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§0. Introduction
Professor Sato initiated and developed the theory
of sheaf (& in 1969 (Sato [2] , [3] ), and this theory
has turned out to be a very powerful tool in analysis,
especially in the study of linear (pseudo-)difféfenﬁial
equations. (Cf. Kashiwara and Kawai [1] , [2] ,
Kawai [11~[5] , Sato [21 ~[6]. See also
Hormander [2] , {5] ). The present speaker gave a survey
lecture on these subjects at the symposium last Harch
on the theory of hyperfunctions and differential eguations
(Kawei [3] ), and listed’there four prcblems to be |
solved. They were:
(i) the treatment of the case k= © , where k is the
number appearing in Egorov [1] and Nirenberg and
Treves [11 concerning the local solvability of
linear (pseudo-)differential equations,
(ii) to extend cur theory to the case where the
assumption of simple characteristics is omitted,
(i) to extend our theory to bverdetermined systens,

and
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(iv) to give global existence theorems.

#specially he placed emphasis on problems (i) and
(iv) at that occasion.

4 complete result is given by Sato [6] , concerning
problem (iii) and a result is given by the present speaker
concerning problem (iv) (Kawai.[4] , [5] ).

Now in this lecture we will explain how problem (iv)
is deduced from the local theory of linear differential
equations. ‘

liore complete arguements should be given in our
forthcoming papefs (Kawai [6] ) and this 1ectu£e should

be regarded as a survey one.

§1. Global existence of real analytic solutions of
single lineéf differential equation  with constant
coefficients.

As is well known the topological structure of the
space of real analytic functions on an open set is rather
complicated, hence even Professor Ehrenpreis, who
initiatéd‘and COmpletea_the general theory of linear

differential equations with constant coefficients in the

framework of distributions with Professors Malgrange,

- Hormender and Palamodov, seems at preSent,té have-
abandoned to attack the problem of global“eXisténce of
resl enalytic solutionms. (Cf. Ehrenpreis [2] , [3] ).
But we can treat this problem without much difficulty
by the aid of the theory of hyperfunctions and that of
sheaf CL;, at leas%f%giiestrict-ourselves to the
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consideration of the operators satisfying suitable
regularity conditions which allow us to consider the problems
geometrically. In a sense our method can be regarded~as
"method of algebraic anaslysis” contrary to "method of
functional analysis", which is developed, for example, in
Hormender [1] , Palamodov [1] , Ehrenpreis [3], etec.
(The word "algebraic analysis" seems to go baék to Euler
but it has recently been endowed with positive meanings by
Professor Sato, who aims at the Renaissance-of classicél
analysis).

We first examine in the special case whether the
theory of hyperfuncﬁidns is useful to investigate the-
problem of global existence of real analytic solutions.
In fact we easilykﬁnderétéhd.thatlit.is very powerfﬁl‘in
the_following special'éése; i.e., the case when the operator
P(D) is elliptic. |

Of course in this case there is a decisive result

due to Malgrange [1] ; i.e.,

Theorem - (Malgrange (1] ). For any open set Q in}

[Rn

fv(x) in (L(Q). Here QL) denotes the space of real

, P{D)u=f has a solution u(x) in Cl(fl)kfor any datum
ahalytic functions defined on (2 .«
Now we show how we «can prove this deep theoféﬁfwithf

ease if we assumevthatu(z is relatively compact.. The

essence of the proof is, as describedibelcw, the flabbiness4

-3 -
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of sheaf of hyperfunctions, which we denote by [3 in the
sequel.

Qur proof is divided into two parts. First we remember

the following lemma due to John [1] .

Lemma 1. If the linear differential operator P(D)
is elliptic, then we can find a hyperfunction =(x) defined
on R™ satisfying
(1) B(DE(x)= 8(x)
and

(ii) E(x) is real analytic outside the origin.

