On a distance function between differentiable structures

Yoshihiro SHIKATA

1. Let M, N be smooth orientable manifolds with boundary and assume that the boundaries ∂M, ∂N are diffeomorphic each other through a diffeomorphism f. Denote by $C(\partial M)$, $C(\partial N)$ the collar neighbourhoods of ∂M, ∂N respectively and let

$$
\alpha : \partial M \times [0, 1) \to C(\partial M), \quad \beta : \partial N \times [0, 1) \to C(\partial N)
$$

be the diffeomorphisms. Then the map which sends $\alpha(x, t)$ ($x \in \partial M$, $t \in [0, 1)$) into $\beta(F(x), 1-t)$, defines a diffeomorphism $F = F(f)$ between $C(\partial M)$, $C(\partial N)$ and the identified space $M \cup^F N$ turns out to be a smooth manifold.

Lemma 1. Let M_i, N_i ($i = 1, 2$) be smooth manifolds with boundary and let f_i be a diffeomorphism between ∂M_i and ∂N_i. If homeomorphisms $g_1 : M_1 \to M_2$ and $g_2 : N_1 \to N_2$ are diffeomorphic on some neighbourhoods of the closures of collar neighbourhoods $C(\partial N_1)$, $C(\partial N_2)$, then there are collar neighbourhoods $C(\partial M_2)$, $C(\partial N_2)$ and a diffeomorphism F_2 of $C(\partial M_2)$ onto $C(\partial N_2)$ so that $M_2 \cup_{F_2} N_2$ is homeomorphic to $M_1 \cup_{F_1} N_1$ by a homeomorphism $g_1 \cup g_2$ defined by

During this work, the author is supported by SPB at Bonn University, also he wishes to express his hearty thanks to Prof. Klingenberg for his constant encouragement.
\[g_1 \cup g_2 (x) = \begin{cases} g_1 (x), & \text{if } x \in M_1 \\ g_2 (x), & \text{if } x \in N_1 \end{cases} \]

Proposition 1
Let \(M_i, N_i, g_i \) (\(i = 1, 2 \)), \(f \), be as in Lemma 1. Suppose moreover that with respect to Riemannian metrics \(\mathcal{P}_i, \sigma_i \) (\(i = 1, 2 \)) on \(M_i, N_i \) respectively, the homeomorphism \(g_i \) (\(i = 1, 2 \)) satisfy that

\[\mathcal{P}_i(x, y)/k_i \leq \sigma_i(g_i(x), g_i(y)) \leq k_i \mathcal{P}_i(x, y) \]

for \(x, y \in M_i \),

then there exist Riemannian metrics \(\tau_i \) on \(M_i \cup N_i \) (\(i = 1, 2 \)) such that

\[\tau_1(x, y)/\max(k_1, k_2) \leq \tau_2(g_1 \cup g_2(x), g_1 \cup g_2(y)) \leq \max(k_1, k_2) \tau_1(x, y). \]

Proof
Take a real valued smooth function \(\varphi \) such that

\[0 \leq \varphi(t) \leq 1, \quad \varphi(t) = 0 \text{ for } t \leq 0, \quad \varphi(t) = 1 \text{ for } t \geq 1, \]

\[0 \leq \varphi'(t) \quad \varphi'(t) = 0 \text{ for } t \leq 0 \text{ or } t \geq 1, \]

\[\varphi(1-t) = 1 - \varphi(t) \]

and let

\[\alpha_1: M_1 \times [0, 1) \to C(\partial M_1), \quad \beta_1: N_1 \times [0, 1) \to C(\partial N_1) \]

be diffeomorphisms onto the collar neighbourhoods. Then

\[\alpha_2 = g_1 \circ \alpha_1 \left((g_1^{-1}|_{\partial M_2}, \text{id}) \right), \quad \beta_2 = g_2 \circ \beta_1 \left((g_2^{-1}|_{\partial N_2}, \text{id}) \right) \]

also are diffeomorphism of \(\partial M_2 \times [0, 1), \partial N_2 \times [0, 1) \)

onto collar neighbourhoods \(C(\partial M_2), C(\partial N_2) \), respectively, moreover, and the identification map \(F_2 \) obtained from \(\alpha_2, \beta_2, \) and

