﬁinticsfu,o)}. Therefgre, for all
(@x,¢z)(~0)e(rx2)','wé have
<(E,n), (Y1,V2)>=al S h1+T o) +nl, (3.11)
from which (3.10) follows. "If part". Suppose that (E,n) is not a regular
pair, 1.e;,.for all u satisfying_néru, we pave HE-Sul=ze. It then follows
easily that (E;n) cannct be an interior point of {§(X}+(eUIX{0})}. Hence
there exists a separatiﬁg'hyperplane (¢1;¢z)e(rxz)' such that
<(E,ﬂJ,7¢1,¢z)Z§:fuqS’¢n+T'¢2>+€F¢xﬂs for all ueX, (3.12)
which, in turn, implies s'¢.+r'¢z-0.and <(Esn), (91,¢2)>a el $1]] . But this
contradicts (3.10). | |
We now state the main result in this section.
Theorem 3.2. Suppose that (§,n) ie a regular pair, and that either
{Ay) or (A3) in the corollary to Theorem 3.1 holds. Then an optimal

eolution uy of Problem I exiate and is mecessarily of the form:



Uom= < )~S( 1 +T ):R-'e 4 (ms | (3.13)

where ($1,02)€(¥%2)" of norm 1 solvee either of the following:

g ChaNp (8L b o ce Il 5 (5757774, THe Ry (3.1k-a)

WST61+T 62l
<(E,N), (d1,02)>=€ a) |
(2) ls%r:l&a;”{ 67447702 (3.15)

Convergely, if (¢r1,$2) of norm 1 sclvee either of the above conditiona,

then the suitable element uoe {(<(E,n), (d1,02)>=cfd1} ) /0S¢y +T ¢ 1(S T+

(1)

Fiaa
e
=5

T(57¢14T ' $2),

T'$a2) is optimal. Furthermore, if X ie ra&un&, the solution ie unigue.
Proof. Suppose that ue(%0) is an cptimal solution, and we show ‘
(3.13)-(3.15). ue thus satisfies }E-Suplme and n=Tu,. It further follows
that (E.n)eace(a,?o), where we put fuefl =a¢. Let (¢;;¢al.beva hypérpléne
of Suppor€ of C.(ae,0) at (E,n). We then have, by Lemﬁa 3.2,:é'§;+r'¢g¥q
" and - | ‘ |
<CEsnT, (b1, b2l aslS 6147 bl selbs (3.16)
On the other hand, we have
<(§aﬂ)a(¢1;¢z?>=<E°3uo,¢1>+<uo;3f¢l+T'¢z>==dcu§'¢1+f'¢zﬂ*€ﬂ¢xu-.-(3-17)

Hence we eonclude that

uoﬂdu‘(3'$|+1"$z), ‘ ‘ (3-18)
E-Sue=€d1, _ (3.19)
Go= <;{ $S€¢:+T ;:uas o (3620)

‘These relations yield (3.13) and (3.14). To see (3.15), note that by (3.8),
<(E: ﬂ).o (ﬂ'lo"’z)>§§‘o“5 ',¢'1+T"4’zu +€"“’l'[ ] for all (%.%)e(}xZ) ',

Hence for all 5'y+T'P,¥0, we have

<(Ean),y (0),¥2)>-efv,l .
S F AT A (3.21)

'which, in view of (3.20), yields (3.15).