This lemma can be proved by many methods: for example,
one can use the fact that the non-characteristic Cauchy problem
in the complex domain has the entire solution as far as all the
data given are entire functions, the linear differential
operator under consideration is of constant coefficients/and
the initial hypersurface is a hyperplane. (Cf. Leray [EJ
Lemma 39.1). Then:one can use the celebrated reasonings of
John [lj Chapter 3 to comstruct E(x). (Cf. John [1]
pp.66‘——~ 72). Another proof is given by the following wayﬁ
First construct the elementary solution EO(X) of Pm(D), the

principal part of P(D), in the form

1 f L . (<x, erricye( &),

2 4 (e (E)tio) BT
gl=1 °
where . ) ‘
cP (-1)973(3-1)1 T Y (7 O
: (T )= + ‘ .
’ T lo-—:i’-——l—,—— 1+ -—- +~—]§-—) z? (jgv)

51 = St 3
J* de
and (,O(‘Z) denotes the volume element of the unit sphere,
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. n . .
ie., E)=%’; (—l)‘j"lg’jd E‘l A=A d‘gg:—l A

dgg}l/\ === A dgn. Next construct the required E(x) by

the successive approximation starting from EO(X), or more

precisely from

1 | |
iy Tam (C2ED

where z and C; denote the complexifications of x and E;
respectively. DNote that Pm(cg) never vanishes as far as ol
is sufficiently near to the real unit ball {£e R™ glﬁl -1}
by the assumption of ellipticity. The convergence- of the
successive approximation is easy to check, and it is also
easy to verify that E(X) has all the requiéred properties.
Secondly we use the flabbineés of sheaf (3 to obtain
a hyperfunction sz), which is defined on R and satisfies L
the following conditions:
(1) Its support is contained in Q , the closure of (2 .
(ii) It coincides with f(x) in Q .

Vancd
Then using f(x) we define u(x) by the integration
/fiE(x-y)f(y)dy. This integration is well defined as an

integration along fiber (Sato [1]), since the support of
;(y) is compact by the dcfinition. On the other hand by
property (i) of (x) we have P(D)u(x)=§(x) and by property
(ii) of .(x) and the property of %(X) we see that u(x) is

real analytic lefz . Thus if we consider the restriction
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of u(x) o §2 , Wwhich we denote by u(x) again, u(x) is a

real analytic solution of the equation P(D)u=f.

This proof of the existence theorem in the elliptic
case teaches us the following facts:
(1) Flabbiness of sheaf {3 allows us to pass the
technical difficulties by, especially it reduces

all the problems to the boundary.

(ii) The informations which the "good" elementary
solutions have (property (ii) in the above case)
are used in the course of integrations and give us
a good solution of P(D)u:f.

These observations oblige us to want to consider more
genefal differeﬁtial operators, not necessarily elliptic:
in fact we have "good" elementary solutions for the
differential operator P(X,DX) satisfying the following
conditions (1) and (2), which exist globally if the-
operator P(X,DX) is of constant coefficients. (Kawai [l] ).
e also remark that we can treat more general class of
operators first considered in Andersson Ll] (see also
Kawai [3] , [5] ),’sinéé in this section we Testrict
ourselves to the case where{the differential operators are
with constant coeificients,which is a easy case from the
view-point of construction of elementary solutions.

(l) The principal symbol Pm(x,i,) of P(x,ﬂx) is real.

(2) Pm(x,Eg) is of simple characteristics, i.e.,

[
o)
i



gradE’Pm(x,é,) does not vanish whenever Pm(x,E;)=O

for any point (X,E,) in the real cotangential

sphere bundle.

Now, what is the good property presented by the elementary
solutions constructed in Kawai [1]? It is described

in the following lemma.

Lemma 2. ILet P(D) be a linear differential operator
with constant coefficients satisfying conditions (1) and (2).
Then there exist two hyperfunctions Ej (x) and E_(x) such
that
(1) P(D)E + (x)= 6 (x) holds
and
(ii) S.S.E+(x) is contained in i(x,i )E S*[Ran=O or -

x=1t grad, P ( ) with £20 and P _(§)=0 §

respectively, where S*R™ denotes the cotangential
sphere bundle of RY and S.8.E+(x) denotes the
support of E+ (x) regarded as sectibng of sheaf CZ .
(cf. sato (4] ). | -

The proof of this lemma was rather implicit in Kawai.[l] ’
especially concerning the global existence of £ +(x),

‘ however : T
<1t is,easy{to prove this lemma using the successive
approximation method as is sketched in the proof of Lemma 1,

since the operator P(D) has constant coefficients.



