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Euler-poincaré characteristics of complex projective

hypersurfaces with isolated singularities.

By Mitsuyoshi Kato

Colledge of Education, The University of Tokyo

In this report we would like to give a provisional explanation
about results of our forthcoming paper [37.

1. Motivation. The following nalve observation of a projective
plane curve wOuld teli us how to compute the Euler—Pqincaré charac-
teristic (simply, euler number) of a_cbmplex projective hypersurface

with isolated singularities,.

1.1. Let € be a complex plane curve defined by a homogeneous

irreducible polynomial of degree d.

If P 1is a point of C, then an integer GP is defined by
8p = dime (G5 /0p)
where ¢, 1is the local ring of C at P and (}PW is.its integral
closure in the rational function field, see J.P. Serre [6]. Note that

6P >0 1if and only if ‘P 1is a singular point of C.

The Plicker formula gives us the genus ‘g = g(M) of a non-
singular model M of C in terms of the degree d of C and local

algebro-geometric invariants SP at P e C ;

= (d—l)(d-’2) - v 6
o PeZC

Pliicker formula : g

P
where IC 1s the set of singular points of C.

1.2. A topological characterization of GP has been given by
Milnor [4] as follows:
Taking an affine chart arround P, we may assume that for a

sufficiently small number € > 0, a ball Du(s,P) with radius ¢
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centerd at P does not contain any singular point other than P
and its boundary sphere SBCE,P) intersects transversally C at

'YP circles; a link L, C S3(€,P). Milnor proves that 83 - LP is

P

a fiber boundle over a circle with a fiber a surface with 7% holes.

The first betti number of the fiber will be called Milnor

Hp ,
multiplicity of P. Theh he obtaing;

Milnor formula : 26P = Up +'YP - 1.

1.3. We would like to know the genuine euler number €(C) of
the plane curve C. By definition of a non-singular model M of C,
there is a resolution (or normalization)

¢ : M—>C

satisfying
(1) %>—1(20) is a finite set of points and
(2) Plm - ¢7rze) : M - §7H(EC) — ¢ - IC

is a biholomorphic map, see Fig. 1.

Fig 1
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- : -1 .
If P e C, then the number # ¢ 1(p) of points of ¢ H(P) 1is

-

i - 4
equal to Yps since it is equal to the number of ends of ? l(C Nn D

(e,P) -P) which is homeomorphic with C p\Du(e,P) - P having
obviously Yp ends for a sufficiently small number € > 0. It follows
that the genuine euler number ¢&(C) and the euler number €(M) of

the non-singular model M are related in a formulaj;.

= M - Z '—,1
e(c) e(M) PeéEP )

Since e(M) = 2 - 2g, 1in this context, Pliicker formula may be

regarded as a formula giving the euler number e(c) of c.

Combining Plticker and Milnor formulae we have that
e(M) = 2 - 2¢g

2 - {(a-1)(d-2) - I 28p}
PeXC

2 . Co
3@ - @ + Tlup + ¥p = 1).
pergf © TP

1

Hence we have;g

Milnor-Pliicker formula : &(C) = 34 =- ac + Iu
PeX

. 2. Topological proof of Milnor-Plicker formuls,

We ask ourselves the topological significance of Milnor~Pliicker
formula. First of all we remafk the following two Tacts:

(I). The term 3d -d° is the euler number of a non=singular

projective plane curve of degree d.

(IT). The Milnor multiplicity Up which appears in the formula as

a correction term at each singular peoint P is equal to the middle

betti number of

F, = £7Ha) A 0" (e,P)

for a local equation f of C at P, for a sufficiently small numbér

€ >0 and a complex number a with sufficiently‘small‘ébsélute,valué

lal.
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2.1. Difinition of an almost complex submanifold.

If we recall the notion of an almost complex submanifcld, then

the fact (I) follows from the adjunction formula, refer Hirzebfuch [11.
A smooth 2n-submanifold M of an almost complex manifold W

with a distinguished complex tangent bundle TCW is almost complex,

if the tangent bundle ™™ of M and the normal bundle vM of M

in W are reduced to complex bundles TCM and vCM so that TCM &)

VCM is isomorphic with TCWIM as complex bundles.,

For an almost complex submanifold M of W we have the So—called:

adjunction formula;

c(TCM) . c(ch) = j*C(TCW) R |
where c¢( ) denotes the total chern class and j : MG W is the
inclusion map.

Let M be a smooth closed connected 2-dimensional submanifold
of CP° which represents a homology class d-[wPl], where [@Pl}
denotes the canonical generator of HZ(CPg;ZL) represented by a
projective line.

The following theorem implies the fact (I) and tells us the
condition that ‘M is "almost complex" in CP2 is very restrictive.

