On a distance function between differentiable structures*

Yoshihiro SHIKATA*

 Let M, N be smooth orientable manifolds with boundary and assume that the boundaries ôM, ôN are diffeomorphic each other through a diffeomorphism f.
 Denote by C(ôM), C(ôN) the collar neighbourhoods of ôM, ôN respectively and let

$$\alpha: \mathfrak{dM} \times [0,1) \to C(\mathfrak{dM}), \quad \beta: \mathfrak{dN} \times [0,1) \to C(\mathfrak{dN})$$

be the diffeomorphisms. Then the map which sends $\alpha(x, t)$ $(x \in \partial M, t \in [0, 1))$ into $\beta(F(x), 1-t)$, defines a diffeomorphism F = F(f) between $C(\partial M)$, $C(\partial N)$ and the identified space $M \subseteq F$ N turns out to be a smooth manifold. Lemma 1. Let M_1 , M_1 (i = 1, 2) be smooth manifolds with boundary and let f_1 be a diffeomorphism between ∂M_1 and ∂M_1 . If homeomorphisms $g_1 \colon M_1 \to M_2$ and $g_2 \colon N_1 \to N_2$ are diffeomorphic on some neighbourhoods of the closures of collar neighbourhoods $C(\partial M_1)$, $C(\partial N_1)$, then there are collar neighbourhoods $C(\partial M_2)$, $C(\partial N_2)$ and a diffeomorphism F_2 of $C(\partial M_2)$ onto $C(\partial N_2)$ so that $M_2 \subseteq F_2$ M_2 is homeomorphic to $M_1 \subseteq F_1$ M_1 by a homeomorphism $G_1 \subseteq G_2$ defined by

^{*}During this work, the author is supported by SFB at Bonn University, also he wishes to express his hearty thanks to Prof. Klingenberg for his constant encouragement.

$$g_1 \cup g_2 (x) = \begin{cases} g_1 (x), & \text{if } x \in M_1 \\ g_2 (x), & \text{if } x \in N_1 \end{cases}$$

Proposition 1 Let M_i , N_i , g_i (i = 1,2), f, be as in Lemma 1. Suppose moreover that with respect to Riemannian metrics β_i , δ_i (i = 1,2) on M_i , N_i respectively, the homeomorphism g_i (i = 1,2) satisfy that

$$\beta_{i}(x, y)/k_{i} \leq \delta_{i}(g_{i}(x), g_{i}(y)) \leq k_{i}\beta_{i}(x, y)$$
for $x, y \in M_{i}$,

then there exist Riemannian metrics τ_i on $M_i \in F_i$ N_i (i = 1,2) such that

$$\tau_1(x, y)/\max(k_1, k_2) \le \tau_2(g_1 g_2(x), g_1 g_2(y))$$

 $\le \max(k_1, k_2) \tau_1(x, y).$

Proof Take a real valued smooth function φ such that $0 \le \varphi(t) \le 1$, $\varphi(t) = 0$ for $t \le 0$, $\varphi(t) = 1$ for $t \ge 1$, $0 \le \varphi'(t)$ $\varphi'(t) = 0$ for $t \le 0$ or $t \ge 1$, $\varphi(1-t) = 1-\varphi(t)$

and let

$$\alpha_1: M_1 \times [0, 1) \to C(\partial M_1), \quad \beta_1: N_1 \times [0, 1) \to C(\partial N_1)$$
 be diffeomorphisms onto the collar neighbourhoods. Then $\alpha_2 = g_1 \cdot \alpha_1 \ ((g_1^{-1} \mid_{\partial M_2}), \text{id}), \quad \beta_2 = g_2 \cdot \beta_1 \ ((g_2^{-1} \mid_{\partial N_2}), \text{id})$ also are diffeomorphism of $\partial M_2 \times [0, 1), \quad \partial N_2 \times [0, 1)$ onto collar neighbourhoods $C(\partial M_2), \quad C(\partial N_2), \quad \text{respectively, moreover}$ and the identification map F_2 obtained from $\alpha_2, \quad \beta_2, \quad \text{and} \quad (g_2 \mid_{\partial N_1}) \cdot f_1 \cdot (g_1^{-1} \mid_{\partial M_2}) \quad \text{satisfies that}$ $g_2 \cdot F_1 = F_2 \cdot g_1 \quad \text{on} \quad C(\partial M_1).$