cgnvefsely, suppose that (¢),$2) of norm 1 solves either of conditions
(1) and (2). Let us first consider the case (1). Set ao=<(E,n},($1,$2)>/
ﬁs'¢x+T'¢zﬂ- It then follows from (3.14) and the equality
<(g,n)s (d1,02)>=aoll 510147 b2l +ell g2l meup {<ao(Su,Tul+(ey,0), (41,42)>}
juis, Byiss (3.22)
that (E,nJEC (80,0)N3C:(a0,0). Hence by Lemma 3.3, uo-uo(57$73573;7 is
’aﬁ optimal solution. Next, consider the latter case (2). In this case,
we have, with ae defined as before,
<!E,n) (1'1,"'21»5005S"l’l'FT'Wzl*EH’xl, ; - (3.23)
for all (Wx;Wé)e(sz)' satisfying S'Y1+T'P2%0. But if S'y1+7'Y2=0,
we have, by Lemma 3.5, <(E,n/,(¥1,¥2)><<efP1ll. Hence (3.23) holds for
" all (¥1,¥2)€(¥%2)". This, in turn, implies (£,n)eCelar,0)ndCc(as,0),
with (¢1,¢2) defining a hyperplane of support of C.(a,,0) at (g,n). Let
'uoeuovx and yeeely be any preimage of (E,n) so that (E,n)=8uet(ye,0).
It then follows from Lemma 3.3 and (3.18) that ue is an optimal solution.
and uoeao(373?177$;7-
Finally, it remains to be shown that uo 18 unique if X is rotund.
To this end, let uo and u; be two solutions. Then juck=jusj=ne and.from
(3.16) and (3 17), we have
<uo,5'¢1+T'¢z>=<u1,3'¢l+T'¢z>=uoﬂ3'¢1+T'¢zﬂ (3.24)
In other words, the hyperplane S'¢,+T'¢g#0,aupports uon at us and u;.
This implies uo=u; by rétundity of X. , ‘
Corollary 1. Suppoee that (g,n) ie a regular pair. Then the fotiouiﬁg
duality relation holde: | ,

sup j}ﬁiﬁ*ﬂfﬁégf;%%%fiﬁlilL} = inf {uual lE-Sulise, n=Tu, uecx}.

isterdle
Corollary 2. (¢1,¢2) definee a hyperplane of support of Ce(a,0) at

(§oq) tf and only if the vector (é1,92) solves either of the following:



(1) {g=a5(s'¢lif'¢z)+e$,
\n=aT(57¢1+T $2J,
<CE,n), ($1,62)>-e] 83 },.
(2) ”?.’T,:zo{ iS'g1+T "2 o

Corollary 3. Suppbae that (E,n)€dC.(a,0) is a regular pair, and

that Banach spaces X and Y are both smooth. ‘Then there are at most two

hyperplanes (0,¢2) and ($1(%0),42) of eupport of Cg(a,0) at (E,n).
Proof. 1In pﬁoving the theorem, we have shown that ¢1.and S'$1+T°d2(80)
define support hyperplanes of ely and aoly at E-Suy an& ug, respectively.
. Hence, by noting that T'' is one to one, the Qtated result follows.
Corollary U, Suppose that (E,n) is a regular pair. Then the unique
séiutﬁon'to the Hilbert space version of Problem I is given by
“ _{r*(rr*i‘n,\ , | | \%'usrﬁ(rr*i“nazﬁse.
(AI+5*5)" g .
-(AI+S*S)“T*{T(Ar+s*sfﬂrﬁff{TrAI+s*51‘s*g-ﬁ},\\usr*(rr*f?n-e|>e,

where T#* denotée the adjoint ‘of T, and A>0 ie a constant uniquely
determined by ﬂSuo—Eh=é. |

Proof. Note thét Hilbert spaces are rotund and smooth, so that there
exists a unique extremal ¢ given by $=¢/p¢}l. This corollary follows from
(3.13), (3.14), Corollary 3 and the next lemﬁa‘(c.f. [61).

Lemma 3.6. Let (§,n) be a regular pair and suppose that the inequality

inf ju l5u9>inf uli=ay (3.25)
!ﬂ;;"s;!"t !-7'&
| 7°7e

hcldq. Then the hyperplane (¢1,42)(%0)€(¥%2)' of support af.Ce(ag,OJ
at (E,n) satisfies ¢140.
Proof. . Suppose contrary‘that ¢1=0. Then from (3.1), we have
xn, 2oz aclT'¢2f. , (3.26)
That is, n;int(uor(ux)}i But this, in turn, contradicts (3.25)(C.T.[9]).



4. Minimization problem with bounded phase coordlnate.
In the preceding section, the function space version of the minimum
effort control problem with bounded phase coordinate was studied. Use
of the set CE(G,O) directly led to the main results: existence.theorem,
necessary and sufficient conditions, uniquehess theorem for optimality.
Attention now turns to the investigation for Problem II. We shall consider,
in the present setting, the set ce(p,m)n{p§WUx)+(eUYXaUz)}‘(e>0, a>0).
Most of the arguments we develop can pafallel those of ﬁhe'precéding éection‘
Definition 4.1. We shall say that Eer is (e,p)wregular (with respect
to §) if there exists at least one element uepUx which satisfies §E-Sul<e.,
Lemma 4.1. Let E be an (c,p)-regular élement and auppoae that (E,n)
€3Ce(p,0). Then any hyperplane ($1,$2)(%0) of eupport of Oe(p,aj at (E,n)

satiafiee A
(1) C<(E ), (1,020 >==plS5 d1+T b2 +ef a] +aldal, (4.1)
(2) 162050, A (5.2)

