SPIN-COBORDISM INVARIANTS OF SOME S1-MANIFOLDS

Ву

Haruo Suzuki

Introduction.

Let Y and Y' be differentiable manifolds which have s^{2n-1} -bundle structures associated to differentiable complex $n(\geq 2)$ vector bundles over s^2 and also have unique spin-structures. By computing the Atiyah-Hirzebruch invariants [2, 3] for some natural s^1 -actions of Y and Y', we conclude differentiable isomorphisms of the bundle structures of Y and Y' including s^1 -actions, from spin-cobordisms of the s^1 -manifolds (cf. Theorem (2, 2) and Corollary (2, 3)). By the Reidemeister torsion invariants [4], G. de Rham [7] proved that diffeomorphic rotations of the p dimensional sphere s^2 are isomorphic. Our conclusion seems to be an analogy of this result in a certain sense.

1. Constructions of manifolds.

Let S^p be the standard p dimensional sphere and $\xi = (E, \pi, S^p)$ be differentiable n dimensional complex vector bundles over S^p , where pland nl2. We denote by X_{ξ} the 2n-disk bundle space associated to ξ and by Y_{ξ} the (2n-1)-sphere bundle space associated to ξ . X_{ξ} , Y_{ξ} are compact connected oriented differentiable manifolds, dim $X_{\xi} = 2n+p$, dim $Y_{\xi} = 2n+p-1$ and Y_{ξ} is the boundary manifold of X_{ξ} ; $\partial X_{\xi} = Y_{\xi}$.

We present S^1 as the unit circle of the complex number plane; $S^1 = \{z \mid |z| = 1\}$. Let

F:
$$S^1 \times E(\xi) \longrightarrow E(\xi)$$

be differentiable S¹-actions such that $F(z,) \colon E(\xi) \longrightarrow E(\xi)$ are differentiable vector bundle maps for each $z \in S^1$. On each fibre, F(z,) are non-singular linear maps with characteristic roots $\{z^{m_i}|_{m_i}$, positive integers for $1 \le i \le n$. F define differentiable S¹-actions on the manifolds X_ξ , Y_ξ and clearly these S¹-actions are compactible. The set of n positive integers (admitting repeatitions), $\{m_1, \cdots, m_n\}$ is called a <u>type</u> of the S¹-action.

Lemma (1. 1).
$$H^{1}(X_{\xi}; Z_{2}) = H^{1}(Y_{\xi}; Z_{2}) = 0.$$

Proof. It is clear that $H^1(X_{\xi}, Z_2) = 0$. Since $n \ge 2$, it follows that $H^2(X_{\xi}, Y_{\xi}; Z_2) = 0$. By the exact sequence

Lemma (1. 2). If
$$c_1(\xi) \equiv 0 \mod 2$$
, then we have
$$W_2(X_{\xi}) = W_2(Y_{\xi}) = 0.$$

Proof. We denote tangent bundles by T. It follows that

 $\mathcal{T}(X_{\xi}) \cong \mathcal{T}^*(\mathcal{T}(S^p)) \oplus \text{ the tangent bundle along the fibre of } X_{\xi}$ $\cong \mathcal{T}^*(\mathcal{T}(S^p) \oplus \xi),$

$$W_2(X_{\xi}) = W_2(T(X_{\xi})) = \mathcal{T}^*(W_2(S^p) + W_2(\xi))$$

= $\mathcal{T}^*c_1(\xi)$ mod 2
= 0,

and

$$\mathcal{T}(Y_{\xi}) \cong \mathcal{T}^{*}(\mathcal{T}(S^{p})) \oplus$$
 the tangent bundle along the fibre of Y_{ξ} ,
$$\mathcal{T}(Y_{\xi}) \oplus 1 \cong \mathcal{T}^{*}(\mathcal{T}(S^{p}) \oplus \xi),$$

$$W_{2}(Y_{\xi}) = W_{2}(\mathcal{T}(Y_{\xi})) = W_{2}(\mathcal{T}(Y_{\xi}) \oplus 1)$$

$$= 0.$$

2. The case where the base space of ξ is S^2 .

Let ξ be differentiable n dimensional complex vector bundles over differentiable manifolds M. The actions of $z \in S^1$ are commutative with the coordinate transformations $g_{\alpha\beta}(x)$ of ξ (for $x \in U_\alpha \cap U_\beta$, where U_α , U_β are the coordinate neighborhoods of ξ) and hence, for the characteristic vectors v_i of characteristic values z^{m_i} , we have

$$\begin{split} \mathbf{z} \bullet (\mathbf{g}_{\alpha\beta}(\mathbf{x}) \mathbf{v}_{\mathbf{i}}) &= \mathbf{g}_{\alpha\beta}(\mathbf{x}) (\mathbf{z} \bullet \mathbf{v}_{\mathbf{i}}) \\ &= \mathbf{g}_{\alpha\beta}(\mathbf{x}) (\mathbf{z}^{\mathbf{i}} \mathbf{v}_{\mathbf{i}}) \\ &= \mathbf{z}^{\mathbf{i}} (\mathbf{g}_{\alpha\beta}(\mathbf{x}) \mathbf{v}_{\mathbf{i}}), \end{split}$$

that is, $g_{\alpha\beta}(x)v_i$ are also characteristic vectors for z^i . If m_1, \dots, m_n are all different positive integers, the set of all characteristic vectors for z^i in each fibre of ξ makes differentiable complex line (sub)bundles ξ_i and gives a Whitney sum decomposition of ξ ;

$$\xi = \bigoplus_{i=1}^{n} \xi_{i}$$
.