\[(g_2|_{\partial N_1})^{-1} \circ f_1 \circ (g_1^{-1}|_{\partial M_2}) \]

satisfies that

\[g_2 \circ F_1 = F_2 \circ g_1 \text{ on } C(\partial M_1). \]
Define quadratic forms $\tilde{\tau}_i$ on $M_i \cup_{F_i} N_i$ ($i = 1, 2$) by

$$
(\tilde{\tau}_i)_x = \begin{cases}
(P_i)_x, & x \in M_i - C(\partial M_i), \\
\varphi(t(x))(P_i)_x + (1 - \varphi(t(x)))(F_i \ast \tilde{\sigma}_i)_x, & x \in C(\partial M_i), \\
(\tilde{\sigma}_i)_x, & x \in N_i - C(\partial N_i).
\end{cases}
$$

where $t(x)$ denotes the t-coordinate of x in the collar (and \sim indicates the quadratic form of the metric) neighbourhood. Then it is easy to see that the well-defined quadratic forms $\tilde{\tau}_i$ ($i = 1, 2$) give Riemannian metrics τ_i on $M_i \cup_{F_i} N_i$. Since

$$
\begin{align*}
\mathcal{P}_1(x, y)/k_1 & \lesssim \mathcal{P}_2(\mathcal{g}_1(x), \mathcal{g}_1(y)) \lesssim k_1 \mathcal{P}_1(x, y) \\
\mathcal{C}_1(F_1(x), F_1(y))/k_2 & \lesssim \mathcal{C}_2(\mathcal{g}_2(F_1(x), \mathcal{g}_2(F_1(y))) \\
& \lesssim k_2 \mathcal{C}_1(F_1(x), F_1(y)),
\end{align*}
$$

it holds that

$$
\begin{align*}
\mathcal{P}_1/k_1 & \lesssim \mathcal{g}_1 \ast \mathcal{P}_2 \lesssim k_1 \mathcal{P}_1, \\
F_1 \ast \mathcal{C}_1/k_2 & \lesssim \mathcal{g}_2 \ast (F_1 \ast \mathcal{C}_2) = (g_2 \ast F_1) \ast \mathcal{C}_2 \lesssim k_2 \mathcal{P}_1 \ast \mathcal{C}_1.
\end{align*}
$$

Therefore the metrics τ_i satisfy that

$$
\tilde{\tau}_i/\max(k_1, k_2) \lesssim \mathcal{g}_1 \ast \tilde{\tau}_2 \lesssim \max(k_1, k_2) \tilde{\tau}_i
$$

on $C(\partial M_i)$, thus from the construction of $g_1 \cup g_2$ we may conclude that

$$
\begin{align*}
\tau_1(x, y)/\max(k_1, k_2) & \lesssim \tau_2((g_1 \cup g_2)(x), (g_1 \cup g_2)(y)) \\
& \lesssim \max(k_1, k_2) \tau_1(x, y).
\end{align*}
$$

Let M_i ($i = 1, 2$) be smooth manifolds with metrics \mathcal{P}_i ($i = 1, 2$) and f be a map of M_1 into M_2, then we define
$\ell(f; \mathcal{P}_1, \mathcal{P}_2)$ by

$$
\ell(f; \mathcal{P}_1, \mathcal{P}_2) = \inf \left\{ k \geq 1 / \mathcal{P}_1(x, y) / k \leq \mathcal{P}_2(f(x), f(y)) \leq k \mathcal{P}_1(x, y), \text{ for any } x, y \in M \right\}
$$

Definition Let $\Sigma_i (i = 1, 2)$ be differential structures on a combinatorial manifold X represented by smooth manifolds $M_i (i = 1, 2)$ with Riemannian metrics $\mathcal{P}_i (i = 1, 2)$. The distance $d(\Sigma_1, \Sigma_2)$ between the differential structures is defined to be

$$
d(\Sigma_1, \Sigma_2) = \log \left(\inf \ell(f; \mathcal{P}_1, \mathcal{P}_2) \right),
$$

where the infimum is taken over all the piecewise linear equivalences of M_1 onto M_2 and all the Riemannian metrics $\mathcal{P}_1, \mathcal{P}_2$. It is known ([S]) that d is actually a distance function.