Proof. 1t is easy to see (4.1). Hence we ahallhshow,(H.Z) by cbﬁﬁra~
diction, Suppose that ¢220. Then we have ¢1%0 and, for all kex, '
4 UullS'¢1!+lEfSuIE¢xﬁ==<ﬁs¢l?iipls'¢ll+el¢xl.v
Hence S o o
(55-5ul~e)"¢nl2§(p-ﬁuﬁ)ﬂs'¢;ﬁ2:0, ‘for all uepvx.’
This is contradictory to the assumption.” ‘
Corollary (c.£.[2]). & ie an (e,p)?réguiar element i1f and only if’
L0><plls'el+elél,  for all ¢(n0)ex’,
Thrbughgut the section, we ahgll assume that ﬁ is an (e, p)-regular
element with respect to S, ’
Lemma 4.2. Supp;aa that (E,n)éace(p,u). Then for all uepvxvaatisfying
jE-Sullse, we have: _ 4
| In-fujza, ) (4.3)
Proof. With (¢;,¢2) defined in the previous lemma, we have, for
all uex, |
bud S '01+T ¢l +HE-Sull Néall +in-Tul fo2l=(E,n)== ol S92 +T '$2l +ef b2 +al é2l.
Hence -- o , _ |
(Un-Tul o)l éall= (p-hulb) 5" $1+T 4 +(e=| - sull J i1k, (bab)

which, combined with Lemma 4.1, proves the 1emma.

)
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The following results are analogous to those .n Lemma 3.4 and Theorem
3.1,

Lemma 4.3. Sup?oée that (E,n)53C.(p,a). Then for all @>a, we have

(E,nIeint(Ce(p,8)} CCelo,d).

Theorem U.1. Problem II has « solution for each (E,n)€3Celp,a) if
and only if (E,n)GC;?p,a). v

In order to‘éﬁmpletely characterize the optimal solutilon in terms of
the hyperplane, ve neeq the following definitions.

Definition 4.2, WQ shall say that nez iz no:mal {with respect to
(8,€5€,0)) if either '

inf (in-Tub 3 >inf {kn-Tui} (4.5)
fursp ueX

or
inf (In-Tub}=>inf C§n-Tul} : (4.6).
RE-SulsE weX

holds.
" pefinition 4,3, We shall say that neZ is (€,p)-normal (with respect
to (8,8)) ir |

inf {In-Tul}=>inf {(§n-Tul} (4.7)
Hunsp RE-Sulse
FE-Sulst

holds.
Lemma 4.4. Suppose that ($1,$2) supports C.{p,a) at (§,n). Then we
have (C.f. LaSalle [§], Schmaedeke and Russell [1:1) ]
(1) vﬂ3'¢1+T'¢zu+ﬂ¢|a§0, for each normal element nez,
o (2)  IS'd1+T¢2l%0, ~ for each (e,p)-normal element nez.
Proof. Proof is similar to that of Lemma 4.1,
We now summarize: .
Theorem 4.2. fesume that either (A,) or (A;) stiated in the corollary
to Theorem 3.1 holﬁs. Then there exists a soluticn to Problem II for
each (€,p)-regular element E. Suppose, further, that n is a normal element.
Then ;o ia an optimal solution if and only if us takes the form
uomp (5751577937, | (4.8)
where (¢1,92) of norm 1 is dgterm;ned by eitther o/ the following

) {s=p3(37¢1$§'¢z)+e$;, (4.9-a)
N=pT(S'o1+T P2 ) +{(<E,d1>+<n, $2>-pUS "$1+T'$2l-cdsl) /U2l )} b2, (4.9-Db)
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(2} maxg<(§.ﬂ);(¢1;¢z)>-pﬂ5'¢l+T'¢gH-€|l¢1|1}' (lB..LO)

TR C : ﬂ¢zn‘
In this case, either uoed{pUy} or (E-Suc)ed{elUy} holde. Moreover, if n is

an (€,p)-normal element and if X ie rotund, then ueed{pUy} is unique,

Application to a minimum effort problem.
vAs an application of the theory developed in this section, we
ghall consider a minimum effort control problem with amplitude constraints.