The actions of $z \in S^1$ on ξ_i are the multiplications by z^n .

For a space X with an action of a group G, the set of points which are left fixed by all elements of G is denoted by X^G . For S^1 -actions of X_ξ and Y_ξ defined in $\S1$, $(X_\xi)^{S^1}$ is diffeomorphic to S^p , and $(Y_\xi)^{S^1} = \varphi$. For the Whitney sum decompositions of ξ determined by S^1 -actions, it is natural to consider the case where the base space of ξ is S^2 .

Theorem (2. 1). Let ξ be a differentiable n (≥ 2) dimensional complex vector bundle over S^2 such that $c_1(\xi) \equiv 0 \mod 2$. Suppose that Y_{ξ} has an s^1 -action of the type $\{m_1, \dots, m_n\}$ where m_i are all different positive integers and $\sum_{i=1}^{n} m_i = 2m$. If we denote by $\xi = \bigoplus_{i=1}^{n} \xi_i$ the decomposition of ξ into the Whitney sum of differentiable complex line bundles, induced by the s^1 -action, then we have the Atiyah-Hirzebruch invariants,

$$\rho(z, Y_{\xi}) = \frac{(-1)^n}{2} z^m (\prod_{i=1}^n \frac{1}{1-z^{m_i}}) \cdot \sum_{i=1}^n (\frac{1+z^{m_i}}{1-z^{m_i}}) c_1(\xi_i) [S^2],$$

for any $z \in S^1$ which are not m_i th roots of unity $(1 \le i \le n)$.

Proof. Since we have $H^1(X_{\xi}; Z_2) = H^1(Y_{\xi}; Z_2) = 0$ and $W_2(X_{\xi}) = W_2(Y_{\xi}) = 0$ by (1. 1) and (1. 2), X_{ξ} and Y_{ξ} have spin-structures which are unique upto isomorphisms (cf. [1]). It is clear that

$$(X_{\xi})^{S^1} \cong S^2.$$

We have, therefore, the Atiyah-Hirzebruch invariants [2, 3],

$$\rho(z, Y_{\xi}) = \text{spin}(z, (X_{\xi})^{S^{1}})$$

$$= (-1)^{n+1} \hat{\sigma}(S^{2}) \prod_{i=1}^{n} (z^{\frac{-m_{i}}{2}} e^{\frac{c_{i}(\xi_{i})}{2}} - z^{\frac{m_{i}}{2}} e^{\frac{-c_{i}(\xi_{i})}{2}})^{-1} [S^{2}].$$

By straight forward calculations of the right side of this equation, we obtain the formula of the theorem and completes the proof.

Theorem (2. 2). Let ξ and ξ' be differentiable n (\geq 2) dimensional complex vector bundles over S^2 such that $c_1(\xi) \equiv c_1(\xi') \equiv 0 \mod 2$. Let m_1, \dots, m_n be positive integers such that any m_i are not sums of other m_i and $\sum_{i=1}^{n} m_i = 2m$.

Suppose that
$$Y_{\xi}$$
 and $Y_{\xi_{i}}$ have S^{1} -actions of type $\{m_{1}, \dots, m_{n}\}$. If we have $\rho(z, Y_{\xi}) = \rho(z, Y_{\xi_{i}})$

for any $z \in S^1$ which are not m_1 th roots of unity $(1 \le i \le n)$, then there is a differentiable bundle isomorphism between ξ and ξ' , including S^1 -actions.

Proof. Let

$$\xi' = \bigoplus_{i=1}^{n} \xi_{i}$$

be the decomposition of ξ into the Whitney sum of complex line bundles as that of ξ in Theorem (2. 1). For any $z \in S^1$ which are not m th roots of unity $(1 \le i \le n)$, we have

$$\sum_{i=1}^{n} (1-z^{m_1}) \cdots (1-z^{m_{i-1}}) (1+z^{m_i}) (1-z^{m_{i+1}}) \cdots (1-z^{m_n}) c_1(\xi)
= \sum_{i=1}^{n} (1-z^{m_1}) \cdots (1-z^{m_{i-1}}) (1+z^{m_i}) (1-z^{m_{i+1}}) \cdots (1-z^{m_n}) c_1(\xi),$$

because of the equality $\ell(z, Y_{\xi}) = \ell(z, Y_{\xi_1})$. From the assumption on m_i (likin), it follows that

$$-c_{1}(\xi_{n}) + \sum_{j=1}^{n-1} c_{1}(\xi_{j}) = -c_{1}(\xi_{n}) + \sum_{j=1}^{n-1} c_{1}(\xi_{j}).$$

Since $H^2(S^2; Z) \cong Z$ (torsion free), we obtain the equations

$$c_{\gamma}(\xi_{i}) = c_{\gamma}(\xi_{i}), \quad 1 \leq i \leq n,$$

and, therefore, bundle isomorphisms

$$\dot{\xi}_i \cong \dot{\xi}_i, \quad l \leq i \leq n.$$

Moreover, by differentiable approximations [5] of homotopies of classifying maps and by the method of parallelisms for connections in principal fibre bundles [6], we have differentiable isomorphisms between ξ_i and $\xi_i^!$.

