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The signature theorem for differentiable manifolds

and some elementary number theory

By F. Hirzebruch

(Notes by S. Morita)

§1. A formula for the signature of a compact normal complex

surface.

Suppose we have a compact oriented manifold X4k with boundary

QXAk = YAk-l, which may be empty. Consider the followingvcohomology;

exact sequence (in these notes, the coefficients will be the fationaf
numbers @, unless otherwise stated).
C— i, v b e — ) —
We define a quadratic form B on HZR(X, Y) by
B(ot, p) = (U p)lel
where ol , ﬁ € HZR(X, Y) and ge¢ Hﬁk(x’ Y) is the orientation

class.

Then tﬁe signature of X, sign X, 1is defined by
sign X = sign B = pt - p~
where p+ (p”) 1is the dimension of a maximal subspace of HZk(X, Y)E
on which B 1is positive (negative) definite. |
Now it is easy to see that « € Ke§‘y if and only if B(« , p)
=0 for all pé HZk(X, Y). Therefore the quadratic form B is
defined essentially on Iﬂl? C HZk(X), and then it is non—degengrate.

The following lemma is a simple consequence of the Poincaré

duality theorem.
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Lemma 1. The quadratic form B on HZR(X, Y) 1is non-degenerate
if and only if Y is an isomorphism.

The definition of the signature above shows that, to define
the signature for some space X such that HZk(X) has finite dimen-
sion, we have only to give a "fundamental class" [X] € Hhk(x)'

kFor

if [X] exists, then we can define the signature of X exactly
the same way as for compact oriented manifolds. Precisely, we define
the signatﬁre of X to be that of the quadratic forﬁ B on HZk(X)
defined by

B(«, ) = (£ UBDIX], «,pe HE@).

Now by Borel and Haefliger [1], any compact complex analytic
variety M of complex dimension n has a fundamental class
[M] € Hzn(M; Z). Therefore, if n 1is even, we can define the
signature of M.

Now we consider the case n = 2. Thus let M be a compact
normal complex surfacé and let XM be the set of singular points
of M. Since M 1is normal and compact, ISZM is a finite subset
of M.

Now M- XM is a c9mp1ex manifold. Though it is not compact,
it has a compact differentiable manifold N with boundary as a
deformation retract. Thus we have the signature of M- M. KOn
the other haﬁd, we have the signéture'of M itself. But since

HZ(M) 2 H2 M-2ZM)
and the quadratic forms on ﬁZ(M) and HZ(M-ZEM) are the same

under this identification, it follows that
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sign M = sign (M- = M).

To calculate sign M, we blow up the singularities of M.
Since the singular points of M are isolated, we can make the
blowing up process locally. Thus let Up be a "nice'" neighborhood

of a singular point P so that UP-{P} is a manifold with compact

boundary a"UP and UP is homeomorphic to the cone over EUP,.
Let
’TLk: U?' — U,
be a resolution of the singularity P. Then we can write
up' = 7t°1(UP=-1P}) VECHUSRERVE R

t

P

possible resolutions, there is a unique minimal one and any resolu-

where Si is a compact irreducible curve in U Among the

tion can be obtained from it by successive blowing ups.

Now a classical theorem says that the intersection matrix

(Si° Sj) is negative definite. Clearly aUP' = 29U, because
the boundary was not changed.
We have
V s L g L
HZ(U ,2)=zsl® @zsr

where Si is considered as a cycle. By the 'Poincaré-Lefschetz
duality,

Hy (U 5 &) = HO(UG , QU )
and under this isomorphism, the quadratic form on HZ(UP') defined
by the interesection numbers and that on HZ(U ', aUP') defined
by the cup-product (evaluated on the fundamental class) correspond

each other.
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Since the quadratic fofm of UP' is negétive definite, by
Lemma 1 and the abdvé observation, - the homomoréhism
w: HZ(U ', BUP') ——»HZ(UP')
is an isomorphism and

. H - - ’
sign UP r.

Now we recall the signature theorem for compact differentiable
manifolds without boundary. It says that the signature can be
expressed as a linear combination of wvarious antrjégin numbers with
rational coefficients.

Let X be a compact complex manifold‘df complex di@ensiod tﬁo.
Then the signature theorem simply says that

| . sign X = %Plb[x}
= 3 (e 1X] -e(®))
where cf[X] is the Chern number and e(X) is the Euler number?of
X. Now we ask whether the signature theorem holds for compact‘almost
complex manifold with non empty-boundary. Thﬁs let X be a compact
almost complex manifold of complex dimension twb (which may have a
boundary in tﬁe differentiable sense).

The first problem is to define the Chern number (ﬁ? for X.
In general, this is impossible. But if we assume
() e, € m( p: B X, v —ui®) ,
then we can definéBthe Chern.number qf[x] as follows. Take an
glement X € HZ(X, Y) such that L(x) = cl(X) . Then"we have

cH?[X] = xz[gj [g]éiHé(X, Y), the orientation class.