We believe that such an elementary solution as is
given by Lemma 2 is very good and that all the informations
about the operator P(D) should be deduced from it, and the
belief in the good elementary solution has its reward as is

described in this report.

We first consider the solvability in (L(X) for
compact set K in R™. Here Ci(K) denotes the space of

real analytic functions on X, i.e., lim ((V), where
VoK

V denotes a complex‘neighboufhood of K and G;(V) denotes
the space of holomorphic functions on V. This problem
has its own interests as well as it plays a role as a

lemma to ocur final object of solving the equation P(D)u:f'

in Cl((l) for an open set (2 .

Theoreﬁ %, Assune théﬁ K is the closure of relatively
compact open set Q ={x | P (x)< Oj, where ¢ (x) is a
real valued real analytic function defined near XK satisfying
gradX§>%O on 9(2 , the boupdary afS? . Suppose that the
compact set K satisfies the following geométricalicdndition
(3) and that the differential operator P(D) satisfies
coﬁditions (1) and (). Then for any If(x) in CZ(K) we
can find u(x) in (Q (R ) such that ¥(D)u=f holds in £ .
(3) For ahy X, in a§2 the bicharacteristic cufve of P(D)

b( ) igsuing from

x grad @ va
o* X X=X

(Xo,gradxcyﬁ 4.y ) never intersects 0o,
o

- & -
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The proof of this theorem is given Just in the same
way as in the second Part of our proof of the existence
theorem in elliptib case by the use of either one of the
good elementaﬁy solutions given in Lemms 2, In faét the
smoothness of the boundary and the regularity of .£(x)
permit us $0 extend £(x) to R by f(x)@(-?(x)), where O
denotes the l-dimensional Heaviside function. Note that
S.8.(f(x)6 (—SD(X)))' is contained in { (x,E)E 's%{gn x € 252,
E =igradeP(X)}. Then we can éppiy Sato's lemma on the

regularity of the integration along fiber (Sato [ 4]
Corollary 6.5.3) to the integration

\)(E(x—y)f(y)é?(-<?(y))dy and obtain the required result.

This proof of Theorem % needs only one of good

elementary solutions given in Lemma 2, but this contradicts
our sense of» symmetry: We niust use both good elkementary‘v
solutions, because neither one is better than thé other.
This belief _in‘bboth good elementary solutions is rewarded

again, i.e., we can improve Theorem 3 as follows.

Theorem 4. 1In Theorem 3 the condition (3) onQ can
be weekened to the follewing. ‘
(4) For any x, in 9Q the bicharacterestic curve of P(D)
b Vissuing from (%, gradx?t )

Xy gradx‘fk X“xo) X=X

intersects Q in an open interval.
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Proof of Theorem 4, We denote £(x) 9 (- ®P(x)) by ¥ (x).
By condition (4) we have the dgcotmposrcl n_of
N=1(x, &)€ s*R" |x € I , Py E-Hi into the form N,Y N_,
1Ge, 8 l (&) L &= tgrad @ (x¥
where N ={(x, £)e D*R“lx €38R , P (&)=0|and half of the

bicharacteristic curve t© grad g P (E,)(t 20) does not

=tgrad P(x)
intersect Q; and N-={(x )E S*an]x €, P (é;) O]‘and

half of the bicharacteristic curve t grad&Pm(E Y(££0)

does not intersect Q § » Since sheaf c is flabby
(Kashiwara [ 1] ), we can find hyperfunctions ';?-g.(x) and ?_(x)
such that S.8.(F(x)-F4(x)-F_(x))=#, 5.8.7,(x)n NCN, and
S.S.'}.‘_(x) NNCN_. Then applying Saﬁo's lemma on the
regularity of the integral along fiber to

v(x)= \Eu(x-~y) '5+(;Y)dy+ gE_(x—y);_(y)dy,

L3

we find S.S.ir(x)n s*QQ =g. Note that the above integration

is well defined as that of the section of sheaf C .

