<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>言語</td>
<td>日本語</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>Title</td>
<td>A Monotone Map on 2-Manifolds, Whose Image is Homeomorphic to Its Domain Space, A 2-Manifold (Combinatorial Topology)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>DOI, YUTAKA</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1972), 152: 119-129</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/106811</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
A MONOTONE MAP ON 2-MANIFOLDS, WHOSE IMAGE IS HOMEOMORPHIC TO ITS DOMAIN SPACE, A 2-MANIFOLD.

BY

YUTAKA DOHI

§0. The main results in this note are Theorem A (see §2) and Theorem B (see §3) which are extensions of Whyburn's theorem [1]; Any monotone mapping of a plane onto a plane is compact. In §1, extensions of a well-known Moore's theorem concerning a decomposition of a 2-sphere, are stated without proof, Theorem 1, 2, which are used to show Theorem A and B. Terminologies are explained also in §1, whose meanings will be found among Lemmata 1~10. Finally the author regrets that he has not enough informations concerning these problems: Anyone gets the same results?

§1. A map f(X)=Y is compact (connected) iff the inverse image f^-1(B) of any compact (connected) set B of Y is compact (connected).

Lemma 1. Suppose M is a connected compact n-manifold, n>1, and W is its connected open subspace with a totally disconnected complement K=X-W. Any compact and connected map f(W)=W, has a unique extension g(W)=M, which is also compact and connected, whose
restriction on \(K \) is a homeomorphism on \(K \).

A map \(f(X) = Y \) is monotone iff the inverse image \(f^{-1}(y) \) of any point \(y \) of \(Y \) is always compact and connected in \(X \). A fundamental domain of a 2-manifold is a homeomorphic image of a connected open set in a plane.

Lemma 2. A subset \(C \) in a 2-manifold \(M \) is cellular iff \(C \) is compact, connected and is contained in such a fundamental domain \(W \) of \(M \), that the complement \(W-K \) is connected.

Lemma 3. Let \(X \) be a locally compact Hausdorff space and \(\{K_n\}_{n=1}^{\infty} \) be its countable compact covering, then for any open set \(U \) of \(X \), there is an integer \(n \) such that \(U \cap \text{Int } K_n \neq \emptyset \).

Lemma 4. A separable metric \(n \)-manifold \(M \) has a countable connected open cover \(M = \bigcup_{n=0}^{\infty} M_n \) such that the closure \(\overline{M}_n \) is compact and \(\overline{M}_n \subseteq M_{n+1} \) for each \(i \).

Lemma 5. Given an injective map \(f: M_1 \rightarrow M_2 \) from a \(m \)-manifold without boundary \(M_1 \) into a \(m \)-manifold \(M_2 \), then the map \(f \) is an imbedding and its image \(f(M_1) \) is an open set in the interior of \(M_2 \).

A map \(f(X) = Y \) is quasi-compact iff the set \(B \) of \(Y \), whose inverse image \(f^{-1}(B) \) is closed in \(X \), is also closed in \(Y \). A map \(f(X) = Y \) is upper semi-continuous (u.s.c.) iff for any open set \(U \) of \(X \),
the set \(\tilde{U} \) in \(X \), defined by \(\tilde{U} = \bigcup \{ \tilde{f}^{-1}(y) \mid y \in Y, f^{-1}(y) \subset U \} \), is open in \(X \).

Lemma 6. A map \(f(X) = Y \) is closed iff the map \(f \) is quasi-compact and u.s.c.

Lemma 7. Let \(f(X) = Y \) be a closed map. If \(X \) is a separable metric space, so is \(Y \).

Lemma 8. Let the map \(f(X) = Y \) be quasi-compact such that the inverse image of any point of \(Y \) is connected. Then if \(X \) is locally connected, so is \(Y \).

Lemma 9. If the map \(f(X) = Y \) is closed and monotone, then it is compact and connected.

Lemma 10. A monotone map \(f(X) = Y \) from a locally compact space \(X \) onto a Hausdorff space \(Y \) is u.s.c.

Lemma 11. Let \(f(X) = Y \) be a monotone map from a locally compact metric space \(X \) onto a Hausdorff space \(Y \). For any compact set \(K \) in \(X \), the inverse image \(f^{-1}(K) \) is also compact in \(X \).