‘This does'hot depehd on the choice of x, fprvthe quadratic form
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is defined essentially on Im yQ.
Now a simple example; the 4-disk D4 (with trivial almost
complex structure) shows that the signature theorem is not true for

compact manifolds with non-empty boundary. For

_ cf[DA] =0
e(DA) = 1 \
but
sign(DA) = 0.

Now assuming (%), we introduce an invariant;

%(clz[x] -2e(X)) - sign X.

(Reéall that the assumption (%) is satisfied for our case UP').

Now we go back to our original problem, i.e. to calculate the
signature of compact normal complex surface.

We define for each singular point P &€ 3M, the invariant
p@E)e Q by

@ @) = $e U] ~2e(U;)) - sign Uy
where UP' is a resolution of the singularity P. %KP). depends
only on the singularity. This can be checked as follows. As
mentioned earlier, any resolution can be obtained from the minimal
one by successive blowing ups. But differéntio-topologically,
blowing up one point is equivalent to the connected sum with  -CP2.
Now we check how the numbers ‘ﬁ?’ e and the signature change by
blowing up. It can be shown that cu? goes down by one, e ’goes
’up by one and the signature goes down by one, therefore the value
9 ,

1 - 2e

3

- sign . does not change.

-5 -
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We prove

Proposition 2. Let M be a compact normal complex surface.

sign M = %—(clz [M- =M - 2e(M - ¥)) + Z,ﬁ P(P) .
BIM

Proof. Let M' be a resolution of M. We can write

M= U o) UU o).
PEZM PEZM

Now by the Novikov additivity of the signature, we have

(1) sign M' = sign M - ZM) + > sign UP' .
PezM

We also have the additivity of the Euler number and the Chern

number which follows from a Mayer-Vietoris argument. Thus we have

2) e') = e(M-ZM)+ T, e(Uy)
‘ PezM
(3) clM'] = cPM-zmy+ T e vy
PerM
From (1), (2) and (3), we obtain the formula. Q. E. D.

§ 2. Quotient and cyclic singularities and some connections with

elementary number theory.

LetG=;f~
p

and let q be a number relatively prime to p (O ‘<q ( P).

{; [ 4 P 1}', the group of p-th roots of unity

Gp acts on Cz by

27 e

2 %2 |
Take the quotient space CZ/GP, then it is a complex space with

B

one singularity, which we call the quotient singularity of type

(p, q). Let ¥ (p; q) be the % of this singularity. Then we

have 9
def(pjq) - %

Theorem 3. Sa(p; q) = > where




¥4

1€ q]j
P,

p-1 .
TI:J

def(p; q) = - 2 cot cot
j=1 P

This theorem was motivated by the discussion of the equivariant
signature theorem for 4-manifolds in [4]. The number def(p; q) 1is
‘related to the classical Dedekind sum (q, p), see [4]

def(p; q) = - %-(q, p).
This isbthe first relation with number theory.

Now to calculate ?(p; q), we blow up the quotient singularity,

Let
p 1

o T

2 a -

3
. L
a
T

| S . . .
be the development of E‘ into the continued fraction with a; 2 2.
Then the resolution of the quotient singularity can be represented

by the following diagram

where Si is a rational curve and each Si intersects with the

following Si+1 transversely and the self-intersection number is

(See [3].)

Now since the intersection matrix is negative definite, we hdve

¢ (B3 @) = 3 -2+ 1))+ x.

We can write
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here €1 is the Poincaré dual of 99-1(c1). Then

r
(g_; AiSi)o Sj =2-aj.

1
This is the classical "adjunction formula". It can be checked as
follows. Let M be the manifold obtained by blowing up the given
singularity and let 1 : Sj —> M be the inclusion. Then
8’1on =<, (M), sj>

=Ci¥e (), 5

=< (T | S50 847

=Cey (8 +e (V) 8,
e(Sj)4-Sj° Sj

=2-a,
J

where V is the normal bundle of Sj in M.
Now since det(sio Sj) # 0, we can determine Ay ahdéhen#e
°1

3. This was carried out by Don Zagier. |,

C.. Thus we can calculate 9D(p§ q) to get the formula in Theorem

Instead of doing the complete calculation, we only check the
following simple example. V
Example. The quotient singuiarity of type (p, 1).

The resolution configulation is

The Chern class is

- -2
. c1 = —;— S .
Therefore
2 (p-2)’
1 P ’



Hence 2

@, 1) = =5—+1
p2-3pts
- B

A simple formula for def(p, 1), see [4], shows that (p, 1)
def(p,1) - %
P

is equal to as stated in the theorem.

Now let M be a compact normal complex surface which has only
quotient singularities. Then we can improve the statement in Prop-
osition 2 for such M as follows.