Therefore we have P(D)v(x):?(x)-{-g(x), where g(x) is real
analytic in R®. Here we have used the fact that HI(R®, Q)
van_ishes. Then restric':ting g(x) to a closed ball B cbntaining

K in its interior, we can apply Theorem 3 to find w(x) which

is reaivanaly‘tic in the interior of B and satisfies P(D)w(x)=g(x)
there. Thus subtracting w(x) from v(x), we find the required
u(ic), which is real én"alytic in (2 ana ‘satisfies P(D)u(x)=£f(x)

the:ée. This completes the proof of Theorem 4.

In an obvious way we can modify the form of Theorem 4

- 10 -
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to obtain the results which assures the existence of the
solution u(x) in a(K), We refer the reader to Kawai [4]

Theorem 1' about the modifications.

Remark, Since the space (J(K) has a natural structre
as a topological vector space, i.e., a(K) is a DFS-space,
Serre's duality theorem holds for the pair ( a‘(K), BK),
where & K denotes the space of hyperfunctions with support
in K. Then Serre's duality theorem shows that the éxistence
of solutions in (] (K) can be deduced by the unique
continuation theorem concerning hyperfunctlon solutlons.

On the other hand the unique contlnuatlon theorem follows
easily from Theorem 3.3' in Kawai [ 1] in a precise form
using the notion of bicharacteristics. Thus we héve’ the

following theoremn. .

Theorem 5. ILet K be a compact set in R™ and the
operator P(D) Satisfy conditions (1) and (2). Suppose
that condition (5) below holds. Then P(D) Q(K)=(Q(K)
holds. ,;~- - - v
(5) For any (x,%) in /S"“Rn such that x belongs to
ChK, the convex hull of K, but not to K, and
such thet & satisfies Pm-( £)=0, there is a point
y outside ChK for which the .seément Xy does not inter=
sect K and is contained in the bicharacteristic

curve of P(D) issuing from (x, £ ).

- 11 -
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We omit the proof of this theorem in this lecture

since it essentially uses "functional analysis". We only

remark the following two facts which are related to

Theorem 5.

(4)

(B)

Anslogue of Theorem 4 can be proved even if K is

a closure of an open set (2 , whose regularity at

the boundary is not necessarily assumed. In fact it

is sufficient in this case to assume the follewing

condition (6) instead of comdition (4):

(6) Any bivharscteristic cﬁrve of P(D) intersects
X in an open interval,

‘he validity of this statement is obvious from the

method of the proof of Theorem 4, if we remafk the

fact that sheaf (@ is flabby. In this case,

however, we need not assume‘f(x) belongs te Cl(K),

since we extend f(x) to R™ using the flabbiness of

sheaf 3 . Hence this analogue of Theorem 4 should be

regarded as-an existence theorem for CL(EZ) rather

than (L(¥). (Cf. Theorem 9 in the below).

If we allow the principal symbol of ¥(D) to be

complex valued, then we have the following

thecrem 6. DBefore statiung Theorem 6 we prepare a

notioh regarding bicharacteristics of ?(D). In

order o define the notion we assume in the

sequel that the principal symbol Pm(e;) has the

form 4 (€ )+ 1B (E ), where A, e=nd B are real

valued, and that
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7 gradE.Am and gradEIBm are linearly independent
whenever P ( €)=0, & #O..
Using these assumptions on Pm(ii) we can define

the bicharacteristic plane Jm(x £%) of P(D)
: .

though (xo,Ef) by the 2-dimensional linear variety
passing through X, which is spanned by

. . . -]
g_rad‘aAm’&:%o and grangmlEﬁEo | ,’ where Pm(a )=0
holds.
Preparing this notion, we have the following

theoren.

