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On a distance function between differentiable structures*
Yoshihiro SHIKATA Y

1. Let M, N be smooth orientable manifolds with
boundary and assume that the boundaries 6M,‘(3N are
diffeomorphic each other through a diffeomorphism f.
Denote by C(aM), C(dN) the collar neighbourhoods of oM,

¢ N respectively and let

o« : M xlo.1) - claM), p N« [lo.1) - c(oN)

be the diffeomorphisms. Then the map which sends x(x, t)
(x ¢ 2M, t ¢ [0, 1)) into p(F(x), 1-t), defines a
diffeomorvhism F = F(f) between C(eM), C(3N) and the

identified space M \% N turns out to be a smooth manifold.

- Lemma 1. Let M19 Ni (i = 1,2) be smooth manifolds with

boundary and let fl be a diffeomorphism between <3Ml and
aNl. If homeomorphisms g1: Ml - M, and gy N1 - N, are
diffeomorphic on some neighbourhoods of the closures of
collar neighbourhoods c(aml), c(aml), then there are collar
neighbourhoods C(aMZ), C(aNz) and a diffeomorphism F, of

C(GMZ) onto C(BNZ) so that I, \§2 N, is homeomorphic to

Ml‘;l N, by a homeomorphism gl\J g, defined by

*)
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g Y e (x) = { g (), if x €M
g, (x),. Cif x eNy
Proposition 1 Let M;, Ny, g5 (i =1,2), £f, be as in
Temma 1. Suppose moreover that with respect to

Riemannian metrics 'fi . di (i =1,2) on Mi’ Ni respectively,

the homeomorphism g (i = 1,2) satisfy that

Filx, ¥)/k < ‘{i(gi(X), gi(¥)) £k 85(x, )
for ‘x, y € Mi ’

Y

then there exist Riemannian metrics Ty on M3 Ni_(i =1,2)
. i '
such that
Ty (x, ¥)/max(ky, k,) & Ty(eVe,(x), &8, (y))
< max(k]_’ kz)?l(X: Y)o
Proof Take a real valued smooth function J such that

<o(t) €1, ¢(t) =0 fort <0, p(t) =1 for ¢t 2 1,

< 9(t) ¢(t) =0 fort <0 or 21,
$(1-1)=1- ¢t
and let

o : M ox [0, 1) = c(aM,), /51: N, x [o, 1)-,'c(aN1)

be diffeomorphisms onto the collar neighbourhoods. Then -

_ o -1 : _ ~ -1 :
«2 - gl 0(1 ((gl IOMZ)’ ld): Pz = g2°(31 <(g2 ,laNz)s ld)
also are diffeomorphism of 3M, x [0, 1), oW, x (0, 1)
onto collar neighbourhoods C(OM ), C(aN ), respectively, morecver
et the identification map F2 obtained from.dz, F2’ and
(g2[ a1, ) £y (g~ HBM ) satisfies that

g2 e Fl = F2 . gl On C(le).
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Define quadratic forms T3 on My ‘g Ny, (4= 1,2) by
R i .

(J";i)X B | , x € M-C(aM,y),
(”Zi)X = w(t(X))(fi)X + (1—(P(t(x)))(Fi*gi)X, x € c(dmy),
(?i)}c , X € N;-C(dN;).

where t(x) denotes the t-coordinate of x in the collar

Cand . ~ indicates the quadralic form of Mﬂg
neighbourhood! Then it is easy to see that the well

o~
defined quadratic forms T i (i = 1,2) give Riemannian
\ . ‘
7 Ni' ~ Since

metrics T, on M,

Pix, 9/ < Po(g(x), &(¥)) ¢k Fq(x, ¥)
< k, 6 (P (x), P (y))

it holds that
o~ ~

~
F1/ky R g*fPp X K Py
~ ~
Fo% G o /k, L g% (P %5 \ _ ~ <~
1 1/ %2 17V 2 2)_(g2Fl)*62—<k2Fl*61.
Therefore the metrics 'Ci satisfy that

T

Tl/ﬁax(kl, kz)‘% g% Ty X max(kl, k 1

5)
on C(bMi), thus from the construction of gl\J g, we may

conclude that
T (x y)/mex(ly, Xy) < '12.((g1"g2(X), (g,Y8,) ()
< max(kl, k2) Zl(x, v).

