<table>
<thead>
<tr>
<th>Title</th>
<th>Certain Double Coset Spaces of Algebraic Groups and Rational Boundary Components of Symmetric Bounded Domains (有限群の研究)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>IYANAGA, KENICHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1972, 137: 38-42</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/106637</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
CERTAIN DOUBLE COSET SPACES OF ALGEBRAIC GROUPS AND
RATIONAL BOUNDARY COMPONENTS OF SYMMETRIC BOUNDED DOMAINS

Kenichi IYANAGA

I

In part I we consider the problem of determining the order of double cosets $\gamma G/P$, where G is a certain k-algebraic group, P is its k-parabolic subgroup and γ is its arithmetic subgroup. A detailed discussion on the subject is found in [5].

Let k be an algebraic number field of finite degree, and K be either a quadratic extension of k or k itself, and σ the involution of K stabilizing each element of k. Let V be a finite dimensional vector space over K supplied with a non-degenerate k-bilinear form $F: V \times V \to K$ such that $F(ax, by) = a^eF(x, y)b$ for $a, b \in K$, $x, y \in V$ and that $F(x, y)^\sigma = eF(y, x)$, $e = \pm 1$.

We set $G = \{ g \in GL(V); \quad F(g(x), g(y)) = F(x, y), \quad x, y \in V \}$ and $G^1 = G \cap SL(V)$. Then the groups G and G^1 are k-algebraic groups.

Suppose that there exists a proper non-zero subspace W of V such that $F(w, w') = 0$ for all $w, w' \in W$ (i.e. W is a totally isotropic subspace of V).

We set $G_W = \{ g \in G; \quad g(W) = W \}$. This is a maximal k-parabolic subgroup of G.

Let O_K be the ring of integers in K and let L be an O_K-lattice in V.

We set $G_L = \{ g \in G; \quad g(L) = L \}$. This is an arithmetic subgroup of G.

Similarly, we get a maximal k-parabolic subgroup G_W^1 and an arithmetic subgroup G_L^1 of G^1.

Now, given any subgroup H of G and O_K-submodules X, Y of V, we write $X \sim_H Y$ if and only if there exists an element h of H such that $h(X) = Y$. /
We denote the set of \mathcal{O}_K-submodules Y such that $X \sim Y$ by $(X)_H$. Then, the double coset space $G_L \backslash G/G_w$ is in a bijective correspondence with either one of the sets $(W)_G \sim (G_L)_G$, or $(L)_G \sim (G_L)_G$. Thus the problem of determining the order $|G_L \backslash G/G_w|$ is reduced to a certain classification problem of lattices. The determination of the order $|G_L^* \backslash G/G_w|$ is, to a great extent, reduced to the determination of $|G_L \backslash G/G_w|$.

Associated to the lattice L we have a fractional ideal $\mathcal{M}_0(L)$ generated by $F(x,y)$ for $x,y \in L$. The lattice L is called a $(\mathcal{M}_0(L))$-modular if $L = \{ x \in V; F(x,L) \subset \mathcal{M}_0(L) \}$.

Then we have the following decomposition theorem:

Let L be an \mathcal{J}-modular lattice in V. Then there exist \mathcal{O}_K-ideals $\mathcal{O}_1, \ldots, \mathcal{O}_S$, a basis $\{ w_1, \ldots, w_S \}$ of W, and elements w_1', \ldots, w_S' of V such that

$$L = \sum_{i=1}^S (\mathcal{O}_i - \mathcal{O}_2 + \mathcal{O}_1 w_1') + L',$$

where $\mathcal{O}_1 > \mathcal{O}_2 > \cdots > \mathcal{O}_S$.

$w_i \in L, F(w_i, w_j') = \delta_{ij}, F(w_i', w_j') = m_{ij}$ for all i,j.

In the above, when $m_{ij} = 0$ for all i (e.g. when $e = -1$), it is easy to determine the order $G_L \backslash G/G_w$. When $e = 1$, it becomes necessary to investigate the properties of the submodule $S(\mathcal{O}_k') = \{ N(x) + Tr(y); x, y \in \mathcal{O}_k \}$ of \mathcal{O}_k', and submodule $S(L,W,\mathcal{O}) = \{ F(ax,ax) + Tr(b); a \in \mathcal{O}, x \in L', b \in K - \mathcal{J} \}$ of the module $S(L,\mathcal{O}) = \{ F(ax,ax) + Tr(b); a \in \mathcal{O}, x \in L, b \in K - \mathcal{J} \}$ for \mathcal{O}_k-ideals \mathcal{O}. It can be shown that if K is a quadratic extension of k, then $S(\mathcal{O}_k') = \mathcal{O}_k'$, and that the order $|S(L,\mathcal{O})/S(L,W,\mathcal{O})|$ is generally independent of the choice of the ideal \mathcal{O}; we denote the order by $s(L,W)$.

The order $|G_L \backslash G/G_w|$ for an \mathcal{J}-modular lattice L can be evaluated in terms of $h(K)$ (= the class number of K), $h(L')$ (= G-class number of L'), $s(L,W)$ etc. Specifically, we have the following estimation:

1) When $K = k$ and $e = -1$, then $|G_L \backslash G/G_w| = h(k)$.
2) If \(S(\mathcal{C}_K) = \mathcal{C}_K \), and \(s(K, W) = 1 \) for all \(M \) belonging to the same \(G \)-genus as \(L \), then \(|G_L \backslash G/G_W| \leq h(K) h(L) \), and if, moreover, all \(J \)-modular lattices in \(V \) are \(G \)-equivalent, then \(|G_L \backslash G/G_W| = h(K) h(L') \).