Since $\xi = \bigoplus_{i=1}^{n} \xi_i$ and $\xi' = \bigoplus_{i=1}^{n} \xi_i'$, it follows that there is a differentiable isomorphism between ξ and ξ' , including S^1 -actions. Thus we complete the proof of the theorem.

Corollary (2. 3). Let ξ and ξ' be differentiable n (≥ 2) dimensional complex vector bundles over S^2 such that $c_1(\xi) \equiv c_1(\xi') \equiv 0 \mod 2$. Let m_1, \dots, m_n be positive integers such that any m_i are not sums of other m_i and $\sum_{i=1}^{n} m_i = 2m$. Suppose that Y_{ξ} and Y_{ξ} , have S^1 -actions of type $\{m_1, \dots, m_n\}$. There is a differentiable bundle isomorphism between Y_{ξ} and Y_{ξ} , including S^1 -actions if and only if they are spin-cobordant with respect to the S^1 -actions.

Proof. If Y_{ξ} and $Y_{\xi'}$ are spin-cobordant with respect to S^1 -actions, we have

$$\rho(\mathbf{z}, Y_{\xi}) = \rho(\mathbf{z}, Y_{\xi})$$

by Atiyah-Hirzebruch [2]. The differentiable bundle isomorphism between Y_{ξ} and Y_{ξ} , follows directly from Theorem (2. 2).

The converse is trivial.

3. The case where the base spaces of ξ are S^p for p=1 or p>2.

Proposition (3. 1). Let ξ be differentiable n (\geq 2) dimensional complex vector bundles over S^p (p=1 or p>2) and let m_1, \dots, m_n be all different positive integers. If Y_{ξ} have S^1 -actions of types $\{m_1, \dots, m_n\}$, then ξ and hence Y_{ξ} are differentiably isomorphic to product bundles.

Proof. By the first part of the proof of Theorem (2. 1), & split into

Whitney sums of differentiable complex line bundles ξ_i ; $\xi = \bigoplus_{i=1}^n \xi_i$. Since we have $H^2(S^p; Z) = 0$ for p=1 or p>2, ξ_i are all topologically trivial. By the last part of the proof of Theorem (2. 2), ξ_i are differentiably trivial and hence ξ are differentiably isomorphic to product bundles.

Corollary (3. 2). Let ξ be differentiable n (\geq 2) dimensional complex vector bundles over S^p (p=1 or p>2) and let m_1, \dots, m_n be all different positive integers. If Y_{ξ} admit S^1 -actions of type $\{m_1, \dots, m_n\}$, then we have

$$\rho(z, Y_{\xi}) = 0.$$

In the case, p=2, we obtain the following theorem by Theorem 2 [9]:

Theorem (3. 3). Let ξ and ξ' be differentiable n (≥ 2) dimensional complex vector bundles over S^{l_4} . The bundle structures of Y_{ξ} and Y_{ξ_1} are differentiably isomorphic if and only if they are spin-cobordant with respect to S^l -actions of the type $\{2, \dots, 2\}$.

Remark. In the above Theorem, the type $\{2, \dots, 2\}$ of S^1 -actions on Y_{ξ} and Y_{ξ} , can be replaced by the type $\{m, \dots, m\}$ for any positive integers m. (Cf. The proof of Theorem 2. 2 [8].)

References

- [1] M. F. Atiyah and R. Bott, A Leschetz fixed point formula for elliptic complex II, Applications, Ann. of Math. (2) 88 (1968), 451-491.
- [2] M. F. Atiyah and F. Hirzebruch, Spin-manifolds and group actions,
 Essays on Topology and Related Topics (Memoires dédiés à Georges
 de Rham), Springer, New York 1970, 29-47.
- [3] M. F. Atiyah and I. M. Singer, Index of elliptic operators III,
 Ann. of Math. (2) 87 (1968), 546-604.
- [4] W. Franz, Uber die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935), 245-253.
- [5] A. Haefliger, Plongements differentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.
- [6] K. Nomizu, Lie groups and differential geometry, Publ. Math. Soc. Japan 2, 1956.
- [7] G. de Rham, Reidemeister torsion invariant and rotations of Sⁿ,
 Differential Analysis, Bombay Colloquium, 1964, 27-36.
- [8] H. Suzuki, A note on S¹-acting cobordisms, J. Fac. Sci. Hokkaido
 Univ. Ser. I 20 (1971), 177-183.

[9] H. Suzuki, S¹-acting spin-cobordisms of some sphere bundles, Proc.

Japan Acad., to appear.

HOKKAIDO UNIVERSITY