Define quadratic forms $\tilde{\tau}_i$ on $M_i \overset{\cup}{F_i} N_i$ (i = 1,2) by

$$(\widetilde{\mathcal{T}}_{\mathbf{i}})_{\mathbf{x}} = \begin{cases} (\widetilde{\mathcal{P}}_{\mathbf{i}})_{\mathbf{x}} &, & \mathbf{x} \in \mathbb{M}_{\mathbf{i}} - \mathbb{C}(\partial \mathbb{M}_{\mathbf{i}}), \\ \varphi(\mathbf{t}(\mathbf{x}))(\widetilde{\mathcal{P}}_{\mathbf{i}})_{\mathbf{x}} + (1 - \varphi(\mathbf{t}(\mathbf{x})))(\mathbb{F}_{\mathbf{i}} * \widetilde{\sigma_{\mathbf{i}}})_{\mathbf{x}}, & \mathbf{x} \in \mathbb{C}(\partial \mathbb{M}_{\mathbf{i}}), \\ (\widetilde{\sigma_{\mathbf{i}}})_{\mathbf{x}} &, & \mathbf{x} \in \mathbb{N}_{\mathbf{i}} - \mathbb{C}(\partial \mathbb{N}_{\mathbf{i}}). \end{cases}$$

where t(x) denotes the t-coordinate of x in the collar and \sim indicates the quadratic form of the metric) neighbourhood. Then it is easy to see that the well defined quadratic forms $\tilde{\tau}_i$ (i = 1,2) give Riemannian metrics τ_i on M_i F_i N_i . Since

$$\begin{split} \mathcal{F}_{1}(x, y)/k_{1} &\leq \mathcal{F}_{2}(g_{1}(x), g_{1}(y)) \leq k_{1} &\mathcal{F}_{1}(x, y) \\ \mathcal{S}_{1}(F_{1}(x), F_{1}(y))/k_{2} &\leq \mathcal{S}_{2}(\frac{F_{2}(x)}{2}, g_{2}F_{1}(x), g_{2}F_{1}(y)) \\ &\leq k_{2} \mathcal{S}_{1}(F_{1}(x), F_{1}(y)) \end{split},$$

it holds that

$$\begin{split} \widetilde{\mathcal{F}}_{1}/k_{1} & \prec g_{1}*\widetilde{\mathcal{F}}_{2} \prec k_{1}\widetilde{\mathcal{F}}_{1} , \\ \mathbb{F}_{1}*\widetilde{\mathcal{G}}_{1}/k_{2} & \prec g_{1}*(\mathbb{F}_{2}*\widetilde{\mathcal{G}}_{2}) = (g_{2}\mathbb{F}_{1})*\widetilde{\mathcal{G}}_{2} \prec k_{2}\mathbb{F}_{1}*\widetilde{\mathcal{G}}_{1} . \end{split}$$

Therefore the metrics τ , satisfy that

$$\widetilde{\tau}_1/\max(k_1, k_2) \prec g_1 * \widetilde{\tau}_2 \prec \max(k_1, k_2) \widetilde{\tau}_1$$

on $C(\partial M_i)$, thus from the construction of $g_1 \cup g_2$ we may conclude that

$$\tau_1(x, y)/\max(k_1, k_2) \le \tau_2((g_1 \cup g_2(x), (g_1 \cup g_2)(y)))$$

 $\le \max(k_1, k_2) \tau_1(x, y).$

Let M_i (i = 1,2) be smooth manifolds with metrics P_i (i = 1,2) and f be a map of M_1 into M_2 , then we define

$$\ell(f: \mathcal{G}_1, \mathcal{G}_2) \text{ by}$$

$$\ell(f: \mathcal{G}_1, \mathcal{G}_2) = \inf \left\{ k \ge 1 / \mathcal{G}_1(x,y) / k \le \mathcal{G}_2(f(x), f(y)) \le k \mathcal{G}_1(x,y), \text{ for any } x, y \in M \right\}$$