A disjoint closed cover \(G \) of a space \(X \) is called a decomposition of a space \(X \), and its quotient space \(X' = X/G \) is called a decomposition space of \(X \) by \(G \), where the projection \(\phi : X \to X' \) is clearly quasi-compact. A decomposition \(G \) of a space \(X \) is u.s.c. iff the projection \(\phi : X \to X/G \) is u.s.c., and it is compact (connected) iff each element of which is...
compact (connected); it is non-separating iff for any element $K \in G$, the complement $X - K$ is connected. A map $f(X) = Y$ induces naturally a decomposition of X, $G(f) = \{ f^{-1}(y) \mid y \in Y \}$, and we denote its decomposition space by $\phi : X \to X/G(f)$, where the combined map $n = f \circ \phi : X/G(f) \to Y$ is well defined, and bijective. It is clear that the map n is homeomorphism iff the map f is quasi-compact.

Moore's Theorem. Given a non-trivial decomposition $G(X)$ of a space X, where the space X is a 2-sphere or 2-plane, which is monotone, u.s.c. and non-separating, then the decomposition space X/G is homeomorphic to the space X.

Lemma 12. Given a 2-sphere X and its connected open subset W with a decomposition $G(W)$ which is u.s.c. and monotone. Let K be the complement of W in X, and $G(K)$ be its decomposition whose element is a component of K. Define the decomposition of a 2-sphere X, by $G(X) - G(W)\cup G(K)$, then the decomposition space $X/G(X)$ is a Hausdorff space.

Theorem 1. ([2]) Given a connected open subspace W of a 2-sphere S^2 and its non-trivial decomposition $G(W)$, which is monotone, u.s.c. and non-separating. Then the decomposition space $W/G(W)$ is homeomorphic to W.

-4-
Theorem 2. Let M be a separable metric 2-manifold without boundary, G be its u.s.c. cellular decomposition. Then the decomposition space M/G is homeomorphic to M.

Suppose A is a subset of a space X. A point a of A is a cut point of A, iff the complement $A - a$ is disconnected. A subspace A is a true cyclic element of X, iff it is maximal in a sense that it has no cut points. A cactoid is a locally connected continuum every true cyclic element of which is a 2-sphere.

Theorem 3. (Moore) Every monotone image of a 2-sphere, which is a locally connected continuum, is a cactoid and every cactoid is the image under some monotone mapping.

§2. Theorem A. Let W be a connected open subspace of a 2-sphere S^2, and M be a topological 2-manifold in the most large sense. Given a monotone map $f: W \to M$, whose image $f(W)$ has a non-vacuous interior in M, then the image $f(W)$ is in the interior of M, and homeomorphic to W, moreover, the map $f: W \to f(W)$ is closed, compact, and connected, and the natural decomposition space by f, $g(W) = W'$ is homeomorphic to W.

Proof. The map $f: W \to f(W)$, is monotone, u.s.c. by Lemma 10, and non-separating (see the later argument), so the natural decom-
position space by \(f, g(W) = W' \) is homeomorphic to \(W \) by Theorem 1.