Let us suppose that a dynamical system is described by the lineér
differential equation: '

du(t)/dt=Ax(t)+Bu(t),

whefe x(t) 1s an nx1 state vector, u(t) is an rxl1 control vector, and
A,B are constant matries of apprépriate dimensions. A contyol vector u(t)
which satisfies [uj(tﬂéip (§=1,++-,r) will be called admissible., The
problem we shall consider is to find an admissible control vector u(t)
which drivesithé system from a given initial state z(to)=xz¢ to an e- v
neighbdrhood of the target state z¢, i.e., ;gf: lmj(tl)4g§lnlz(tx)-s‘lsé,

while minimizing the fuel functional
: t1

I(u)m f luj(t)l dt,
. . t’a-é

where to, and ¢; are filxed intial and final times, respectively.

At the outset, we shall make the folloﬁing (e,p)-regularitykassumption.
(A) There exists at least one admissiblelcohtroi u(t) which enforces
the sjsyem so that fJz(t;)-at|<ec. ‘ .

To formulage the problemvin function spaces, let us introduce some
standard notations:
L,(r,(to,ﬁ.]): The spa?e of (équiyalence classes of) r-dimensional vector

valued functions, deinfed and integrable (in the sense of

Lebesgue) on the interval [to,t1] equipped with the norm

ts )
nfll-{f%lfj(t)l’dt}é, F=(fis" 058y )y (18PSHe0)
where, for p::w, the norm represents the essential ‘supremum
of £, B
la(h): The n-dimensional vector space equipped with the norm

hel= max |z, 1.
28 jen
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C(r,[te,t1]): The space of r-dimensional vector yaluéd continuous functiona

defined on [to,t1] equipped with the norm

= max max (t)
Hf“t'“sc, 1387 'fa b

HBV(r,[te¢s$1])¢ The space of r-dimensional vector valued {normalized)
-~ functions of bounded variatioh on [te,t1) equipped with
the norm
Ih=Ro(fulte,ta])s flte)=0,
v(fj,[tg,t;]) denoting the total variation of fj on
(to,t1] (see [3], pp. 241).
We then specify the basic function spaces and linear operators as follows.

“X=La(n,[te,t11), Y=Ly (r,[te,t1]), Z=lg(n),

T(X—>Y): Tu=-u (the natural embedding of X into I),

ts
5(X—2): Suf A=) (e )ds.

By taking E-c‘- CA“' t')a: and n=0, the problem at hand is seen to be

described in terms of Problem II Note first that, since Ly(r,[te,t1])
can continuously and isometrically be. embedded into HBV(r,[t.,t;]),.and
since Lolr,[te,t1]) and NBV(r,[t.,t;]) can be 1dentified, respectively,
. with the duals of Li(r,[te,t1]) and C(r,(to,tx]), the assumption (Az)
in the corollary to Theorem 3.1 18, in_this case, satisfled. Thus, by
applying Theorem 4.1, we have

wo=p(5741-92)={(<E,91>-pAS "br-dak-cld10) /192117, (4.11)
Here (5'¢1)(t)=B% e""*"T’ $1 18 an analytic function) and the extremals
fmsb.rr.[t., t1])'end $relo(r,[te,t1]) are given, réspectively, by
(6.£.[111) o

~ ' [eignl (S h1-02)y(t  ped =T i
(3'31-3175(t1-{ugn[ b1-92050¢)1, bed; {te{#°?t‘]](s'¢l 2, (t)%0},

I(S'ﬁ-'bz)j(tll =1, ‘ teAs-(the' "éomiiiement of 4; ),

(E‘J‘Jr‘wza, teBh={te[ty,¢,]] ($2) 3(t)=] 20},
(mj(t). (m:’(t}so, t&'BBa{te[ta‘tlJ l (¢’)J!t).-l‘¢2u}o
d, ’

tﬁ(B;-uB})",
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where j=1,°**,r and 4

ffk?”? (t)lde=2

Jd
Hence, bY (8.11), the optimal solution can be characcerized in @ more

- explielt form:

psignt'r.s'can-—w,m:, bed;C(B5VBY),
0= (ugljlti=op, tedynBy,
(ug ) 4(t)= i i (4.12):
-p=(usl jlti=o, tedjinB i,
0, be(ByuBy)°.