Definition Let $\Sigma_{\bf i}({\bf i}=1,2)$ be differential structures on a combinatorial manifold X represented by smooth manifolds ${\bf M}_{\bf i}({\bf i}=1,2)$ with Riemannian metrics ${\bf F}_{\bf i}({\bf i}=1,2)$. The distance ${\bf d}(\Sigma_1,\Sigma_2)$ between the differential structures is defined to be

 $d(\Sigma_1, \Sigma_2) = \log \left(\inf \ell(f: \beta_1, \beta_2)\right),$ where the infimum is taken over all the piecewise linear equivalences of of M_1 onto M_2 and all the Riemannian metrics β_1, β_2 . It is known ([S]) that d is actually a distance function.

Theorem 1 Let $\Sigma_{i,j}$ (i = 1,2, j = 1,2) be differential structures on cominatorial manifolds $X_{i,j}$ then it holds that

 $\begin{array}{l} \mathrm{d}(\sum_{1,1}^{\#}\sum_{1,2},\;\sum_{2,1}^{\#}\sum_{2,2}) \leq \max(\mathrm{d}(\sum_{1,1},\sum_{2,1}),\;\mathrm{d}(\sum_{1,2},\sum_{2,2})) \\ \mathrm{where}\;\sum_{i,1}^{\#}\sum_{i,2}^{}\;\mathrm{denotes}\;\mathrm{the}\;\mathrm{differential}\;\mathrm{structure} \\ \mathrm{obtained}\;\mathrm{by}\;\mathrm{the}\;\mathrm{connected}\;\mathrm{sum}. \end{array}$

Proof Represent $\Sigma_{i,j}$ by smooth manifolds $M_{i,j}$, and for $\varepsilon > 0$ take piecewise diffeomorphisms g_i of $M_{i,1}$ into $M_{i,2}$ and Riemannian metrics $\beta_{i,j}$ on $M_{i,j}$ so that $\log \ell(g_i; \beta_{i,1}, \beta_{i,2}) \leq d(\Sigma_{i,1}, \Sigma_{i,2}) + \varepsilon$

Assume that g_i are diffeomorphic on neighbourhoods of points $p_i \in M_{i,l}$, then after cutting out small imbedded disks around p_i , $M'_{i,j}$ and g_i turns out to satisfy the assumption of Proposition 1 with $k_i = \ell(g_i; f_{i,l}, f_{i,2})$.

Since identified manifolds Mi, J Wi, j represent the connected sum $\sum_{i,j} * \sum_{2,j}$, we have that

 $d(\sum_{1,1}^{*}\sum_{2,1}, \sum_{1,2}^{*}\sum_{2,2}) \le \max(\log k_1, \log k_2)$ finishing the proof.

Let $\Gamma_{\mathbf{k}}$ be the group of k-dimensional Corollary 1 homotopy spheres, then it holds that

$$d(\Sigma_1 + \Sigma_3, \Sigma_2 + \Sigma_3) = d(\Sigma_1, \Sigma_2)$$
for any $\Sigma \in \Gamma$, $(i = 1, 2, 3)$.

for any $\Sigma_i \in \Gamma_k$ (i = 1,2,3).

The subset $\Gamma_k(a)$ of Γ_k given by Corollary 2

$$\Gamma_{k}(a) = \left\{ \sum \in \Gamma_{k}/d(s^{k}, \sum) \le a \right\}$$

turns out to be a subgroup of Γ_k , where S^k denotes the standard k-sphere.