Let M (i = 1,2) be smooth manifolds with metrics

gPi(i = 1,2) and f be a map of M, into M,, then we define
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g (f: ‘Pl’ 5 2) by
L (£ ‘fl' f 2) = inf{k 2 l/fl(x,y)/k éfz(f(x), f(Y))
< kfl(x, ¥), for any x, y € M_}
Definition (iet Zi(i = 1,2) be differential structures

on a combinatorial manifold X represented by smooth
manifolds Mi(i = 1,2)‘ with Riemannian metrics fl(1= 1,2).
The distance 4( Zl’ ZZ)' between the differential structures
is defined to be

a(Z 4, L,) = log (1nf £ (£ J’l,f’)) ,
where the infimum is taken over all the plecew:Lse llnear

equlvalencesUde of Ml onto MZ and all the Riemannian metrics

‘Pl'JJZ' It is known ([S]) that d is actually a distance
function. »
Theorem 1 Let L | j=1, 22 be differential

1,3 &,Bw
structures on cominatorial manifolds X , then it holds that-

a(Ly %L 5 Ly 57 Zz,‘z) ¢ max(a(2y 1,25 1), d(zl,Z’ 2,2))

where ] i,l# Zi , denotes the di.fferential structure

?

obtained by the connected sum.

Proof Represent Zl 3 by smooth manlfolds M 5 and for
b 9
&> 0 take piecewise diffeomorphisms g. of M, into M,
>1 i,1 i,2
and Riemannian metrics J’l j ok Ml 3 so that

1°g5(gi’ Pigr$i0) ¢ A2y g, Zio)+ 8
Assume that g5 are diffeomorphic on neighbourhoods of

points .Pi € Ml 19 then after cut‘clng out small imbedded

disks around Pi’ i j and g; turns out to satisfy the
9

assumption of Proposition 1 with k, = e(gi; ‘Pi,l’ ‘fi )

9
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Since identified manifolds Mi 3 Yo represent the -

2,3

connected sum ) , .* L, ., we have that
i, 2,3

a
a( Zl,l"ZQ,l’ 21,2 2.2’2) < max(log kl’ log kz)
finishing the proof.

Corollary 1 Let Fk be the group of k-dimensional

homotopy spheres, then it holds that
a(Iy+ L5 Zp425) =2 (2, 2,)
for any Zi el"k (i =1,2,3).
Corollary 2 The subset I’k(a) of 'Fk given by
[ (a) ={Zel /a(s, 7)< a)
turns out to be a subgroup of I'k’ where Sk denotes the

standard k-sphere.

Corollary 3 Let Mi (i =1,2) be k—dimensional‘manifolds

such that M, ~ M, # L (diffeomorphic) with ZG.I;:(a), then
d(Ml’ Mz) < a.
Corollary 4 Let Diff Sk—l denote the set of orientation

preserving diffeomorphisms onto itself and let W denote'
the projection of Diff Sk—1 onto [Wk" Take the usual

metric | | on S¥°1 induced from thet of RX D X1, then

it holds that
a(sc, m(£)) ¢ log L(£511, 11 ).
Proof Extend f radigally to a homeomorphism g of disk

k k-1

D" onto itself which bounds the sphere S and apply

Lemma 1 to disks Dk, g, id and f:

¥ > apf — I L3k ¢ ok
|- a |
¥ ¥
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to obtain a homeomorphism gV id and a diffeomorphism

' ' be v
o of BDk onto itself which can be chosen tdfﬁdentity.

Since it is obvious that
L(gs 11,01 0).= Lgs 11, 11D,
Proposition 1 yields that

a(s¥ Y L w(e) ¢ 1log L(g£5 ) 1,1 1).

F

2
2. The partial converse to Corollary 3 holds as in the
following:
Proposition 2 Let £ be a homeomorphism between k-

dimensional manifolds Mi’ (i = 1,2) with Riemannian
metrics‘\Pi( i = 1,2) and assume that f is diffeomorphic
except finite number of points Py, ... P, € M; then

M, = Mj# L(diffeomorphic) with Z¢ [ (log L(£5 £4, £5)) |

2
Proof  Imbed small k-disks Di around Pi, then the images

f(Di) turn out to be summanifolds in W. Apply Lemma 1 to

manifolds Di, f(Di), diffeomorphism f [aD and homeomorphism
' i

R -1
id, £
- £ |ep, .

| D, > 3D i Aa(f(ni))‘ < £(D;)

| 1a £

id

D, > 3D, . « 9D C D,

to obtain homotopy spheres Zi = D; }{ f(Di) and a homeo-

1

1 between the homotopy sphere and the sphere

morphism id Y £~
Si' Because of Proposition 1 there are Riemannian metrics
Kll, 621 on Zi’ Si’ respectivély, so that

f1 U . i i .

