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Theorems on the extension of solutions.

Akira Kaneko,

Fac. of Sci. Univ. of Tokyo.

Making Grusin's works (41, (2] as a starting point,
we have hitherto‘studied the extendability of (regular) solu-
tions in (31, (41, (5). 1In this report we add something
new in this diréction. The details will be published- in the
forthcoming paper [T[1.

§1. Prelimihiaries. The case of hyperfunction solutions.

Take a convex compact set and its convex open neighbor-
hood in the n-dimensional Euclidean space Rn, and denote by
K, U +the intersections of these sets with the open half spa-
ce H=an<O} , where x=(xl,...,xn)=(x',xn) are the coordi-
nates of R™ and their abbreviations. We put IL=K, the clo-
sure of X in R®. Thus K ié/a locaiiy closed bounded sub-

set of Rn

and L is compact.
Let p(D) Dbe a partial differential operator with conste

ant coefficients corresponding to the polynomial p(C), where

D=(Dl,-~-,Dn>, Dl:J:i'%%I etc.. We denote by B the sheaf



of germs of hyperfunctions and by Bp the sheaf of germs of
hyperfunction solutions of p(i)u=0. We first note the follow-
ing lemma which can be proved either by the Fourier transform
and estimation of entire functions or step by step use of Hol-
mgren's theorem.
Lemma 1.1 HY(U,B_)=0

KM p :
With use of the fundamental exact sequence of relative cohomo-
logy groups

0 Qrir = =0

(1) 0 —> HK(U’BD) —> H (U,Bp) —> 0 (U~K,Bp)
—> Bg(U,B)) —> BY(U,BL) —> e,

and the flabby resolution

(2) o© B, B -2 B 0,
which permits us the calculation of Hé(UfEP)’ and another
exact sequence

(3) | e s Hg(u,gp)

—> 1y g (R%,B)) —> Hp(R%,2 ) —> Bg(U,7))
T 2 n
— IIL\K(R ,Ep) —_— R

we obtain the following theorem, when we remenber that

1,00 o s . .
H (U,ﬁﬁ)=0 due to the existence theorem of Harvey-Komatsu,
2 . . - . o o - . - .
nL‘K(R ,Bp)=0 because & is of flabby dimension < 1, =vd

the statement of Lemma 1.1.

Theorem +.2 B_(UJ~k)
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= HK(U L)/ph (Uu,B)
~ 7 (R%,B.) I B)
%L(R ’BpJ/HL‘I(:(R -,sz°
The method of arguements is the one freguently used in [53,
so we omit here the details.

How we consider the following diagram

0

0 0O
. ¥ R
0 —> ﬁf\Tii 2G5 Frwmy —& o Eﬁiﬁf?{d,pj —> 0
@)

~—— a

P
0 —> BIL} BLL] —> B[L}{d,p}y —> O
¥ b

0 — B/ -2G) B /A —2 > m{a,ﬁ—e 0

v \ v

0 0 0

Here we employed the symbol B(L]= Hg(RH,B) and BIlIL~K)=
—~
L F(R ,B). B[L} etc. denotes the Fourier transform of B[L)
etc.. d denotes a noetherian operator corresponding to p(g)
(we can assume that each irreducible coﬁponent‘of the associa-
ted .lgebraic variety ©I(yp) is normally vlaced with respect to
;l’ eand d° consists of the composition of restriction to
each irreducible component with the differentiatioﬁs by ;l
up to Tthe order egual to the multiplicity of the corresponding

SN
B[L1{d,p} etc. denotes the space of

component minus 1).

vectors of holomorphic functions on N(p), which satisfy the



X)
are locally in the image of the noetherian operator d. The

first and the second rows aré exact because of the so called
Fundamental rrinciple (which is proved, in our case, in [S}).
The last term of each column is defined as the quetient space

in each sense. Therefore by the O9-lemma the diagram is exact
~when we define the last row in the natural way. We have:

T N~———
Proposition 1.4 B, (UsK)/B,(U) ¥ BIL]/BIL-K}{d,py . The
a .

~
isomorphism 4 is given in the following way: For uéBp(UsK),

let [uleé HO{U,B) be an extension of u and let “:p(D) [u]ﬂé
m9(r%,B) b i € 10 h Tu =
L( , e an extension of p(D)[u) HK(U,B). Then, d-u =

dWlé ﬁfd,p’) mod . ﬁr\.ﬁ{d,p‘].

