The notion of near-complex subvariety

by H. Hironaka

(Note by S. Nakano. Nakano is responsible for possible errors.) §1. Introduction Let X be a compact complex analytic manifold and suppose X is diffeomorphic to the complex projective space $\mathbb{P}^n(\mathbb{C})$. Is, then, X analytically isomorphic to $\mathbb{P}^n(\mathbb{C})$?

F.Hirzebruch and K.Kodaira [1] solved this problem affirmatively under the condition that X carries a Kähler metric (and an additional condition when $n = \dim_{\mathbb{C}}(X)$ is even). In this lecture we discuss this problem without Kähler condition, but in the case when X is a member of a smooth family of complex analytic manifolds, other members being isomorphic to $\mathbb{P}^n(\mathbb{C})$. The conclusion is:

Main Theorem. Let $\pi: \mathfrak{X} \longrightarrow \mathbb{D}$ be a smooth proper morphism from a complex analytic manifold \mathfrak{X} onto the unit disc $\mathbb{D} = \{x \in \mathbb{C} | |\mathbf{x}| < 1\}$, so that $\pi^{-1}(x)$ is a compact complex analytic manifold of dimension n (independent of x) for every $x \in \mathbb{D}$. Suppose $\pi^{-1}(x)$ is analytically isomorphic to $\mathbb{P}^n(\mathbb{C})$ except for $\pi^{-1}(0) = X_0$, then X_0 is also isomorphic to $\mathbb{P}^n(\mathbb{C})$.

In §2 we shall indicate how Kähler condition was made use of in the proof of Hirzebruch-Kodaira and give an example. In §3 we shall discuss the detour by which we arrive at our aim without Kähler condition, namely the notion of near-complex subvarieties.

§2. Let us consider our family

$$\pi: X \longrightarrow D$$
.

We can set up a diffeomorphism f

$$\begin{array}{cccc}
\chi & & \xrightarrow{f} & \chi_0 \times D \\
\pi \downarrow & & \downarrow & proj \\
D & & & D
\end{array}$$

so that $H^{2q}(X_0,\mathbb{Z}) \stackrel{\sim}{=} H^{2q}(\mathbb{P}^n(\mathbb{C}),\mathbb{Z}) = \mathbb{Z} g^q$, where g is the generator of $H^2(\mathbb{P}^n(\mathbb{C}),\mathbb{Z})$ dual to the hyperplane. (In reality, f can be taken to be a <u>real analytic</u> homeomorphism. This will be used in §3.) Hence we can speak of positive or negative cohomology classes.

Now theorem 6 in Herzebruch-Kodaira [1] can be modified to

Theorem 1 Let X be an n-dimensional compact complex analytic manifold and let a complex line bundle (invertible sheaf) L on X be given. Denote by $g \in H^2(X,\mathbb{Z})$ the Chern class of L. Assume

- (1) $\dim_{\mathbb{C}} H^{\circ}(X,L) \geq n + 1$,
- (2) $H^{2d}(X, \mathbb{Z}) = \mathbb{Z} \cdot g^d \cong \mathbb{Z}$ (for $0 \leq d \leq n$),
- (3) X is a Moishezon space, (i.e. there exist n algebraically independent global meromorphic functions on X,)
- (4) any complex analytic subvariety of X determines a non-negative cohomology class.

Then we can conclude that X is analytically isomorphic to $\operatorname{\mathbb{P}}^n(C)$.

In case of Hirzebruch-Kodaira, Kähler condition was made use of in order to establish (4) as well as (1) and (3). In our case of a smooth family, it is not too hard to establish (1)----(3) without Kähler condition, while for (4) we need the analysis we develop in §3.

Here is an example of a manifold which satisfies
(1) --- (3) but not (4):

Take a non-singular curve Γ in the product $\mathbb{P}^1 \times \mathbb{P}^1 = S$, with the property that $\Gamma \cdot (u \times \mathbb{P}^1)$ consists of three points and $\Gamma \cdot (\mathbb{P}^1 \times v)$ of 5 points for generic u and v. Embed S into \mathbb{P}^3 as a quadratic surface, and blow up \mathbb{P}^3 with Γ as the center. We obtain a projective threefold X' and X' contains the subvariety S', the proper transform of S. S' is isomorphic to S: $S' \supseteq S \supseteq \mathbb{P}^1 \times \mathbb{P}^1$. It can be seen that S' can be blown down, i.e. there exist a compact complex manifold X and a morphism $p: X' \longrightarrow X$, so that $p|_{X'-S'}$ is an isomorphism and on $S' \supseteq \mathbb{P}^1 \times \mathbb{P}^1$, p is nothing but the projection to the first factor.

It can be shown that X satisfies (1)---(3) but not (4). (p(S') gives a negative class.) Thus we see the condition (4) is essential in the theorem.

§3 Given a complex analytic manifold Y_0 , we denote by $\mathcal{T}_{Y_0,y}$ and $\mathcal{T}_{Y_0,y}$ the complex tangent space and real tangent space respectively, to the manifold Y_0 at a point Y_0 on it. We denote by \mathcal{T}_{Y_0} and \mathcal{T}_{Y_0} the bundles $\mathcal{T}_{Y_0,y}$ and $\mathcal{T}_{Y_0,y}$ respectively. We have a canonical isomorphism

$$\mathbf{T}_{\mathbf{Y}_{0}} \, \overset{\scriptscriptstyle \sim}{=} \, \, \mathrm{Re} \, (\, \mathcal{T}_{\mathbf{Y}_{0}} \, \oplus \, \, \overline{\mathcal{T}}_{\mathbf{Y}_{0}}) \, .$$