We shall show that, if the matrix 4 is non=singular, then mes[A n(B uB )]
the measure of the set AJﬁ(BjUBj) ig zero, and hence the controls (ugli(t)
(§=1,*¢:,r) are uniquely determined by (4.12) (c.f.[(13, [5D).

To see this, suppose contrary that mes[4% n(EtuBJ)] is posihive for
some J (iijgr) Then, by appealing to an&ly%icity of the function (S'égi;(t),
we have

i(S'é;)g(tﬁ‘ﬂﬁ@zﬁ, for all t&lte,t1]s
On the other hand, it can easily be deduced that, 4 being non-singular,
the function (S’¢;)j(t) is equal to a constant if and only if (S'¢g)j(t)no
for all te(te,t;]. But this contradicts fé2)l%0 by Lemma R.l.

Remark. In order that S'¢1-¢2¥0 for every hyperplane (¢;,$2)(%0) .6f
suppert of Cgfp,a) at (£,0), 1t is necessary and sufficient that

m,nﬁuﬂ>1,nfﬁull.

BE-Sulse
aE-kuﬁse
Hence, it follows that'if 4 1is non«-singular9 the fuel functional I(u)

can be made smaller by enlarging the admissible class of control functions
80 as to include impulses, and in this case the optimal control ue may

consist of impulse functions.

Acknowledgments The authors wish,tc éhank Mr, T. Matsuo for his

useful and helpful suggestions and diacussiohs{
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On Certain Necessary and Sufficient Conditions

for Singular or Bang-Bang Controls
N. Minamide and K. Nakamura

ABSTRACT

In this short monograph, necessargénd sufficient conditions for
the existence of Bang;Bang controls to the Final Value Problemfahg
the Time Optimal Problem are studied. It is shown that the j-th
component uj(t) of the optimal  control u(t) (Jug(BNLL, 1=1,-+,r)
is of Bang-Bang type if and only if the release of the amplitude
constraint imposed on the j-th component brings in the better index .
of performance than otherwise.

1. Introduction.

In solving optimal control problems, we sometimes encounter
situations in which Pontryagin's "Maximum Principle" may provide no
information for determining optimal contrpls. These situations are
?fié to as "singular ones" and the corresponding solutions as
"s;;gular controls", The sigular solutlons have recently recelved
significant attention [3-11]. Most of the papers are concerned with
oétimization problems in which the system equatlions and the lndex of
performance are linear with respect @ﬂ the control‘inputs. For this
class of problems, the optimal control turns out to be either éf
Bang-Bang type or of singular type, as Pontryagin's M.P} indicates.
D.H.Jacobson[10,]1]obtained new necessary conditibns for singular
soiutions to be optimal by using Differential Dynamic Programming methods.
J.P.McDanell and W.F.Powers [§] proposed new Jacobi-type necessary
and sufficient conditions for the second variation.

In the study ofifime optimal control problem, J.P.Lasalle defined
in [1] the concept of "Normal Systems" and guaranteed the Bang-Bang
optimal control for the?e systems. Athans and Falb [2] also paid
particular attention to the discussion on the existence of singular

controls for the similar kinds of cohtrol problems. The purpose of the

present monograph is to give further investigation for existence or

(/6
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non-existence of singular controls to a particular kind of control

problems, l1.e., the final. value problem and the time optimal problem.

2. Problem statement.
Let the dynamical system be described by the following differential
equafion:
dx(t)/dt=Az(t)+Bult), xlt,)=x,, (2.1)
where X(¢) 1s an nyl state vector, ¥(L) 1is an rx1 control vector and
A,B are constant matrices of appropriate dimensions,; respectively.
A (measurable) control vector function u(t) is called admissible 1if
each component ud(t)-satisfies '
luj(t)l§i, (J's/, 5T, (2.2)
We shall conazider the following two problems;
FVP(Final Value Problem): Given the fixed final time ts and the

final desired state xd, find an admissible control u(t) which minimizes

7 %
1={ LN IO T gl EEE (15 pztos)
TOP(Time Optimal Problem): Find ankadmissible control u{t) which
. t .
enforces the system (2.1) from x(tg5)=xg to the origin in the minimum

tima t*é;to.

3. Investigation to FVP.
' We shall first study FVP and show how to deal with the problem.

We' shall prepare some lemmas and definitions.