Theorem 1 Let $\Sigma_i, j (i = 1, 2, j = 1, 2)$ be differential structures on combinatorial manifolds X_i, then it holds that

$$
d(\Sigma_{1,1} \# \Sigma_{1,2}, \Sigma_{2,1} \# \Sigma_{2,2}) \leq \max(d(\Sigma_{1,1}, \Sigma_{2,1}), d(\Sigma_{1,2}, \Sigma_{2,2}))
$$

where $\Sigma_{1,1} \# \Sigma_{1,2}$ denotes the differential structure obtained by the connected sum.

Proof Represent Σ_i, j by smooth manifolds M_i, j, and for $\varepsilon > 0$ take piecewise diffeomorphisms g_i of $M_{i,1}$ into $M_{i,2}$ and Riemannian metrics $\mathcal{P}_{i,j}$ on M_i, j so that

$$
\log \ell(g_i; \mathcal{P}_{i,1}, \mathcal{P}_{i,2}) \leq d(\Sigma_{i,1}, \Sigma_{i,2}) + \varepsilon
$$

Assume that g_i are diffeomorphic on neighbourhoods of points $p_i \in M_{i,1}$, then after cutting out small imbedded disks around p_i, M_i, j and g_i turns out to satisfy the assumption of Proposition 1 with $k_i = \ell(g_i; \mathcal{P}_{i,1}, \mathcal{P}_{i,2})$.
Since identified manifolds $M_{i,j} \cup M_{j,2}$ represent the connected sum $\Sigma_{i,j} \# \Sigma_{2,j}$, we have that

\[d(\Sigma_{1,1} \# \Sigma_{2,1}, \Sigma_{1,2} \# \Sigma_{2,2}) \leq \max(\log k_1, \log k_2) \]

finishing the proof.

Corollary 1 Let Γ_k be the group of k-dimensional homotopy spheres, then it holds that

\[d(\Sigma_1 + \Sigma_3, \Sigma_2 + \Sigma_3) = d(\Sigma_1, \Sigma_2) \]

for any $\Sigma_i \in \Gamma_k$ ($i = 1, 2, 3$).

Corollary 2 The subset $\Gamma_k(a)$ of Γ_k given by

\[\Gamma_k(a) = \{ \Sigma \in \Gamma_k / d(s^k, \Sigma) \leq a \} \]

turns out to be a subgroup of Γ_k, where s^k denotes the standard k-sphere.

Corollary 3 Let M_i ($i = 1, 2$) be k-dimensional manifolds such that $M_2 \sim M_1 \neq \Sigma$ (diffeomorphic) with $\Sigma \in \Gamma_k(a)$, then

\[d(M_1, M_2) \leq a. \]

Corollary 4 Let $\text{Diff } S^{k-1}$ denote the set of orientation preserving diffeomorphisms onto itself and let π denote the projection of $\text{Diff } S^{k-1}$ onto Γ_k. Take the usual metric $||$ on S^{k-1} induced from that of $R^k \cup S^{k-1}$, then it holds that

\[d(s^k, \pi(f)) \leq \log \ell(f; ||, ||). \]

Proof Extend f radially to a homeomorphism g of disk D^k onto itself which bounds the sphere S^{k-1} and apply Lemma 1 to disks D^k, g, id and f:

\[
\begin{array}{c}
D^k \cup \partial D^k \xrightarrow{f} \partial D^k \subset D^k \\
\downarrow g \quad \quad \quad \quad \quad \quad \downarrow \text{id}
\end{array}
\]

to obtain a homeomorphism $g \cup \text{id}$ and a diffeomorphism \mathbb{P}_2 of ∂D^k onto itself which can be chosen to identity. Since it is obvious that

$$\ell(f; \|, \|, \|) = \ell(g; \|, \|, \|),$$

Proposition 1 yields that

$$\partial(s_{k-1} \cup \mathbb{P}_2 \cup s_{k-1}, \varepsilon(f)) \leq \log \ell(f; \|, \|, \|).$$

2. The partial converse to Corollary 3 holds as in the following:

Proposition 2 Let f be a homeomorphism between k-dimensional manifolds M_i, $(i = 1, 2)$ with Riemannian metrics ρ_i $(i = 1, 2)$ and assume that f is diffeomorphic except finite number of points $P_1, \ldots, P_m \in M_1$ then

$$M_2 \cong M_1 \ast \Gamma \ast \bigcup_k \ell(s_1, \mathcal{J}_1, \mathcal{J}_2).$$