Now the injective map \(f g^{-1} : W' \to M \), is an imbedding and \(f g^{-1}(W') = f(W) \) is open subspace of \(M \), that is, \(f(W) \) is homeomorphic to \(W \). (see Lemma 5.) Since the map \(f g^{-1} : W' \to f(W) \) is a homeomorphism, the map \(f: W \to f(W) \) is quasi-compact, so \(f \) is closed by Lemma 6. A closed monotone map \(f(X) = Y \) is compact and connected by Lemma 9. Now we show that \(f \) is non-separating. Take a point \(y \in f(W) \), then the inverse image \(f^{-1}(y) = N \) is compact and connected in \(W \), since the map \(f \) is monotone. The 2-manifold \(W \) has a connected open cover \(W = \bigcup_{i=1}^{\infty} W_i \) such that \(W_i \) is compact and \(\overline{W_i} \subset W_{i+1} \) for each \(i \). (see Lemma 4) There is an integer \(n_0 \) such that \(W_n \supset N, n > n_0 \), because \(N \) is compact. Take an open set \(U \subset \text{Int} f(W) \), such that \(U \) is compact in \(\text{Int} f(W) \). Since \(\bigcup_{i=1}^{\infty} f(\overline{W_i}) \) is a compact covering of a compact Hausdorff space, (see Lemma 3), there is an integer \(n_1 \), such that for any \(n > n_1 \), \(f(\overline{W_n}) \) contains an open 2-cell \(C^2 \) of \(M \). Choose an integer \(n \), such that \(n > n_0 + n_1 \). Since \(H = f^{-1}f(\overline{W_n}) \) is compact by Lemma 11, the restriction \(f: H \to f(\overline{W_n}) \) is a closed map, so \(H \) is connected by Lemma 9. Thus \(H \) is a continuum in \(W \). There are a finite number of 2-disks in the 2-sphere \(S^2 \), say \(D_1, D_2, \ldots, D_d \), whose union is denoted by \(D = \bigcup_{i=1}^{d} D_i \), which satisfy that \(D \cap H = \emptyset \). We may assume that the boundary
∂D consists of a finite number of disjoint 1-spheres, say S_1, S_2, \ldots, S_d, that is $\partial D = \bigcup_{i=1}^{d} S_i$. For each j, the inverse set $f^{-1}(S_j) \subset W$, is a continuum by the same argument for H, so the union $f^{-1}(\partial D) = \bigcup_{j=1}^{d} f^{-1}(S_j)$ is compact in W and has less than $(s+1)$ components. Let Q be the component of the complement $W - (f^{-1}(\partial D))$, which contains a connected set H, then it is clear that ∂Q is compact in W and ∂Q has a finite number of components, which implies that the complement $(\partial^2 - Q)$ has a finite number of components, say E_1, E_2, \ldots, E_m, $(m \leq s)$, that is $\partial^2 - Q = \bigcup_{i=1}^{m} E_i$. Since f has a connected decomposition, we know that $f^{-1}(Q) = Q$, so the restriction $f:Q \to f(Q)$, is a quasi-compact map, because $f:Q \to f(Q)$ is a closed map. (See Lemma 9.) Consider the decomposition space of the 2-sphere S^2, $\phi : S \to K$, by its monotone decomposition defined by $G(S^2) = \{E_1, \ldots, E_m\} \cup \{f^{-1}(x) | x \in Q\}$, which is a Hausdorff space by Lemma 12. So the map $\phi(S^2) = K$ is closed by Lemma 10 and 9, which implies K is a locally connected separable metric space which is also compact and connected. (See Lemmata 7 and 8.) After all the monotone image K of a 2-sphere is a cactoid, by Theorem 3. The map $h=f \circ \phi : Q \to f(Q)$ is a homeomorphism because $f:Q \to f(Q)$ is quasi-compact, so the inverse image $h^{-1}(C^2)$ of an open 2-cell $C^2 \subset f(Q)$, is a non-degenerate connected subset of K, which has no cut point of
h^1(C^2), whence we may say that the cactoid K has at least one E_o-set, namely one 2-sphere O \subset K. There is a point p \in O, such that K \setminus \{p\} is connected, because generally any simple link or E_o-set in a connected set X contains at most a countable number of cut points of X. Now we define a connected subset K_o in K, by K_o = \phi(O) \setminus \{p\}.

K_o = \phi(O) \setminus \{p\} = K \setminus \{\phi(E_1), \ldots, \phi(E_m), p\}, in which the subset Z = O \setminus \{\phi(E_1), \ldots, \phi(E_m), p\} is closed and open, so we know that K_o = Z, that is, K is a 2-sphere O. The reason why the set Z is closed and open in K_o is clear that the closure of Z in K is contained in O, because the compact set O is closed in a Hausdorff space K and Z \subset O, which means that Z \cap K_o = Z, that is Z is closed in K_o. Next, the map from a 2-manifold Z without a boundary into a 2-manifold M, h: Z \to M, is injective, the image h(Z) is open in M, by Lemma 5, so h(Z) is also open in h(K_o). So Z = h^d(hZ) is open in K_o, because h|K_o is a homeomorphism. Finally the closed monotone map \phi : S^2 \to K is connected by Lemma 9, so the inverse image of a connected set K \setminus \phi^{-1}(y), where K is a 2-sphere and \phi^{-1}(y) is a point of \phi(O), is connected, that is, the complement S^2 \setminus \phi^{-1}(y) is connected, so w^{-1}(y) is connected.

§3. Theorem B. Let f: M_1 \to M_2 be a monotone map, Int f(M_1) \cup \phi, from a separable metric 2-manifold M_1 without a boundary into a 2-manifold.
M₂. If any element K of the monotone decomposition G of X, defined
by \(G = \{ f^{-1}(y) | y \notin f(M_1) \} \), is contained in a fundamental domain \(W \) of \(M_1 \),
Then the map \(f \) is closed, \(M \cong f(M_1) \) (homeomorphic) and \(f(M_1) \subset \text{int}M_2 \).