The latter case occurs, for example, in the following situations:

1) \(K = k \), \(\dim V \) is odd, \(S(\mathcal{C}_K) = \mathcal{C}_K \), \(h(K) = 1 \),
2) \(K \) is a quadratic extension of \(k \), \(\dim_K V \) is odd, and every ideal class in \(K \) is represented by a \(\sigma \)-invariant ideal.

EXAMPLES:

1) \(k = Q, K = Q(\sqrt{-1}) \), \(\dim_K V \) is odd and \(V \) has a basis \(\{ v_1, \ldots, v_n \} \) such that \((F(v_i, v_j)) = \text{diag}(1_p, -1_q) \), and \(L = \sum K v_i \). In this case,

\[
|G_L \backslash G/G_W| = h(L') \leq |G_L \backslash G^{1}/G^{1}_W| \leq 2 h(L'),
\]

\(h(L') = 1 \) when \(W^+/W \) is indefinite ([4]), or the rank of \(L' < 5 \) (4)

\[
\begin{cases}
> 1 & \text{when the rank of } L' \geq 5, \\
= 2 & \text{when the rank of } L' = 5, \\
= 4 & \text{when the rank of } L' = 7.
\end{cases}
\]

2) \(k = Q, K = Q(\sqrt{-p}), p \equiv 3 \mod 4 \), \(\dim_K V \) is odd, and \(V \) has a basis \(\{ v_1, \ldots, v_n \} \) such that \((F(v_i, v_j)) = \text{diag}(1_p, -1_q) \), and \(L = \sum \mathcal{C}_K v_i \). Then

\[
|G_L \backslash G/G_W| = |G_L^{1} \backslash G^{1}_W| = h(K).
\]

II

We assume that \(G^1 \) is simply connected (hence, \(G^1 \) is either \(SU(V, H) \) or \(Sp(V, A) \)). We assume further that the Lie group \((\mathcal{R}_K/\mathcal{C}_K(G^1))_R \) admits a maximal compact subgroup \(\mathcal{H} \) such that \(L = (\mathcal{R}_K/\mathcal{C}_K(G^1))_R/\mathcal{H} \) has the structure of a symmetric bounded domain (hence, \(k \) is totally real, and \(K \) is either \(k \) itself or a totally imaginary quadratic extension of \(k \)).
In this case, the subspace W corresponds to a rational boundary component $B(W)$ of \overline{D}, and conversely, for any rational boundary component of \overline{D} there exists a totally isotropic subspace W' of V such that the boundary component may be written as $B(W')$ (cf. [1]); the dimension of such a subspace W' is determined by the given boundary component which we shall call the type of the boundary component. Let $\mathcal{B}(W)$ be the set of rational boundary components of \overline{D} having the same type as $B(W)$. $\mathcal{B}(W)$ is a G^1-orbit space. The double coset space $G_L^1 \backslash G^1 / G^1_W$ is in a bijective correspondence with the set of G_L^1-orbits among $\mathcal{B}(W)$.

III

We make a remark concerning our previous work in [2] and [3].

Let $D^* = D \cup \{\text{rational boundary components of } D\}$ supplied with Satake topology, and let $V^* = G_L^1 \backslash D^*$. Then V^* has the structure of a projective variety.

Consider a functor sending the category of Hermitian vector spaces (V,H) to the category of alternating vector spaces (V',A), where $V' = \mathcal{O}_{K/k} V$ and A is the "imaginary part" of H. This functor naturally induces a rational homomorphism sending $G^1 = SU(V,H)$ into $G^1 = Sp(V',A)$; lattices L in V naturally correspond to lattices L' in V'.

When L is modular and $\mathcal{O}_{K}^*(L)$ is an ideal in k, then the corresponding lattice L' is maximal in V'. When, in general, L is \mathcal{O}-modular, the elementary divisors of L' may be explicitly described in terms of \mathcal{O} if (2) is a prime ideal in k (cf. [6]).

Let D, D' be the symmetric bounded domains corresponding to G^1, G'. Assume that $(\mathcal{O}_{K/k}^*)^*(K) \subset K'$, then \mathcal{O} induces a holomorphic imbedding of D into D' (cf. [7]); this \mathcal{O} further induces a morphism of the variety.
V^* into V^* (We have $\mathfrak{p}(G_L^1) \subset G_L^1$.)

We may ask here, when automorphic forms on D with respect to G_L may be extendable to automorphic forms on D' with respect to G_L'? The above I, II may be helpful to consider this problem.

In particular, the field of rational functions $C(V^*)$, which is identified with the field of automorphic functions on D with respect to G_L, may be identified with a subfield of $C(M(V^*))$, and their relations may be described in terms of certain Galois cohomology group (cf. [2], [3]).

Especially, when $k = Q, K = Q(\sqrt{-p}), p \equiv 3 \mod 4, p > 3, \dim_K V$ is odd then $C(V^*) = C(\mathfrak{p}(V^*))$.

REFERENCES

3) ______, Symplectic 表現と保型関数 数論解析研究の基礎, 84-155