Corollary 3 Let M; (i = 1,2) be k-dimensional manifolds such that $M_2 \approx M_1 * \Sigma$ (diffeomorphic) with $\Sigma \in \Gamma_k(a)$, then $d(M_1, M_2) \leq a.$

Let Diff S^{k-1} denote the set of orientation Corollary 4 preserving diffeomorphisms onto itself and let π denote the projection of Diff s^{k-1} onto Γ_k , Take the usual metric $| \cdot |$ on S^{k-1} induced from that of $R^k \supset S^{k-1}$, then it holds that

$$d(s^k, \pi(f)) \leq \log \ell(f; ||, ||).$$

Extend f radically to a homeomorphism g of disk D^k onto itself which bounds the sphere S^{k-1} and apply Lemma 1 to disks D^k , g, id and f:

to obtain a homeomorphism $g \cup id$ and a diffeomorphism f_2 of ∂D^k onto itself which can be chosen to identity. Since it is obvious that

$$\ell(f; ||, ||) = \ell(g; ||, ||),$$

Proposition 1 yields that

$$d(s^{k-1} \bigcup_{F_2} s^{k-1}, \pi(f)) \le log \ell(f; ||,||).$$

2. The partial converse to Corollary 3 holds as in the following:

Proposition 2 Let f be a homeomorphism between k-dimensional manifolds M_i , (i = 1,2) with Riemannian metrics β_i (i = 1,2) and assume that f is diffeomorphic except finite number of points P_1 , ... $P_m \in M_1$ then $M_2 \approx M_1 \pm \sum (\text{diffeomorphic})$ with $\sum \in \Gamma_k(\log \ell(f; f_1, f_2))$. Proof Imbed small k-disks D_i around P_i , then the images $f(D_i)$ turn out to be summanifolds in N. Apply Lemma 1 to manifolds D_i , $f(D_i)$, diffeomorphism $f \mid_{\partial D_i}$ and homeomorphism id, f^{-1}

to obtain homotopy spheres $\Sigma_{i} = D_{i} \quad F_{1}$ $f(D_{i})$ and a homeomorphism id f^{-1} between the homotopy sphere and the sphere S_{i} . Because of Proposition 1 there are Riemannian metrics δ_{1}^{i} , δ_{2}^{i} on Σ_{i} , respectively, so that

$$\ell(id \circ f; \ \delta_1^i, \ \delta_2^i) \le \ell(f: \mathcal{P}_1, \mathcal{P}_2)$$
.

Therefore we have that

e have that
$$\sum_{i} \in \Gamma_{k}(f; f_{1}, f_{2})).$$

On the other, since it is easy to see that

$$M_2 \approx M_1 + \Sigma_1 + \Sigma_2 + \Sigma_m$$
,

This finishes the proof.

 $\Gamma_{k-m}^{(log \ell)} (1-(\ell^3(f)-\ell(f))^2)^{-1/4})$

Proof Munkres obstruction is obtained as follows: Take an m-simplex $\delta \in L$ and take trivializations of normal bundles as coordinate systems around δ and $f(\delta)$ so that the tubular neighbourhoods of δ , $f(\delta)$ are diffeomorphic to $\delta \times R^{k-m}$, $f(\delta) \times R^{k-m}$, respectively, then if $\delta > 0$ is sufficiently small, $\pi \cdot f \cdot i_p$ is a homeomorphism of the $\delta - disk$ D_{δ} around 0 into R^{k-m} for the inclusion $i_p : R^{k-m} \to p \times R^{k-m}$ and for the projection $\pi : f(\delta) \times R^{k-m}$ R^{k-m} thus the obstruction $\lambda(f)(\delta)$ is defined to be the homotopy sphere obtained by glueing the boundaries of D_{δ} and $\pi \cdot f \cdot i_p$ (D_{δ}) through $\pi \cdot f \cdot i_p$. Hence it is sufficient for the proof of Proposition 3 to compute ℓ ($\pi \cdot f \cdot i_p$; β_1 , β_2) (see Proposition 1) and because of the regularity of f at L ([M] p.526 (4)) the compulation is reduced to the following Assertion;

Assertion Let g be a map between manifolds N_i (i = 1,2) with Riemannian metrics δ_i (i = 1,2) satisfying that

then if g is differentiable along any vector of an m dimensional vector space $V \subset T_p(N_1)$, the angle θ between the vector exp_2^{-1} g exp_1 (y), 0 and the plane dg (V) is not too small, in fact θ satisfies that

$$\cos \theta < \kappa^3 - \kappa < 1$$
,

for any y in orthogonal linear subspace W to V, provided |y| is sufficiently small.