L(;d £5 617, 6,0) ¢ Lg: Py, Py)
Therefore we have tha
Wi,
Iy e D00 ¢q0 £

On the other, since it is easy to see that

My % Myp Z 4 22_ - *Zm,

This finishes the proof.
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In general concerning the first obstruction of
Munkres ([}]) to smoothing f, we obtain the following:

Proposition 3 Tet M; (i = 1,2) be smoothly triangulated

manifolds with Remannian metrics fi (i =1,2) and let L

be a m-dimensional subcomplex of Ml' If a homeomorphism

f of M; onto M, is diffeomorphic mod. I, and if ¢(f: fl"PZ)
<, = 1,32 for the positive root {, of x0-x-1 = 0, then

the first obstruction chain A(f) of lMunkres %o smoothing

f lies in |

oy
rk_mkhiuf) (1-(L3(2) - £ (20274

Proof Mﬁnkres obstruction is obtained as follows:

Take an m-simplex 616 L and'%ake trivializations of normal
bundles as cobrdinate systems around § and f(6) so that

the tubular neighbourhoods of 4 , T(§) are diffeomorphic

to dx R¥®, 1£(¢) x R* ™, respectively, then if &>0

is sufficiently small, ﬁ“f° ip is a homeomorphism of the

&~ disk Dg around O into RXT

for the inclusion iP:

R » px R ~ and for the projection 7: £(d¢) x g
RE™ thus the obstruction A(£)({) is defined to be the
homotopy sphere obtained by glueing the boundaries of’ |
D, and 7-f °ip (Dé) through 7-f- ip.

Hence it is sufficient for the proof of Proposition 3

to compute [ ( -f e ip; ‘Pl’ \Pz) (see Proposition 1) and
because of the regularity of f at L ([M] p.526 (4)) fﬁe

compulation is reduced to the following Assertion;
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Assertion Let g be a map betweén manifolds N; (i =1,2)
with Riemannian metrics ¢; (i = 1,2) satisfying that

L (g: &1’ 62)<K<£°

theﬁ if g is differentiable along any vector of an m
dimensional vector spacé v C ?P(Nl)! the angle 6 Dbetween
the vector expz-% g expq (v), 0 and the plane dg (V) is

not too small, in fact © satisfies that

| cos & < Ko- K <1 .

for any ¥y in‘orthogcnal linear subspace W ﬁq V; provided

ly! is sufficiently small.

‘Proof of Assertib# ) VTaking an € -disk D, of O in Tp(Nl),

we may assume that 'é = expz—%g-expl 'also satisfies that
(D0 ERENEPRE AT T
Let x € V be such that (x| = [y], then it holds that
2 <2(x), £ = 1212+ 122 - |26 - £(1)] P
< WP ary®) - x - 31k
= 2(x|% (K- 1/x)
also it holds that ‘ o ,
2 <£(x), £y)> > 2[x1? (W, - Kk)»
therefore we have that |

,cos (f(x) 0, £(y) 0)] < K? - K

finishiﬁg the proof of Assertion.
Thus taking the regularity of f into consideration, "may
conclude that by an application of Assertion to g = f tip,

K 1-03-02) 2 p L (mri(x), e (1)1 (x,y) £ K



On a small disk around O, completing the proof of

Proposition 3.

3. The method in 1, 2 applies to obtain a weak estimation

of the pinching of a exotic sphere. Let M M2 be combina-

1’
torially equivalent compact manifolds, then according to
the construction of Hirch-lunkres (II), we may have a
sequence of compact manifolds Li (i=1...k) such that
i) I; are combinatorially equivalent to MMy, M,.
ii) Ly =My, Iy =1, (diffeomorphic).
iii) L;,q is obtained by attaching of Zj x 19 o
| Li through a certain attaching map. (ij € [’j).
Now suppose M;, M, have different (integral) Pontrjagin
dlass, then fdf some i’Li’ Li+1 have also different -
,Pontrjagin classes. Since we know that manifolds having
differenf Pontrjagin classes are of distance 2 1/2 log 3,2

‘(82), we have that
(1) 1/2 log 3/2

 Ta

AT, Iy49)
¢ max(a(L;, I,), a(s? x 179, £ x 179))
¢ a(s?, 19y,
Here the last inequality follows froﬁ an easily proved
Lemma below:
Lemma 2 If Mi’ Ni denote a pair of combinatorially

equivalent compact manifolds (i=1, 2) then

d(M1 x M,, Nl x NZ) £ max (d(Ml, Nl), d(Mz, Nz))
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On the other as is improved by Zarcher (uﬁpublishéd,
see aiso (85)) 5 -pinched Riemannian manifold M6~(6 2 9/16)
- has distance 4(1-y{§ ) from the standard sphere S, there-
Rfore if the exotic sphere Zj in (1) is;exprsssed as a 6-

pinched manifold Mg, § must satisfy that

1/2 log 3/2 ¢ 4(1-3).
hence
§ ¢ 0.64 ,
thus we may conclude that a certain exotic sphere of
dimension ¢ 16 which appears in thé>obstruction chain to
smoothing a combinatorial equivaleﬁce cénbnot be pinched
by 0.64, because we know that there are compact 16 mani-

folds having different Pontrjagin classes.
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