Proof Imbed small k-disks D_i around P_i, then the images

$$f(D_i)$$

turn out to be summanifolds in N. Apply Lemma 1 to

manifolds $D_i, f(D_i)$, diffeomorphism $f \mid \partial D_i$ and homeomorphism f^{-1}

$$\begin{array}{ccc}
D_i \cup \partial D_i & \overset{f \mid \partial D_i}{\longrightarrow} & \partial(f(D_i)) \\
\downarrow \text{id} & & \downarrow f^{-1} \\
D_i \cup \partial D_i & \overset{id}{\longrightarrow} & \partial D_i \subset D_i
\end{array}$$

to obtain homotopy sphere; $\Sigma_i = D_i \cup f(D_i)$ and a homeomorphism $\text{id} \cup f^{-1}$ between the homotopy sphere and the sphere S_i. Because of Proposition 1 there are Riemannian metrics σ_i, σ_2 on Σ_i, S_i, respectively, so that

$$\ell(\text{id} \cup f; \sigma_1, \sigma_2) \leq \ell(f; \mathcal{J}_1, \mathcal{J}_2).$$

Therefore we have that

$$\ell \in \Gamma \ast (f; \mathcal{J}_1, \mathcal{J}_2).$$

On the other, since it is easy to see that

$$M_2 \cong M_1 \ast \Sigma_1 \ast \Sigma_2 \ast \cdots \ast \Sigma_m,$$

This finishes the proof.
In general concerning the first obstruction of Munkres ([M]) to smoothing f, we obtain the following:

Proposition 3 Let M_i ($i = 1, 2$) be smoothly triangulated manifolds with Remannian metrics ρ_i ($i = 1, 2$) and let L be a m-dimensional subcomplex of M_1. If a homeomorphism f of M_1 onto M_2 is diffeomorphic mod. L, and if $\ell(f; \mathcal{F}_1, \mathcal{F}_2) < \ell_0 = 1.32$ for the positive root ℓ_0 of $x^3 - x - 1 = 0$, then the first obstruction chain $\lambda(f)$ of Munkres to smoothing f lies in

$$\Gamma_{k-m}(\ell(f)(1-(\ell^2(f)-\ell(f))^2)^{-1/4})$$

Proof Munkres obstruction is obtained as follows:

Take an m-simplex $\omega \in L$ and take trivializations of normal bundles as coordinate systems around ω and $f(\omega)$ so that the tubular neighbourhoods of ω, $f(\omega)$ are diffeomorphic to $\omega \times R^{k-m}$, $f(\omega) \times R^{k-m}$, respectively, then if $\ell > 0$ is sufficiently small, $\pi \cdot f \cdot i_p$ is a homeomorphism of the ℓ-disk D_ℓ around 0 into R^{k-m} for the inclusion $i_p: R^{k-m} \to p \times R^{k-m}$ and for the projection $\pi: f(\omega) \times R^{k-m}$ R^{k-m} thus the obstruction $\lambda(f)(\omega)$ is defined to be the homotopy sphere obtained by gluing the boundaries of D_ℓ and $\pi \cdot f \cdot i_p(D_\ell)$ through $\pi \cdot f \cdot i_p$.

Hence it is sufficient for the proof of Proposition 3 to compute $\ell(\pi \cdot f \cdot i_p; \mathcal{F}_1, \mathcal{F}_2)$ (see Proposition 1) and because of the regularity of f at L ([M] p.526 (4)) the computation is reduced to the following Assertion;
Assertion Let g be a map between manifolds N_i ($i = 1, 2$) with Riemannian metrics \mathcal{G}_i ($i = 1, 2$) satisfying that

$$\ell (g; \mathcal{G}_1, \mathcal{G}_2) < \kappa < \ell_0$$

then if g is differentiable along any vector of an m-dimensional vector space $V \subset T_p(N_1)$, the angle Θ between the vector $\exp_2^{-1} g \cdot \exp_1 (y), 0$ and the plane $dg(V)$ is not too small, in fact Θ satisfies that

$$\cos \Theta < \kappa^3 - \kappa < 1,$$

for any y in orthogonal linear subspace W to V, provided $|y|$ is sufficiently small.