Proof of Assertion Taking an ℓ -disk D_{ℓ} of 0 in $T_p(N_1)$, we may assume that $g = \exp_2^{-1}g \cdot \exp_1$ also satisfies that

Let $x \in V$ be such that |x| = |y|, then it holds that $2 \langle f(x), f(y) \rangle = |f(x)|^2 + |f(y)|^2 - |f(x) - f(y)|^2$ $\langle \mathcal{K}(|x|^2 + |y|^2) - |x - y|^2 / \mathcal{K}$ $= 2|x|^2 (\mathcal{K} - 1/\mathcal{K})$

also it holds that

2
$$\langle f(x), f(y) \rangle \rangle 2 |x|^2 (1/_{k} - K),$$

therefore we have that

$$|\cos(f(x) 0, f(y) 0)| < \kappa^3 - \kappa$$
,

finishing the proof of Assertion.

Thus taking the regularity of f into consideration, may conclude that by an application of Assertion to $g = f \cdot i_p$,

$$\kappa^{-1}(1-(\kappa^3-\kappa)^2)^{1/2} \le g_2(\pi fi_p(x), \pi fi_p(y))/g_1(x,y) \le \kappa$$

On a small disk around 0, completing the proof of Proposition 3.

- 3. The method in 1, 2 applies to obtain a weak estimation of the pinching of a exotic sphere Let M_1 , M_2 be combinatorially equivalent compact manifolds, then according to the construction of Hirch-Munkres (M), we may have a sequence of compact manifolds L_i (i=1...k) such that
 - i) L_i are combinatorially equivalent to M₁, M₂.
 - ii) $L_1 = K_1$, $L_k = M_2$ (diffeomorphic).
- iii) L_{i+1} is obtained by attaching of $\Sigma^j \times I^{n-j}$ to L_i through a certain attaching map. ($\Sigma^j \in \Gamma^j$).

Now suppose $\rm M_1$, $\rm M_2$ have different (integral) Pontrjagin class, then for some i, $\rm L_i$, $\rm L_{i+1}$ have also different Pontrjagin classes. Since we know that manifolds having different Pontrjagin classes are of distance $\rm 2\ 1/2\ log\ 3/2\ (S_2)$, we have that

(1)
$$1/2 \log 3/2 \le d(L_i, L_{i+1})$$

 $\le \max(d(L_i, L_i), d(S^j \times I^{n-j}, \Sigma^j \times I^{n-j}))$
 $\le d(S^j, \Sigma^j).$

Here the last inequality follows from an easily proved Lemma below:

Lemma 2 If M_i , N_i denote a pair of combinatorially equivalent compact manifolds (i=1, 2) then

$$d(M_1 \times M_2, N_1 \times N_2) \leq \max(d(M_1, N_1), d(M_2, N_2))$$

On the other as is improved by Karcher (unpublished, see also (S₃)) δ -pinched Riemannian manifold M $_{\delta}$ (δ \geq 9/16) has distance $4(1-\sqrt{\delta})$ from the standard sphere S, therefore if the exotic sphere Σ in (1) is expressed as a δ -pinched manifold M $_{\delta}$, δ must satisfy that

$$1/2 \log 3/2 \le 4(1 - \sqrt{\delta}).$$

hence

thus we may conclude that a certain exotic sphere of dimension \$ 16 which appears in the obstruction chain to smoothing a combinatorial equivalence can not be pinched by 0.64, because we know that there are compact 16 manifolds having different Pontrjagin classes.

References

- (M) J. Munkres On the smoothing of.....

 Ann. of Math. '60 521-554
- (S) Y. Shikata On a distance function....

 Osaka J, Math. '66 293-301
- (S₂) Y. Shikata On Pontrjagin classes.....

 J. of Math. Osaka City Univ. '63 73-86
- (S₃) Y. Shikata On the differentiable pinching Osaka J. Math. '67 279-287