2.2. Theorem. The surface M 1is almost comlpex in cp? if

and only if e(M) = 34 - d2.

Proof. Since the isomorphism classes of complex line bundles
are completely determined by the l-st chern classes which, in our
case, should be equal to the euler classes of underlying real plane
bundles, it follows from the adjunction formula that

M 1is almost complex in CP2
if and only if
X(tM) + XM) = J7e (€p?)

where X( ) denotes the euler class.

-4 -
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If we evaluate these cohomology classes on the fundamental class

[M] of M, then we have that
X(t) A [H]
X(vM) ~ [M]

in €P9)

e(M)

i}

(the self-intersection number of ™

a.

*
and e (eP%) A [M]

¢  (€P%) A JylM]

=30 A a-[CP1]
= 3d s

where o 1is the dual of [CPL].
2

E]

' *
Hence X(TM) = j‘cl(CPg) - X(vM) 4if and only if. e(M) = 34 -d

completing the proof.

2.3. A construction of an almost complex submanifold which

"approximates" a plane curve C.

Now we are in the crux of our observation.

Let C be a curve in a complex 2-dimensional manifold “W. We

~would like to replace a singular part C ~ D(e,P) (in some local

chart 3 € > 0 dis sufficiently small) by a non-singular "smooth"
part in vD(s,P) for each PeXC to get an almost complex Submaniféld
T in W. ;

For this we take sufficiently small numbers € > €' > 0 so that
a local eguation

f : 02—~4 ¢ of C arround P

gatisfies that
f]D(s,P) - P has no singular point and for some number .

§ > 0, it has any value a with |a] £ 8 as a regular value, and for

any 068" <6 ,

f_l(O) ~ Alele;P] and f_l(é') N Alele;P]

-5 -



21
are "almost parallel", where
Afele;P] = D(e,P) - Int D(e!lP).

Then we connect f-l(O) ~ S(e,P) with £71(8) A S(eiP) by
a bridge N in f-l[O,GJ ~ Alel!e3;P] such that N 1is diffeomorphic
with (£71(0) A S(e,P)) x [0, 1] and £(N) = [0, §].

By a suitable choice of €' and ¢, we may take the bridge N
so that it has a very mild slope in the sense that at each point
Q € N, tangent spaces of f—l(f(Q)) and N at Q are sufficiently
close as points in the grassmanien and that if we put

T(P) = (C - D(e,P) - IC) U N U (£7(8) n D(elP)) ,

then C(P) 1s a smooth submanifold.

We claim that C(P) is an almost complex submanifold in W.

Note that C - D(e,P) - IC and f Y(8) Int D(e!P) are
already (almost) complex submanifold of W.

But N may not be almost complex. The classifying map (Gauss
map in the local chart) of the tangent space of N restricted on 9N
is that of complex submanifold parts and hence it maps 9N 1into the
complex grassmanni€n, On the interior of N, the Gauss map of N 1is
sufficiently close to a complex line field given by the complex tangent
space of £ 1(f(Q)) at each point Q e Int N, since £ 1(0) ~ Alele;P]
and f—l(é') ~ Ale!e;P] are almost parallel for
§' e £(N) = [0, 8]. |

It follows that the Gauss map of N 1is homotopic to a map into
a complex grassmanmnien relative to 9N. This implies readily that
T(P) 1is almost complex in W.

Repeating this modification at each singular point we obtain an
almost complex submanifold € = C(XZC). This almost complex submanifold

€ will be called an almost complex resolution of C in W. If we




LY

St

5

T

N . -
take € sufficiently small, then we could say that C "approx1mates"

C In particular, it is clear that ¢ and ¢C represent homologous

Cycles .

2.4, The topological proof of Milnor-Plicker formula.

?;The sum formula of the euler numbers we have that
/

= T - = F
e(c) e(C) Pezg( p)
+ szg(c ~ D(e,P)) 3

since e(N) = e(£710) A s3(e,p)) = 0.
Since Cn D¢e,P) 1is a cone, it follows from the fact (II) that
c(FP) - e{(Cn D(e,P)) = (l-pP) - 1= ~Hp .
Note that if C 1is of degree d, then C represents a homology
class dm[CPl] and hence so does €. By making use of Theorem 2.2

we have, therefore, the required formula :

e(c) = eC) + I up
PeXC
_ 2
=3d-4d + I Up,
PeXC

completing the proof.

3. Conclusion.
The arguments in 2.3 which garantees us the existence of an
almost complex resolution of a curve in a complex surface work

equally well in the case of complex hypersurfaces with isolated

singularities to give an extension of Milnor-Pliicker formula.