First we introduce the Euler number €(M) .in the sense of
Satake [10]. For this we consider a triangulation of M for which

all singular points are vertices. Then

e(M) = 59 = 8 + s,

where sj (j 2 1) equals the number of j-dimensional simplices

of the triangulation. In s, we count each O-simplex with multi-

0

plicity 1 if it is a non-singular point and with multiplicity %

if it is a quotient singularity of order p. Thus

eM) = eM) + L -pf}l-ap
p

where ap is the number of quotient singularities of order p.

Clearly,

e(M=-IM) =eM)-2_ a
p P
Therefore,

eM) -2 l-a .

e(M - 22M)
p PP
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We define cz[M] to be equal to cz[M-Q:M]. Then we can write

the formula in Proposition 2 as.follows

sign M = 4cm-rmnllﬂm
PerM

where 97(P) --—def(p, qQ) .
Next suppose we have a singularity whose resolution configura-

tion looks as follows.

reg?2

where Sj is a non-singular rational curve, one curve intersects
with the following one transversely with Sj° Sj+1 =1 and

Sjo Sj = -bj ¢ -2. Since the intersection matrix?must be negative
definite, theremust be at least one j such that Sjo Sj s -3.

We will write ((bl’ bys tty br)) for this configuration.

We propose the following question.

Question. Given ((by, by, =+, b)) with b, natural
number 2 2 and there is atleast one j such that bj Z 3.

Does there exist cyclic singularity with the required resolu-
tion configuration?

The answer is yes. Here we show the existence as follows.

- By Kodaira (6}, especially'diagram_Ib on p.565 and Table I, type

I on p.604) there is a coﬁfiguration

- 10 -
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for any r, and all the self-intersection numbers are equal to
-2. On the curve Sj we blow up (bj -2) points, which must be
different from the points where two curves intersect. Thenkghe
wanted configuration is obtained. For, since the intersection
matrix (sio'sj) is negative definite,'by a theorem of Grauert [?]:
we can blow down the curves {Sj) to obtain a singularityf But B
it is not known whether the singularity obtained above is equivalénﬁ
to the '"canonical" one constructed in the Tokyo-IMU lecture (see |
(5.

Its structure as cyclic singularity may also depend on the
choice of the points to be blown down. (

Now we calculate the % for a cyclic singularity of type
((bl’ SN br)) (as mentioned»above, the singulariﬁy does not
-depend only on ((bl, sy br)), but ¥ depends only»on
((bys ***, b)) ).

Since all the curves are rational, we have |

c.98, =S,08S, + 2.
j R

1
Hence
- r
c, = 2 s, .
j=1
Therefore the Chern number ch? of our singularity is
2 r
c” =2 -b,+ 2r .
1 . j

j=1

- 11 =
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On the other hand, since the zero-th and the first Betti numbers are

equal to 1, the Euler number is

e =1
Therefore r
- > bj
. =1
P((by, ++, b)) = ———+x

This gives many relations to number theory and is important for the
study of the Hilbert modular group. As oneexample, we give a
special case of a theorem mentioned in [5]. |

Theorem 4. Let p be a prime number such that p = 3 (mod 4),
p>3 and h(Q(/p)) =1 and let ((by, ***, b)) be the primitive

period of the continued fraction development of /P ,

1
p = =

b1 -;—"
27 -
' 1
b_ -+
bl " .
with a, bj 22, br = Zai. Then
(b, =+, b)) = -h(Q(P))

where h(k) is the class number of the field k.
This is the second connection with number theory.
Finally we remark that our invariant % for a c}clic’singularity
is related to some other algebraic or:nuﬁber-theoretic invariants.
Precisely, for a cyclic singularity of type ((b1, ceey br))’
the boundary of a '"nice' neighborhood of 81L/ cee USr is a torus
bundle over the circle. If we represent the torus by mznzz,

this bundle can be given by an element A’ of SL(2, Z), which
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R ]

represents the identification of the two boundary components of

[0, 1] X T2

. (Of course, A can be replacéd by'a conjugate element
in SL(2, Z)),
As matrix A for the torus bundle belonging to the.period

((bl’ N br))’ we can take

0 -1 0o -1 0 -1 ’

A= )( onb( N
1 b1 1 b2 1 br
(-q' -q)

\p' P

where

b'2v"“
-
.br
1
? | - - ——
P/q —blb _
2
o1
br-l

For SL(2, Z), Rademacher [9] and C. Meyer [7] have studied a
function
o 1 SL(2, 2) —> 2

defined by

a b) - a+d-2(d,c) -3 sgn ¢ (3+d)

c
(for c # 0)

where (d, ¢) 1is again the Dedekind sum [4]. The value of ¥

depends only on the conjugacy class of the element of SL(2, Z).

- 13 -
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The fdllowing formula is related to work of W. Meyer [8] on torus

bundles.

For the matrix A above

r
@) =2, by - 3r.

j=1
Therefore,
WAy = '3?9((bl,k"', b)).
This relates our invariant ¢ for cyclic singularities with the

function & of Rademacher and C. Meyer. The relation to L-

functions of real quadratic number fields was explained in [5].
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