Definition 3.1. We shall dencte by R(t) the reachable set (from the

origin) at time t:
t .
RiO={ 2| 2ty Ft-0BWoAT, 1400151 Gatr],
where,ﬁ(t)=€ﬁtij the transition function of the system (2.1).

Definition 3.2. We shall denote by Ri(t) the reachable set at time t

with i-th component released from the amplitude constraint:

t . .
R;(;t)={zct)| xoc)':—./o é(t—?:)Ba(-c)dt,,Ia/‘(;(:)l.s_z' (j4i), |U(D)<roo}

(r¢)
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Lemma 3.1. Both R(t) and R (t) are ~losed convex sets in l(n;p),

where L(n;p) denotesthe n-dimensional vector space equipped with the .norm.

Z .
pxi=(Z x4

proof. The closure of R(t) and the convexity of R(t) and Ri(t} can .
pe shown as in [1]. To see the closure of Ri(t), note that any sub=-
space in a finite dimensional space is closed, and the vector sum of

A and B, with A c¢losed and B compact, 1s also clcsed.

We further consider the following two sets;

R, W= RA)+a UL p)={ ¥| y=d15, 7 eRD), 14ISA]

Rilt,a)= Rift)+aUdmp), L,
Lemman3n2. Both R(t,d) and Ry(t,0) are closed convex setsr1<‘
pProof. Proof 1is similar to that of Lemma 3.1.

Lemma 3.3. Suppose that(xI- &(ts,t)x)€R(t,d). Then for all
admissible control u(t), we have : '
I 2t — x4 =,
Proof, Since R{tg,d) is closed convex body, and xd=§(tf,t0)x0 lies
on the boundary of R(Q;i), there exists a hyperplane such that
<l Tlty, ) , P> 2 <RG0, ¢ T
where <x,¢}éf§xi<§>¢- denotes the bi-linear form and

<Ry w), <5 P = RO TLn p), $= #5%
g0, 2= e S99 + e, ¢ [ V218, p1d5+ tiph

On the other hand, we hLave

S Z w8 F et o ¢ dt + 2 1%

2 j i"‘Z 2 b} & (e, 1) PR + <z4 Pllp, 1) Lo, P - / <2 (Y, 2)Butt), p>d
=< :Z‘L g ton, o= / ¥ §B*E (e, )P d T +Lid, : 3,2

Hence,

7 . : . .
i Z(ff)—ldii“d) ,,¢;;g4% laj"ge”’(-tf,c)ﬁds 1‘% /uj ol b?f’(t;,(i)ﬁdtgo, (33)

which proves the lemma:
Lemma 3.4. uO(t) defines an optimal:solution to FVP if and only if
up(t) takes the form:
(U)j(2)= acqn r 1,; Py, 141 | 2 4)

where.% satisfies either of the following-
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b
2] :z;f-@i (¢4 t)1.); =é {Bty, )B 4ipn [B*F "ty 5597 b d{
9 ) ' = ‘l
+ (<24 Bty )2, >~ /r . W B*3 2y, )l ds }M//’ 2/95-/u;¢£$.3, :
(=, eun) e -63$)

' %
[t Mo {<x L Bty toz, P> - o N8 Zy, 9 F) s
) Pio Y

Jeay, 10y

Proof. Let &, denote the infimum of o such that (Y% 3¢t 101} Rliz, o).
It then easily follows from Lemma 3.1 thatfx9-B(t.,t)xo}eR(ty oL).
Let an admissible control uo(t) and a vector In a unit ball in ‘Q(n;p)_' Yo

be such that "‘f
1“‘—2(6,,1.),1,:,4 S, 1) BUA ST Ao, (3.7)

Lemma 3.3 then shows tha.t ug(t) is an optimal solution to FVP. The
conclusions of Lemma 3.4 now follow from Eqs. (3.1), (3.7) and the
easily established facti  (x%- (tg,60)xQeR(t, L) implies and is
implied by : :

Cxl-Bgtan, v S <RI, $>, for ald pely, (3.8)
where equality holds for some $(x0)eT(ftx.p) 1f and only if {x_d- (tf’to)xo}.

eIR( &0 .
. : . except _
it is, at this point, to be observed that, if iyélt},ﬂy&o,\on the set

of measure-zero, (“O)J(t) can be uniguely determined by the condition
(ug)y(s)=sign(bj E%ct,, 9.

Definiticn 3.3. We shall say that the J-t.h component of the optimal
solution ug(t) is of Bang~Bang control with respect '{:o a hyperplane ¢
if 13,’." E"ﬁy,ﬂ;d#o holds except on the set of measure-zero.