For this Milnor multiplicity is defined to be the degree

Hp
of a map germ

(3L, L 2 ) @ e e 0
22, 22,/

where f 1is a local equation of the k?persurfaée arround P.
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Indeed,

_ a1
FP = f ~(a) N

Hp is equal to the middle betti number of
D2n+2(s,P) for a sufficiently small non-zero complex
number a and for a sufficiently small real number € > 0.

It is known that every complex analytic set admits an integral

fundamental class. A complex hypersurface V 1n CPn+l is of degreei
d, if V représents a homology class de[CP"]. _
+
Theorem A. Let V be a complex hypersurface in cp” 1 of

degree d with isolated singularities. Then the euler number (V)

of V is given by o +

n+2 nﬂz

PeXV

+ (n+2)d - 1} + (-1)

e(V) = 3{(1-a) up -

Furthermore, Milnor-Pllicker formula could be extended to the

case of complete intersections of hypersurfaces.

CPn+m

A complex algebraic subset V in is almost regular, if

V 1is defined by m homogeneous polynomials fl"" s fm and each

point P of V is at most an isolated singular point of each of

hypersurfaces defined by ¢ P fm. If r cee, T define

1° m

respectively, we shall say

10 -

hypersurfaces of degrees d o

l:"‘: m?

that the almost regular subset V in ep™M s of type (dl"" 5 dm)ﬁ

Milnor multiplicity at a point P is defined to be the middle

Hp

betti number of

Fpo= £5@) N p2(n¥m) (o )

for sufficiently small Q¢ ¢ and e > 0, where f-: ¢t —s ¢!

is the local equation of V arround P which is (fl,... R fm)

restricted on a chart of CPn+m.
It could be shown that Up is invariant under analytic change\
of coordinates (the proof is not so easy) and e(FP) =1 + (—l)nuP.

For integers n, dys-ev s dm’ let c(n;dl,-.- ,dm) be a

polynomial in the generator o € H2(€Pn+m,zﬂ) which is a part of
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gegree <n of a formal power serles in o defined by

ntm+1 -1 ) -1
(1+a) (,1+dla) Ve \,1+dmu) .
The coefficient of o in c(n;dl,.. . dm) i€ denoted by
(n)
c(_n;dl, ee e dm)

Note that if m = 1, then we have that

n+2

1
c(nza) M) = HA-)™? & (e2)a - 13 .

Theorem B. Let V be an almost regular subset of type (d

15

DM Then the euler characteristic e(V) of V

..., d) in CP

is given by

e(V) = d;*v.. e dmo c(nsd

(n) .\ nt1
1 (] dm) + ("1) Z UP

1 PeIV

This enables us to determine the total chern homology class

(V) of V as follows

Theorem C. Let V be an almost regular subset of type (dl,

. n+m
e s dm) in C€P .

Then we have that

Jx (V) = dp...cd.c(nid > 4) A [CP"] + (-1)™

PRI H
1 PeIV P

4, Problems and remarks.

We would like to know how much topological methods could
contribute to the study of "topology of analytic sets (with

singularities)".

We have provided the notion of an almost complex resolution of
an analytic subset in a complex manifold, and seen that existence of
it reduces the study of the subset to the study of local properties
of singularities. Unfortunately, we have the existence theofem only
for almost regular subsets.

Problem. 1. Under what condition does almost complex resolution
exist °?

If we weaken the almost complex category to the smooth category,

-9 -
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we | .
thenfwill see that any hypersurface admits a smooth resolution in th
ambient complex manifold, [3]. Indeed, Theorem C is proved by making
use of this.
The general notion of topological resolution will be found in [3],%

Above all we should study the following :

Problem. 2. (Milnor-Pliicker problem.)

Determine the euler number of a complex projective hypersurface

(with non-isolated singularity) in terms of its degree and some

invariants arround the singular set. -

As for the mod 2 euler number, we have a solution in [3]. For
a hypersurface in CP3 with "non-isolated nice singularity"Kodaira
gives a solution by making use of classical methods.

Here is a technical problem.

Problem. 3. Give a topological definition of Milnor multiplicity

Up at a singular point P of an almost regular subset in a projective

space which readily implies that is a local analytic invariant.

Hp
" At this conference, Hirzebruch and Morita called our attention

to the index of an almost regular subset V in CP2n+m, refer

Hirzebruch [2] and Morita [5].

For this, we define the index of V at P in CP°%™™ to be

the index of FP = ﬁ'—lG&) ra D2(2n+m)(e,P) and denote it by Tp

Then the index 7T(V) of V 1is given by (V) = (the index of a

complete intersection of non-si gular hypersurfaces of degrees dl’

v, d ) - 07T

m o pegy P°

For the first term in the right hand side of the formula above

see p. 160, [1].

- 10 -
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