Theorem 1.5 BD(UsK)/BD(U)A) if and only if for any €>0,
there exists some Cg>0 such that the following inequality
. _ kK)
holds:

Y T {

(4) HL((;) <t ;Q + Hp (G) + G, G e N(p).

rroof. The sufficiency follows directly from Proposition
1.4, In fact agssuning the above inecuality we have the inclu-

NN . N ., -
sion B[L’){d,p}CB[L\K]{d,pS. To prove the necessity choose
a point a €L arbitrarily, and take a solution E €B(R")
satisfying p(D)E= 8(:{—3). Clearly E€B_(U-K). Therefore

Ve
oLy {d,p} corntaing a vector function d-p(D)E =d-e

J—-l<a, >

which containg the functiocn e in its compononios.
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Buppose that Bp(U\K)/Bp(U)=O. Then by proposition 1.4 we have

T N— . . . .
5[L\R]{d,p}, so thet the following inecquality must

~N-T<a,3>,

Ve '
3[L]4a,p}<C
hold for the function

(5) 1eVI<@b> ¢ CEeu;HHLwK({), Veso, a‘cs >0,

The desired inequality (4) follows from this one by the ab-
surdity. Since the arguement is elementary we omit the details.

Remark. ZFrom the condition of Theorem 1.5 we can easily

ot

conclude that p dis hyperbolic (in the sense of hyperfunction)

with respect to (0,...,0,1). But mere hyperbolicity is not

sufficient for BbCUsK)/Bp(U)=C. For example, assume that

n=2 and p(g)= §12 - §h2’ Then N(p)={§l+ §n=0 \J§§1— §n=O} ,

and the condition (4) is satisfied if and only if the projecs’

tions of the two sets L, L-K +to the planes {X1+Xn=0} and
{xlfxn=0} both agree. Thus for K:{(Q,t); -l§t<o} we have

a non-trivial élement IzéBp(U\K)/Bp(U) defined by

l+Xl+Xn for '1+X1+ano’ —l<x1<0,

u(xl,xn) = 1-xy+x for 1-xy+x >0, 0<xy<1,
0 otherwise.

$2. Continuation of real znalytic solutions.
Let A denote the sheaf of germs of real analytic func-
tions; A_r the sheaf of real snalytic solutions of p(D)u=O,

H

A1), AD(U) the sections of these sheaves on U. Ye discuss

5
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when AP(U\K)/AP(U)=O. Por this purpose we first quote a res-
ult on propagation of regularities.

Theorem 2.1 (T.Kawai) Bp(U)ﬁ A(U\K)CAP(U).
The proof is carried in a way similar to that of Lemma 1.1
mensioned first, but with a more delicate arguement using the
Fourier hyperfunctions and the rapidly decreasing real snaly-
tic functions. See ‘[9] Theorem 5.1.1. |

Let X €C™U) be-such that ‘X =1 on a neighborhood of
K, and ‘supp/X A dUCIL+K, where the closure or the boundary
is taken in R™. Take ue Ap(UsK) arbitrarily. Then
supp p(D)(Xw) AK=F, so that we can extend p(D)(Q(u)v to K
by zero and obtain an element of H%m—(U,Céo). Let ﬁp(D)@(u)ﬂo
be one of its extension to I ' |

Lemma 2.2 d-u = -d“pbﬂ)(’)(u)ﬂo mod . E/-[L\—/Q*’]{d,p} .

Proof. Let [b(ul]éﬁgﬁigs?(Rn,B) be an extension of ¥ u.

Then we have obviously

x| =fer cxw)]

o * Hp(n)[mﬁ mod. B[L~K].

Hence, '

G = dp(g)ﬁx u]l :5:.[[d () (X U)HO + ‘iHMD)[UJH mod. m{ﬂal},
and we have nrovad

d-u = de(T;)Lu“jH mod . 'J;i[L\K]{d,p)

i

~@_Hg;(,)(’)(u)ﬂo ..0d. /ix\sI/]{\h,)z[ g.e.

[

6



Proposition 2.% For u.EAp(U\K), each representative
N .

FG;) of d-u has the following property: for any entire in-
fro—-exmonential functicn J(Q) and any £€>C, we have a decon-
position J(E)F(G)=f(L)+g(C), where £, g are holomorphic
g-functions satisfying the estimates

1£@)1 < Opexp(1g1ve I T 4 £ (©)), Y7>o,gc,(>o, ZeN(p),

g@)1 < Cexp(ElImZ;l+-%1’m§n+HL(C>>, G eN(p).