Now, we are persenting one of our main results.

Theorem 3n1.(C,f‘.[13]) - In order for the j-th component of the optimal

solution uo(b) to be of Bang-Bang control with respect to any hyperplane

of support of R(t,d), it is necessary and sufficient that

inf 12%-z2tgp) < snf nad-2ty=a. ¢3.7)
Juiiza I4zet))52
(2=l ==y J4) J#ly+,7) by 1)

L&)
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In this case, the j-th component (uO)J(tl is unique.

proof. Necessity: Proof proceeds by showlng contradiction. Suppose,
contrary, that the reverse inequality in (3.9) holds. It then follows
t
casily t8 (2% - Ty, t)7,) eQK}- (o). .
since Rj(tf,dQ is a convex body, there exists a hyperplane of support
of By(tg,dl) at (x3-F(t,t,)xy) such that
2Bty i, > 2 < K lep ), £,
By app_ealing to the definition of the set Rj(tf,d), we can easily
arrive at the conclution:
jfj*%*“f’ t) P=o, for all te[tg,tel, |
contradicting the assumption of the theorem.
Ssufficiency: Agaln, we shall show by contradiction. Suppose that
there exists a supporting hyperplane fev(!(n:r)) such that [b}i*fff,ﬁ)fko
on the set ggtpositive»mgasure. Since {??Qﬁxfir?] is an analytic
function of t, this-assumption implies
brﬁtﬂw?;a for all T €Tto, b)),

Then, for all uJ(b) satisfying %§s sup IuJ(t)|<+0° (j=b--»¥), we have

uztéfrx*u Ul + f ﬁ W11 b3 ey, 11 A

2 <xd-3(t,t2,,9> 2[ z:} | b 374 ldt+ g,

i.e., for alT !ua(tﬂslaw,

% %5
(1;ze%f>mx“ls~oow|\>] Z! 6 £, 0] ”‘i" = WK EG ALz,
. %

ghigh gg?tradicts the assumption The proof of the uniqueness may be done
Ms Izvestigation to TOP. H

In the previous section, we showed the necessary and sufficient
condition for Bang-Bang controls, or in other words, for non-exlstence

of singular controls. This result is now extended to TOP in this section.

We first remark that finding a contrel u(e) which transfers the
system (2.1) from x(to)axo to the origin at time ¢

O=1(%)= ég'(tﬁwzﬁf AE=T) g U dz
o

(7 7)



15 equivalent to finding u(.) such thac

-At L
-e " =L eACBd(f)c(,‘C.

Hence we consider the following two sets that correspondQ\to R(t)

and Ry(t) in the previous section) /up;1bc4y&u/»
Definition 4.1, /}(t)..{y/ y/ é g%(s)ﬂ'g ;/ s g-g,-a,r)}
Definition 4.2,

y t—
A}(z‘f’)z{;,!’?%& e Vgusds, i1 (14)), /uj'/<fwj..
Definition 4.3.

By= =/ " EMBBucsds Iujeof<eer ot 2
N IFIAY: . ead aup 9
Lemma 4.1. Define, as usual, the distance of tws sebs 4,8 in {n:p) by
a(A,BY= man{ m,omi{m»w} v inf {ha~ gelf . {(4.1)
be 8 as/A

A(t) and Ai(t} then are continuous set functions of t with respect to
the topology induced by (4.1).
Proof. Proof may be done as in [d], and hence omitted.
Lemma #.2. For t>t, and s>0, we have
B, = By,s=RAIB),
where R(A!B) denotes the range of (A!B}E{Bfé5f"'5Aww}o

Proof. See¢, for example, the reference [14, Chapter 21.
1]

Lemma 4.3, Let C denote the matrix whose columns‘are constructed
from ell the independent cclumn vectors of (Alé)e We then have:
(a) R(C)=R(A{B), |
{b) rank(C)=dim(R(C#})=dim(R(A{B)),
(e) N(o)={x| Cx=0 }={0}.
Proof. Easy proof is omitted.
Lemma 4.4, Supposg that éfAtk;eaR(AlB). Then u(s) soclves the

equation <
s AL s =As
-C"e z,=¢ e B Ulsrds (%.2)
e,
if and only if it solves '
=Ate -

-é Zo=t e'qrga(sjds. (43)

B oStk b o



21

Proof. The proof of "if partz" being obvious, we shall show "only if
part". Let(u(s) (solvef» Eq. (13 2). We then have, from Lemma ‘}.Z;_'an‘d ‘the

L
hypothesis s

{e Xo'ff e ﬁu(SJJS;e)aCC)nm*)’{af
i 7]
which proves the lemma.