Theorem 6. Let the operator P(D) satiéﬁy condition
(7) and let the compact set K in R® satisfy the
following condition (8). Then P(D)Cl(K)zCl(K) holds.
(8) For any bicharacteristic ﬁlane jk of P(D),
AN (ChK-K) has no relatitively compact

component.

We have not yet proved this theorem without using
the duality theorem. A little weaker theorem is
obtained by‘a direct method similar to the proof of
Theorem 3% using'the elementary solution in

Kawai (4] Theoren 2.

Now we go on to the problem of global existence of

solutions in (L({!) for an open setgz . A complete
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result is obteined if (2 is inIRz, hence we first state the

theoren.

Theorem 7. For any linear differential operator
with constant coefficients P(D) we have P(D)Q(SZ):Q(Q)
if a relatively compact open set_fz i.n.IR2 satisfies the
following condition:
(%) | Any characteristic line of P(D) intersects 2 in an

open interval.

The proof of this theorem relies on the fact that
explicit construction of elementary solutions of P(D) is

possible for any P(D) in the 2-dimensional case.

We can also prove that the converse of the theorem
is true at least if P(D) is homogeneous. In fact we have

the following theorem.

Theorem 8. Let P(D) be a homogeheous linear
diifferential operator with constant coefficients defined
on RP. Assﬁme that P(D)Cl(fZ);(2(§2) hblds for a domain
Q-= {iﬁ ?(x)< Oi where 99(X) is a real valued real analytlc
function defined near !Z. satisfying grﬁd ?F(x)ﬁo on O .
Then for any characteristic boundary point Xy i.e., the

boundary point where Pm(gradxﬁ?(x)]xzxo)=o holds, the

characteristic hyperplane through Xg9 i.e.,
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{x ‘(x—xo, gra@X?’Cx)l X=Xo> =O}, does not interset

(Rn-gz,)r\N in a compact et for any compact

neighbourhood N of Xy

The existence of a special null-sclution of P(D)
proves this theorem and we omit the details., We hopé that
the assumption on homogeneity of P(D) will be. redundant
and that the characteristics should be replaced by the
bicharacterics, though we have not yet proved them because

of some technicgl difficulties.

On the contrary, we have the following Theorem 9 as
an affirmetive answer to the global existence of real

analytic solutions.

Theorem 9. Let the operator P(D) satisfy condition
, Jboundary
(1) and (2) and let a relatively compact open set with smoot
satisfy the following condition (10). Then P(D)(L(R)=-Q(Q)
holds. ; ‘
(10) Any bicharacteristic curve of P(D) intersects,.fz

in an open interval.

‘The proof of this theorem is just the same as that

of Theorem 4. (Cf. Remark (A) after Theorem 5).

Since Theorem 9 seems to require too much information
concerning the global shape of Q , we modify Theorem 9

as follows.

- 15 -



Theorem 10. Assume the same conditions on (D) as

in ‘heorem S§. Let a relatively compact open set fl have
the form ix"} (%)< 02 for a real valued real analytic
function P (x) defined near Ez satisfying gradx‘y’(x)%o
on 'QKZ . If the open set (2 satisfies both condition (4)
in Theorem 4 and condition (11) below, then
P(OYAQ)=-A(Q) noids.
(11) There exists a family of open setS'{sz 511
which satisfy the following{ For any point x
in fl we can find some J such that for any

bicharacteristic curve b(X £ ) of P(D) through
3
(x, &) b(X,E )(\(fz —fxg)f\Nj is connected,

where H. is a neighbourhood of x.

The proof of this theorem is similar to that of

-

Theorem 4, so we omit the details.

Remark. As is remarked before Lemma 2, we can

eneralize Theorems 4, 9 and 10 for a wider class

0g

i linear differerntial operators with comstant

O

oefficients w0t necessarily safisfying conditions

o
o

P

1) and (2). We cnmit the details here and refer %o
Kawai [5] fo: it. We however emphesize the fact that
cne of vhe advantsages of hyperiunction theory a@pears
wher. one tries to state tue theorems using conditicns
cn the principal paxrt of (D) only. thus in Fawai fi]

1o conditicnr on lower order terms- is needed. _“hic

fact is sometimes remsrkaebly usciul in trestiz



overdetermined systems with constant coefficients.