Froof. First remark that J(D)ué}AP(U\K) also,k where
J(D) 1is the local operator corresponding to J(L) (see 43
§2). Thus by Lemma 2.2 we have d-J(D)u = —dﬂ?(D)(q(J(D)uD

o~ o0 ‘
mod. B[L+Kl{d,p}. By a €~ cut-off function we decompose
“p(D)(OCJ(D)uﬂL = Vv + w, where supp v(:{xn>—£§, and supp W

00
C‘{Xn<— %}, wé CO(Rn). Thus we have
da-J(Du = -a-v = d-w  mod. B[L~K]{d,p}

snd by the Pglcynwlenmr theorem the tJO terms in the right
hand side satisfies the desired estimates. AdJusting by ele~

ments of B[ka]{d,p} we have obbtained the desired decompo-

sition for 4 J(D)u. But we have

~ /_\\J
a-J(Du = ﬁf(D)[u(D)uﬂ mod. 7[T~A]{a r}
/)
= d“J(D)p(E)[uJ“ mod.. {I\h}{d v}
T r— ~—
= d-J(B)Hp(D)[u]B mod. B[L-K]{d,p}
—— P

d-J(Q)‘Hp(D)Lu]“ mod. BILEI{d,n| .

T
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Recall that the last element can be expressed by J(()dH?(D)[uﬁ]
as the multiplication with s matrix whose elements asre deriva-
tives of J(&) with $ . See (41 p.573. Therefore just
in the same way as there, we obbtain the desired property for
J(g)a-u.

Now we are ready to present our main result.

Theorem 2.4 Assume that each irreducible component Pa.

of p satisfies either of the following two conditions:

1) Do is hyperbolic with respect to (0,...,0,1),

3

2) there is a Qector J?éffkﬂ’ for which the polynomial
pkOT47:+CC qn) on ‘T satisfies the following conditions:
a) the coefficient of the highest term on “T is a constant

. . , / o Nn—
independent of & or grﬁ b) for any fixed & €cB™H, the

H

7 / ~
ootz T= Tj(Z:n> of p,\&’t’17+§,§ )=0  saticfy 1T(E))/E,!

n J

{’1 iu" e -w - - . r,:.L “‘ 'm . § > va'!‘e.
< Cs with some constants Cj’ and !Q 'ta(gn»/ih —> O when
1 ITm Cnl is bounded and C& —> 60

Then Ap(U\K)/Ap(U)&@Z

Proof. Due to Proposition 1.4 and Theorem 2.1 we only

have to show that every element in ﬁ[L}%d,p% having the tro-

) . L. " o . Lo~
perty stated in Progpositicn 2.% necessarily belongs to ﬁ{L\K}{d ] .
oy = &/ [} b e

: =<t Ty . 1
For each hyperbolic factor, we have biL]{dx,pXX}CEiL\KK{d},p%A}

- e 4+
situati that

by Theorem 1.5. (If U, KX are not in %h

[¢]

*) See the Errata =t +the end.
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Theorem 1.5 can be appiied direcﬁly, we can replace U by
Uf\{xn<c} for a suitable c, and'replacé K by another sui-
table set similar to K, and apply this theoremblittle by little
to obtain IléAp(U), since there is a unique way of continu-
ation for a real analytic solution.)

Next, suppose that the‘irreducible component Pa satis-
fies the condition 2) of the theorem. Hereafter,',we denote
p for Py for simplicity. By a sﬁitable coordinate transform
for X'-variables, we can assume that the polynomial p(( ,@:,Cn)
for Z;l has the highest term with the coefficient iﬁéepéndent
or G, G,» and the roots G = ’Z'J.(Cn) of p(ql,g",‘;n)%
for fixed ;" satisfy the condition stated in 2)-b) of the
theorem, where we put §= (QI,CH) = (; ,g,gﬁ).' Now fix éﬂ
arbitrarily. The'varietyv N(p)fwgg“zconstant} is covered by
the ‘following epesm sets:

U . Y, O o L
{:1m§ni < c} {8,=T,68), g >0} ... {Ql.—."l'm(;n), g <-C},
Choosing. C large enough, we can assumerthat each ’Ib can
be expressed in the puiseux series
-0
TG0 - o gk/a,
o