Now let a compact complex analytic manifold X be given. A near-complex subvariety $\mathcal Y$ of X is a quadruple (Y,Y_0,ξ_0,ρ_0) , where

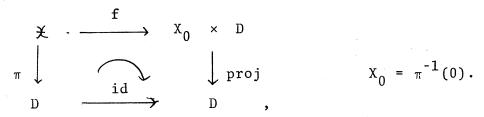
Y is a closed subset of X,

- Y_0 is a connected dense open subset of Y and has a structure of even dimensional oriented C^{∞} -manifold, (a submanifold of X with induced topology,)
- \mathcal{E}_0 is a complex subbundle of $\mathcal{T}_X|_{Y_0}$,
- o₀ is a real bundle isomorphism $\operatorname{Re}(\xi_0 \oplus \overline{\xi}_0) \cong \operatorname{T}_{Y_0}$, and maps the natural orientation on $\operatorname{Re}(\xi_0 \oplus \overline{\xi}_0)$ to the given orientation of Y_0 .

In reality, we add further conditions of technical character, e.g. Y can be triangulated so that Y-Y₀ be a subcomplex of dimension $\leq \dim_{\mathbb{R}} Y_0$ -2. In this way, Y determines a homology class in $H_*(X,\mathbb{Z})$ and, if we go over to rational coefficients, determines a cohomology class in $H^*(X,\mathbb{Q})$.

An example of a near-complex subvariety is given by an analytic subvariety Y of X. We take Y_0 to be the set of the simple points of Y and $\xi_0 = \mathcal{T}_{Y_0}$, $\rho_0 \colon \text{Re}(\xi_0 \oplus \overline{\xi}_0) \to \text{T}_{Y_0}$ is the canonical one.

Another example will appear in connection with a smooth family of compact complex analytic manifolds: Let $\pi: \cancel{X} \rightarrow D \quad \text{be a smooth family over the disc} \quad D = \{x \in \textbf{C} \mid |x| < 1\}.$ We take a differentiable trivialization of \cancel{X} :



If Y is an analytic subvariety of X_0 , then it determines a near-complex subvariety in X_0 as in the preceding example. We put this in $X_0 \times x$ on the right hand side of the above diagram and pull back everything onto $X_x = \pi^{-1}(x)$ by f. Then a near-complex subvariety on X_x is obtained.

If we restrict ourselves to the family in the main theorem, all X_X are isomorphic to $\mathbb{P}^n(\mathbb{C})$ except x=0, and we shall have a family of near-complex subvarieties

(*)
$$\{Y_x \mid x \in D - \{0\}\}$$

of $\mathbb{P}^{n}(\mathbb{C})$. These can be and will be taken to be real analytic near-complex subvarieties, by choosing a real analytic trivialization f.

For a near-complex subvariety $\mathcal{Y}=(Y,Y_0,\xi_0,\rho_0)$ in $X=\mathbb{P}^n(\mathbb{C})$ with $\dim_{\mathbb{R}}Y_0=2(n-d)$, and for a point $y\in Y_0$, we consider the set

 $P(y) = \{L \in Grass_{C}(\mathcal{J}_{X,y},d) | Land \quad T_{Y_{0},y} \text{ intersect} \}$ $properly \text{ with multiplicity } +1 \}$

where $\operatorname{Grass}_{\mathbb{C}}(V,d)$ denotes the complex Grassmann variety of d-dimensional vector subspaces of the given vector space V. Since L and $T_{Y_0,y}$ are oriented, we can speak of positivity of the intersection. P(y) is an open set of

 $\operatorname{Grass}_{\mathbb{C}}(\mathcal{T}_{X,y},d)$ and $B = \bigcup_{y \in Y_0} P(y)$ is an open set of $y \in Y_0$ $A = \bigcup_{y \in Y_0} \operatorname{Grass}_{\mathbb{C}}(\mathcal{T}_{X,y},d).$

Making use of a suitable metric, we estimate volumes of A and B, and define the positivity rate r(y) of y by

r(y) = vol(B)/vol(A).

On the other hand, we define the absolute degree $\delta(\mathcal{Y})$ of \mathcal{Y} . This is the maximal number of intersection points of Y and the variable linear subvariety $L^{\mathbf{d}}$ of $\mathbb{P}^{\mathbf{n}}(\mathbb{C})$, each intersection point being counted once irrespective of orientation, and maximum being taken for $L \in \operatorname{Grass}(\mathbb{P}^{\mathbf{n}}(\mathbb{C}), d)$ -(a set of measure 0). This number is well defined because we have a real analytic near-complex subvariety.

Going back to our family $\pi: X \longrightarrow D$, $\pi^{-1}(x) \cong \mathbb{P}^{n}(\mathbb{C})$ for $x \neq 0$, we can derive the non-negativity of the class of an analytic subvariety of $X_0 = \pi^{-1}(0)$ from the following facts:

Theorem 2 If \mathcal{Y} is a real analytic near-complex subvariety of $\mathbb{P}^{n}(\mathbb{C})$ with the property

$$\delta(y)(1 - r(y)) < 1,$$

then γ determines a non-negative homology class.

Proposition For the near-complex subvarieties \mathcal{Y}_{x} of $\mathbb{P}^{n}(\mathbb{C})$ described in (*), $\delta(\mathcal{Y}_{x})$ remains bounded and $r(\mathcal{Y}_{x}) \to 1$ for $x \to 0$. (Hermitean metrics on the fibers $\mathbb{P}^{n}(\mathbb{C})$ are induced by a fixed one on the total space \mathfrak{X} .)

Reference

[1] F.Hirzebruch and K.Kodaira: On the complex projective spaces, Jour. Math. pures appl. (9) vol.36 (1957) pp.201-216