Proof of Assertion Taking an ℓ-disk D_ℓ of 0 in $T_p(N_1)$, we may assume that $\tilde{g} = \exp_2^{-1} g \cdot \exp_1$ also satisfies that

$$\ell (\tilde{g}; \ell, \ell) < \kappa < \ell_0$$

Let $x \in V$ be such that $|x| = |y|$, then it holds that

$$2 \left< f(x), f(y) \right> = |f(x)|^2 + |f(y)|^2 - |f(x) - f(y)|^2$$

$$< \kappa (|x|^2 + |y|^2) - |x - y|^2 / \kappa$$

$$= 2|x|^2 (\kappa - 1/\kappa)$$

also it holds that

$$2 \left< f(x), f(y) \right> > 2|x|^2 (1/\kappa - \kappa),$$

therefore we have that

$$|\cos (f(x), f(y))| < \kappa^3 - \kappa,$$

finishing the proof of Assertion.

Thus taking the regularity of f into consideration, we may conclude that by an application of Assertion to $g = f \cdot i_p$,

$$\kappa^{-1} (1-(\kappa^3-\kappa^2)^{1/2}) \pounds_2 (\pi f_i_p(x), \pi f_i_p(y))/f_1 (x, y) \leq \kappa,$$
On a small disk around 0, completing the proof of Proposition 3.

3. The method in 1, 2 applies to obtain a weak estimation of the pinching of a exotic sphere. Let M_1, M_2 be combinatorially equivalent compact manifolds, then according to the construction of Hirsch-Munkres (111), we may have a sequence of compact manifolds $L_i (i=1\ldots k)$ such that

i) L_i are combinatorially equivalent to M_1, M_2.

ii) $L_1 = N_1$, $L_k = M_2$ (diffeomorphic).

iii) L_{i+1} is obtained by attaching of $S^j \times I^{n-j}$ to L_i through a certain attaching map. ($L^j \in \Gamma^j$).

Now suppose M_1, M_2 have different (integral) Pontrjagin class, then for some i, L_i, L_{i+1} have also different Pontrjagin classes. Since we know that manifolds having different Pontrjagin classes are of distance $\frac{1}{2} \log \frac{3}{2} (S_2)$, we have that

\[
\begin{align*}
(1) \quad 1/2 \log 3/2 \leq & \ d(L_1, L_{i+1}) \\
\leq & \ \max(d(L_1, L_i), d(S^j \times I^{n-j}, S^j \times I^{n-j})) \\
\leq & \ d(S^j, L^j).
\end{align*}
\]

Here the last inequality follows from an easily proved Lemma below:

Lemma 2. If M_i, N_i denote a pair of combinatorially equivalent compact manifolds ($i=1, 2$) then

\[
\begin{align*}
d(M_1 \times M_2, N_1 \times N_2) \leq & \ \max (d(M_1, N_1), d(M_2, N_2))
\end{align*}
\]
On the other as is improved by Karcher (unpublished, see also \((S_2)\)) \(\delta\) -pinched Riemannian manifold \(M_\delta\) \((\delta \geq 9/16)\) has distance \(4(1-\sqrt{\delta})\) from the standard sphere \(S\), therefore if the exotic sphere \(\Sigma^j\) in (1) is expressed as a \(\delta\) -pinched manifold \(M_\delta\), \(\delta\) must satisfy that

\[
\frac{1}{2} \log \frac{3}{2} \leq 4(1 - \sqrt{\delta}).
\]

hence

\[
\delta \leq 0.64,
\]

thus we may conclude that a certain exotic sphere of dimension \(\leq 16\) which appears in the obstruction chain to smoothing a combinatorial equivalence can not be pinched by 0.64, because we know that there are compact \(16\) manifolds having different Pontrjagin classes.

References

(M) J. Munkres On the smoothing of.....
Ann. of Math. "60 521-554

(S) Y. Shikata On a distance function.....
Osaka J, Math. "66 293-301

(S_2) Y. Shikata On Pontrjagin classes......
J. of Math. Osaka City Univ. "63 73-86

(S_3) Y. Shikata On the differentiable pinching
Osaka J. Math. "67 279-287