On lIm§£t<C the estimation is easy. We are going to study
on each of the remaining sets. Therefore, from now on‘we con-

sider a fixed T. 2nd omit the suffix J. Let ué€ AP(U"K) and
o
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let F(Q) =lﬁiu(C). Then F satisfies the condition in Pro-

nosition 2.%. Thus the holomcrphic function G(Cﬁ)
1
JCT(Ch),Z;,Cn) of one variable En satisfies, for any choice
of the branch of T and the domain of definition Im§£>C (or
similarly Im§;<—C), the following ccndition: for any ¢ >C,
and for any entire infra-exponential function J(;£), we have
a decomposition 5(§£)G(;h) = f(gh) + g(@ﬁ?, where f, g are
holomorzhic in Im€£>C and satisfy
P 1 R
1£(8 )1 < Cexp(e1G 1 + Ep (T ),5 ,8)),
1

Ig(gﬁ)l < Cexp(i!lméﬁl + E!Imt(fﬁ)% + cht<§n>,§ ,(ﬁ)).
wWe prepare a few lemmas.

Lemma 2.5 Assume that the function u(x) of x>0 satis-
fies the following estimate

fu(z) i < O?éxp(ax— §%§30

where ‘?(X) is an arbitraﬁiy chosen function so as %o satisfy

1
.?%xj,ﬂoo vhen xMee , and C?’ is o positive constont deven-

ding on 3’. Then, there is a coratent a’<a for which the
following ineguality holds

jul(x) i i Cexr(a’x).

Thig lemma con be proved in -+ eleorontary way using vhe
technique vhich is often used in 56], so we owrit it.

;sroncsition 2.0 isgume trot the holororihic fucchtion G(z)
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of one variable for Im z>0 satisfies the following condition:

for ony entire infra-exponential function J(z), we have a

=

Fag
L

decomposition JG=f+z, where , g are holomorphic in
Im z>0 and satisfy
1£¢z)1 < Cexp(Elzl),
lg(z)1 < Cexp(alRe z194p1Im 21),
where ¢<1 and all the constants except b and ¢ .may depend
on J. Then G satisfies
1G(z)1 < Cexp(E€lzl).
This is, so to speak, @& relative form of the.theorems
of Phragmén-Lindeldf type and the outline of the proof is the
following. ZPut z=X+J:1y. Choosing J=1, we have for y>0
1G(J=1y) | < Cexp(MaX{Ey, by}).
ow choose J so that 1J{=1y)1 Z‘CeXp(yﬁ?(y)) for 320
for given ? which increases monotonely to infinity. (For
the construction of such J see [LF], Lemma 6.) Assume thet
§<b. Dividing the both sides by J we havebfor >0,
te{=1y)t < C?eXp<by— §ﬁ%;;)-
Thus vy Lemma 2.5 we have for some b <b
16W=Ty) < Cexo(dy).
Therefore, for eny J, the function g gppearing in the de-

com.czition JG=f+g has the following two estimates



(F)

P4V

ig(z)l < Cexp(alRe zi1%+biIm ZD,

lg(N=17)1 < 13{A1y)eW=1y) 1 + 1£W=1y)1
< C,{e}:p(’o'y+7y), V? >0, 3%}0.

Hence we can applynthe usual Phragmén—Lindeléf Ttheorem to the
function h(z) = g(z)exp(v-1z —a"(J=12)Y) with a’= a/cos%EK;
and conclude‘that g satisfies the eétimate in our proposition
with Db replaced by b. In this way, we can replace b by
a decreasing sequence of numbers bk‘ fo assure that we can
finally replace by &€ , assume that bk converge to some bo.
Then, another use of the usual Phragmén-LindelSf theorem shows
that we can replace by bo. Thus, by the absurdity; we can
prove the assertion.
Wow continue the proof of our theorem. 1Ly our assumption,
we have !im’f({ﬁ)l < alRe§£zq+ blImghl + C for some &a>0,
b>0, g, where g<l due to Seidenberg's theorem, and b 1is
independent of J since 1t is devermined by K. Thus Iroposi-
tion 2.6 can be applied to the function G(Z£) and we obtain
16(§. )1 < Cexp(€18 1),
where we can take ¢g>0 arbitrerily snall. Thus we hnve
11 [Tu@)) < Cgn g exn(21G1), Veso,Yg" 3 Cpng >0,
(12) |Tu@) < Ceexp(€151 + H1(§)), YE>o, >0, TENG),

By the caluculstion of wnlurisubhcrmonic mincrant, we can obtailn

12.
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from these two estimates the desired one for C’eF(Q)
(13) 1 Tu@1 < Cgexp(E1q1 + By @), VYes>o,3Ce>0,
which proves the theorem. The last s{ep is tedious, so we
omit it.

§%. Examples.