Lemma ‘3;5., Let t* denote the minimum time of ToP, 1.e.,

At st ) .
- @ x.=/;a eAfBu?s)ats, for dome /uj(‘)/él Crh-yr),

Then,

- "%, e 21 C* (ALY,

Proof. 1%t can be shown, by uéing Lemma (U4.1), that t# is the

minimum time if and only if (C.f.[1]) .
_ %1 cat A}, (e

Since C®* is onto, and consequently maps open sets into open sets,

we easilyi' see, by vitue of Lemma 4.1, Lemma 4.4 and Eq.(4.4), that
—c*é", eaz'c*mcw)}

We are now ready to state the main result.

Theorem 4.1. Suppose that -éﬂLeR(AIB). In order for the j-th
component of the time optimal solution uo(t) to be of Bang-Bang control
~with respect to each non-trivial support hyperplane belonging to
R(AIB)=R(C), it is necessary and sufficient that

sl ft |- Pne A=t > nfti] - R e =T, fw)
Moreover, in this case, the j-th component (“O)J (t) is unique,

Proof. The necessity of the condition (4.5) can be 'shown similarly
as in Theorem 2.1. We shall hence show the sufficiency. Let $=C$ER(C)
be a support_Ing hyperplane of the set A(t¥*) at- €, xo :

- &% ep> >f isret e puds. (%4
We shall then show that ly e,”‘ cp*o  for all se€[ty,t*] except on
the set of measure-zero. To see this, suppose cohtrary that b; éﬁ*scibso
on the set of positive-measure. Eq.(ll.S) ﬁhen shows thatf defines

>
a support hyperplane of C*(A;(t*)) as well as'C*(A(t*)) at =€ ...
0
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Let ¢>0 be any positive number such that t2>t+e>t. We then have, by
=AC,
the assumption of the theorem, -2 z.eAJ(HE)CAJ(t*). Since ¢

-At,
supports C’(Aj(t*)) at -C*@ x,, it must be that $ also supports

Ca(AJ(“E)) at "C*éﬂt"oz e & —A*s i ¢
<-c* é’"‘x,) ¢> = <c*mj(£+c)),¢>=/f‘ nB"e" “C pllds, C47)
The reverse inequalities in (4.6) and (4.7) are obvious, sc that we
have t* e
j ne* e “eplds =0 Cod)
t+¢
Eq.(4.8) implies ) |
5" e Sdf =0, for alld se (00,42 (#.7)
Succeeively differ_entiating Eq.(%.9) (n=1)-times and setting s=0
yield B CCF=0
a8y c‘.q» =0 10>
(A™'BYCp=o

From Eq.(4.10), we conclude thatCf=0, whence =0, contradicting C¢
;joao, by hypothesis. This contradiction establishes‘the desired result

L{é”'*sc 7::0, . for all t€[t,,tp] except on the set of measure-zero.

J

5. Conclusion.

Wehave investigated the necessary and sufficlent conditons for
the Bang-Bang optimal controls. As conclusion, it can generally be
suggested that singularity for these problems essentially arises from
the lack of the Lmiqueness of solutions. Hence in order to meet such
singular cases, it is .advisable to set the second criterion functional
and make the solution unique.To take an example from the final value
problem, suppose that b; e”q”‘¢=o, )=/,-“;)7(JG £r) , where ;6 is a
su[\Jport hyperplane. In this case, admissible solutions uJ(t) (J=1,°°°,rq)
which satisfy '

Tt A g
jt’[Q(tJ‘s)g ms)jj ds =(x4- Z(-ef,t,)x.)j —ot, liph 145 M;«w[‘(’,] eun)
To

turn out to be optimal, as will be seen from Eq.(3.6) in §3. Hence the

second criterion functional

[N
o,



1, Y,
T ,f = lujwto(t
* ts )"

ys, for example, suggested.
. Finally, we note that our results contain those obtained by Lasalle

" [1] and Athans and Falb. [2] as special cases and that the extension of the
results to the time varying systems is not difficult.
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