Proof. There is such a compact set \(A \) in \(M_1 \) that \(\text{int} f(A) \neq \emptyset \) in \(M_2 \) and \(f^{-1}f(A) = A \). Take a countable open cover \(N_i = \{ N_i \} \) of \(M_1 \) such that
the closure \(\overline{N_i} \) is compact and \(\overline{N_i} \subset N_{i+1} \) for each \(i = 1, 2, \ldots \), and a
2-disk \(D \) in the interior of \(f(M_1) \). Since \(\{ D \cap f(\overline{N_i}) | i = 1, 2, \ldots \} \) is a
compact cover of a 2-disk \(D \), there is an integer \(m \) such that the
interior of \((D \cap f(\overline{N_m})) \) in \(D \) is non-vacuous, that is \(\text{int} f(\overline{N_m}) \neq \emptyset \) in \(M_2 \),
whence we define \(A = f^{-1}f(\overline{N_m}) \), which is a compact set in \(M_1 \). There is a
fundamental domain \(W_0 \) such that the image \(fW_0 \) is open in \(\text{int}M_2 \), \(f^{-1}fW_0 = W_0 \),
and for any \(K \in G_{W_0} = \{ K \in G | K \subset W_0 \} \), the complement \((W_0 - K) \) is connected.
For any element \(K_{\nu} \in G \), we may choose such a fundamental domain \(W_{\nu} \)
containing \(K_{\nu} \) as \(f^{-1}fW_\nu = W_\nu \). Take a fundamental domain \(W \) of \(K_{\nu} \), then
\(\widehat{W} = \{ K_{\mu} \in G | K_{\mu} \subset W \} \) is an open set of \(M_1 \), because \(G \) is u.s.c. decomposi-
tion of \(M_1 \). Let \(W_{\nu} \) be the component of \(\widehat{W} \), which contains \(K_{\nu} \). It
is clear that \(W_{\nu} \) be a desired one. There is an open set \(V_{\nu} \) of \(M_1 \),
such that \(K_{\nu} \subset V_{\nu} \subset f^{-1}W_\nu \), because a metric space \(M_1 \) is normal. Define
\(\widehat{V}_{\nu} \) by \(\widehat{V}_{\nu} = \{ K \in G | K \subset V_{\nu} \} \), then we have \(A = f\cap (A \cap \overline{V}_{\nu}) = f\cap (A \cap \overline{V}_{\nu}) = f\cap (A \cap \overline{V}_{\nu}) \subset f\cap W_\nu \),
because \(A \) is compact. There is an integer \(m \), such that

-9-
Int \ f(A) \cap \text{Int} \ (f(A \cap 1W_{w_0})) = \emptyset$, in other words, \text{Int} \ (f_{w_0}) = \emptyset \text{ in } M_2. \text{ Now } W_0 = W_{w_0} \text{ is a desired one, by the Theorem A. For any } K_0 \in G, \text{ the complement } (W_0 - K_0) \text{ is connected. Take a path } \gamma : [0, 1] \rightarrow M_1, \text{ such that } \gamma(0) \in W_0 \text{ and } \gamma(1) \in K_0. \text{ Since the set } f^{-1}f([0, 1]) \text{ is compact and connected, there is a sequence of fundamental domain } W_0, W_1, \ldots, W_n = W_\mu \text{ such that } f^{-1}f([0, 1] \subseteq \bigcup_{i=0}^{n} W_i \text{ and } (\bigcup_{i=0}^{j} W_i) \cap W_\mu = \emptyset \text{ for } j = 0, 1, \ldots, n-1). \text{ It is clear that } W_0 \cap W_1 = f^{-1}f(W_0 \cap W_1), \text{ so } G_{\text{bi}} = \{K \in G | (W_0 \cap W_1) \subseteq K\} \text{ is a decomposition of the intersection } W_0 \cap W_1, \text{ which is monotone, u.s.c. and non-separating. Using Theorem 1, it is known that } (W_0 \cap W_1) \approx f(W_0 \cap W_1) \text{ which is in } \overset{o}{M}_2 \text{ and open in } M_2. \text{ It implies that } \text{Int } f_{W_1} \neq \emptyset. \text{ By Theorem A we know that } f(W_1) \text{ is open in } \overset{o}{M}_2 \text{ and for any } K \in G \subseteq \{K \in G | K \subseteq W_1\} \text{ (} W_1 - K \text{) is connected. After the same type of n arguments, we know that } (W_\mu - K_\mu) \text{ is connected. Finally by Theorem 2, the decomposition space } \phi : M_1 \rightarrow M_2 = M_1 / G \text{ is homeomorphic to } M_1, \text{ and the map } h = f^{-1} : M_1 \rightarrow M_2 \text{ is a homeomorphism, which implies that } M_1 \approx f(M_1), \text{ f}(M_1) \subseteq \overset{o}{M}_2 \text{ and the map } f : M_1 \rightarrow M_2 \text{ is quasi-compact. Since the map } f : M_1 \rightarrow M_2 \text{ is also u.s.c., the monotone map is closed, that is compact and connected.}
REFERENCES

Tokyo Metropolitan Junior College of Commerce (April, 1972)