§2. Global existence of real analytic solutions of single

linear differential equations with real analytié coefficients.
The reasonings of 81 depends on the global existence of

good elementary solutions of the differentiél operator P(D).

But if we want to treat the operators with variable céefficients,

then there appears a difficulty: the a*guements of Kawai [1]

[ 2 ] show only local existence of elementary ‘solutions

except some trivial cases, e.g. & linear diffepential operator

with its principal part being of constant coefficients and

the coefficients of lower order terms being entire functions.

By this reason in the variable coefficient case we ‘must content

ourselves with the semi-global versions of Theorems 4,9 and

10 at resent, i.e., we must consider all the problems in

subsets of a fixed open set V in Bn, not R™ itself, even

if the coefficients of P(X,DX) are real analytic in a larger

set than V. Of course the open set V depends on the operator

under consideration. Such results are unsatisfactory,

hence we will not discuss them any more here. However there

is a case where the elementary solutions exist globally,

hence all arguements in §1 succeed: globally hypefbolic

operators in the sense of Leray [1]. (Cf. also Bruhat [1]).

If we combine our construction of local elemenbtary solutions

and investigations of their properties developed in

Kawai [1] with Leray’s penetrating study of emissions,

which are closely related to bicharacteristics, then

we have the following Lemma 1l. (Concerning the dJdefini-

Sion of global hyperbolicity and the related torics

- 17 -
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we refer to Leray [l] and Bruhat [l} . See also hawail [b] ).

Lemma l1l. Assume that the linear differential operator
P(X,DX) is globally hyperbolic on real analytic complete
Riemanian manifold V. Then we have an elementary solution
i(x,y) for (x,y)€ VX V satisfying the following conditions:
(125 supp B(x,y)C E:(y), where Ei(y) denotes the
emission of y.

(13)  5.8.500,9) C LGy, &, 2)e8*(vx 0| xy, &= 7"
{Gors &, 0es (x| (x, &) and (3,-7)
are on the same bicharacteristic strip of

2(x,D,) with x € E(y) § .

Thus<we have a global elementaryvsolution in this
case. Therefore we can prove analogues of Theorems 4,9
end 10. We omit the details and refer to Kawai [5] . Of
course the assumption of hyperbolicity also allows us to
treat the Cauchy problems for such operators both in the
framework of real analytic functions and in that of
hyperfunctions. ‘A remarksble fact which eprears in our
treatment of Cauchy problems in the framework of hyper-
functicns is firstly that bicharacteristics play no part .
when we decide the existence domain of solutions and
secondly that they play their own essintial role oni&
when we decide the domzins where the unigueness of

solutions holds. Avout the details we also refer to

Lawai [5] .

- 18 -
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§3. Global existence of real analytic solutions of systems
of linear differential equations with constant coefficients.

The investigations of the problems stated in the
title of this section are still progressing, hence we cannot
give the final theorems but only sketch two methods which
are'expecﬁed to give the compi%?results and, in fact, have
given results in some special cases. Since wé‘want to
explain the main ideas and do not try to giwe complete
arguements in this section, we assume some additional
conditions concerning the algebraic structure of the systems
under consideration in order to avoid the technical .
difficulties. That is, in Theorem 12 we assume that the
system of compatibility conditions has one generator and
in Theorems 135 and 14 we assume that the system undef
consideration has only one unknown function. We remark
that some trivial cases which can be treated by Just the
seme method as developed in 81 may be omitted by these
assumptions: the typical example is a system whose adjoint
operator is an (over~)determined system of linear differential
operators. But we hope the most typical features of the
system of linear differential.operators appear clearly
even if we assume these conditions.