1). In g1 M. Kashiwara introduced the notion of (C -
hyperbolicity, and gave a characterization for it. An opera-
tor p(D) with constant coefficient is called (Z—hyperbolic
with respect to {7 when it has a fundamental solution with
the singular support contained in a cone properiy contained in
{<X,{7>'2pk. Thus assume that L+K has a non-void .interior

in {Xn=0}. Then, for any p(D) which is C3~hyperbolic but not

\A‘,r-t. (of"a:i)

5 \—r\/——‘_—“‘} S
hyperbolicy we can construct a non-trivial element of

AP(U\K)/AP(U) using the fundamental solution.

2). But the above condition is far from necessary, since
we have the following curious example. Let p(D) =.D22+Dn2. (h:B).
Then p(D)u=0 has the following solution |

u(x) ,%5,%,) = 108 {(XE-X12)2+(Xn+l——%X12>2}

whose singularity in H={Xn<o} is exbitraridty close to the line
segment {(0,0,t); ~1<t<g}. This operator is not (i,—hypérbolic~
by the criterion of M. Kashiwara.

3). 1In the prcceding example, it seems that we cannot

13
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construct a solution whose singularity Jjust agrees with the line
segment given there. On this point we have a conjecture that
when K 1is the line segment, the second condition in 2)-b)

of "hasorem 2.4 will be unnecessary. Clearly our owvcrator satis-

Hy
|
©
0
f’f’

he first condition but does not the second one in 2)-b).
4)., There are no inclusion relations in the two conditions

25 2

1), 2) in Theorem 2.4. In fact, p(D) = D,"-D,

(n=2) sat-
j N _n 23
isfies both 1) and 2). On the otherhand, p(D) = D,"-D,
(n=2) ssztisfies 1), but none of the condition 2)-b).

5). Assume that the principal part of p does not con-
tain C;n' Then, as is easily scen by an olementary considera-—

. . s k -

tion of algebraic equations, we have for a suitable 176{R

rr4(§n)/§£|—~> C when :§hr —> oo for the roots ’Ts of the
Jd ‘N - "

/ -
equation p(T '+, T )=0 with fixzed T €™ ', Thus the

[0

condition 2) of Theorem 2.4 iz trivially setisfied. Of cour-

ce these operators are not hyperbolic in the direction (C,..,0,1)

14
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Hotes.
*) a vector of holomorphic functions satiéfying such local

wroverty is called a holomorphic p-function after Palamodov.

Lte.,
* ) HL(Q) etc. denotes the supporting function of If, i.e.

~~
u =

sup Re<x,J—1Z;> , gice we use the Fourier transform-
xel:

<u, exp(N=-18)>.
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Errata (added onAJuly 7, 1972).

The claim mentioned in p.12 »» 1~p.13,¥ & does not hold in

general. In fact we have a counter-example to Theorem 2.4 it-

-85 -2 %, ), we
self: For p(D) = s - n=5% we have the follow~
3X§ E&g 9X2 ’

ing solution ( with O<k<l )
: 5 2 Xn+kxl 2
w5 gty tos{( 28 ) (2 - ) ).
1~%o-xp)  Bap-xg-x/ \x{-x5-x)
Therefore, for the present we must content ourselves with the
case mn=2, where the management with the remaining variables-
g” is not necessary. For the general n the corfected re-

sult will be given in a forthcoming paper.



Correction (added on October 5, 1972)

We can prove the following résult."The‘meﬁhod»of proof 'é

%is just given in the body of this report, and'the last claimW§

mensioned there really holds under our new assumption.

Theorem. Assume that each irreducible component p?\‘of‘

?p satisfies either of the following two conditions.

2 1) P\ is hyperbolic with respect to a sequence of directions

Ji» k=1,2,..., converging to (04y444,0,1). |
; 2) There exists a non-characteristic leeCulon (49’0) Rn -1

‘such that K(:{<m7;x> =OS and that for the roots fc* of

P (( +’”%?'§%) 0, +the estimate

1InTI < 'il{)wbxlmg 1#0p1 g0 €0, cg, 2705
holds for Imgﬂzo.
Then A_(USNK)/A_(U)=0.
o P 1Y ;
P ‘Hence we hove, instead of Example 5),

xR

- Corollary. Assume that the principal part of p does

;not contain ;n and that K= {(O,...,O,xn);'f¢n5xn<o}.
Then we have AP(U\K)/AP(U)=O.
‘For the details and for other results see the following

?paper submitted to J. Math. Soc. Japan.

| u0n continuation of regular solutions of partialmdifferen-f

_tial equations with constant coefficients."

|7