The first approach is the one concerning the existence
of solutions in CL(K)»for compact set K in R®. This
method is essenticlly due to Fhrenpreis [l] ) [5] and
is a direct extension of the proof of Theorem 5. That is,
it uses the pairing of (Cl(K),&3K) and Serre’s duality theorem, -

Then it is easy to reduce the existence theorem to the

- 19 -
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problem of support of solutions and we obtain the following:

Theorem 12. Denote by Mo the system of linear differen-

tial operators with constant coefficients and by i‘»’Il the system

which gives its compatibility conditions. Assume that tMl, the

adjoint operator of Ml, has only one unknown function. bLet K

be a comact set in R® satisfying the following conditions (14)

and (15). Then Ext (i, (L(X))=0 holds.

(14) There exists a real valued real ahalytic function
Cf(x)‘ which is defined in a neighbourhood of ChK, the
convex hull of K, and satisfies
(a) { x l?(x)él} X, {xl fy(x)=<__2j ~ChK,

- and

il

(b) gradx'g? (x)#£0 in ChK-X.

tl‘«il is hyperbolic with respect to

(15) The system |
gradx SO(X)\}th for any x, satisfying ?(xo)ﬂ:

with 1< t€ 2.

The proof of this theorem is cbtained by the method
of pie-nibbling due to Ehrenpreis [1] , [3] . By the way
of the proof condition (b) can be weakened but we will

not discuss it any more in this lecture.

The second epproach is concerning the existence of

ezl analytic scluticns on an open set Q and 1t can be

H

summariged schematically as follows: if we can solve the

system of linear differential eguations in the space of
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hyperfunctions (or that of distributions or that of C°°
functions ete.), then using the flabbiness of sheaf &3 and
that of sheaf (; we can solve the system-in the space of
real esnalytic functions assuming some additional "“convexity®
conditions on the boundary of fz . e hope that the
sleability in the space of hyperfunctions will be obtained
under the least restrictive conditions on the "convexity"
of.fz and that this method will give us the complete
result, though we have not arrived there.’ Note that,

fdr example, we need no '"local convexity" conditions to
solve the system of lineat differential equations with
constant coefficients if the space dimension n is equal to 2.

By this method we have the following theorems:

Theorem 13. Consider an overdetermined system M, with

one . unknown function. Lebgz be a relatively compact

convex open set in R™. Then we have Extl(MO,YCL(KZ))=O, if

we can find a polynomial PO whose homogeneous part satisfies
conditions (1) and (2) in §1 in the generators of the

ideal in the polynomial ring A=C [gl’ ———,E;n)corresponding
to the system MO under consideration, i.e., assume that,
representing M, as A47 , Where ;{ is an ideal in 4, we

can find polynomials PO, — Pk so that the ideal
generated by them coincides with j and that Po satisfies

conditions (1) and (2).

Theorem 14. TFor any overdetermined system MO of

- 1 -
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linear diferential operators with constant coefficients
and one unknown function, we can find a nowhere dense subset

s ef gtl

, the (n-l)-~dimensional co-sphere, such that the
following holdg:/ If a relatively compact open set (2 in R™

has the form ﬂl {xl {x, 5)3> < cj’ E.jé 51’1-1_8, °j> Og
1=

o

for some positive integer N , then Extl(MO, CL((Z)):O holds.

The proof of-these theorems is given by the method
enalogous to that employea in the proof of Theorem 4, if we
take into account of Komatsu’s result that Extl(Mo, £ (2))-=0
holds for any MO and for any convex open set fz in R™.

(ct. Koﬁatsu [l] ) [2] ). Of course these forms of
presentationg of the theorems are very unsatisfactory from
the aethetical viewpoint. In fact we have some recipes for
generalizing these results using the notion of the
bicharacteristics concerning the overdetermined systéms,
but we cannot make them applicable at present since we
have almost no results concerning the global existence of
hyperfunction solutions except for Komatsu’s one or those
which can be easily deduced from it only by the algebraic
arguemens. Hence the present speaker wishes to return to
these problems atb the'0ccaéion of the next symposium,
which will be held in next liarch. Please give him time

enough until then.

f
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