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0. Abstract

The space which is composed of the parameters of a
distribution, the'barameter space, may be considered as a
Riemannian space by introducing an appropriéte metric under
some conditions. Invariant quantities'inva geometry have-
very important meanings in its application to various fields
of science. It is shown that a necessary and sufficient
condition for existence of covariance stabilizing trans-
formation is that the Riemann-Christoffel curvature tensor
calculated from the metric is zero. Some population spaces
with constant Gaussian curvatures which are immersed in
higher dimensional Euclidean spaces and the concept of
distance in population spaces are discussed with examples.
Finally the relations between this geometry and Fisher's
information matrix or the other definitions of distance or

divergence between two distributions are mentioned.
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1. Introduction

In this paper we consider a parameter space as a
Riemannian space by introducing a fundamental tensor of the
metric and discuss the statistical meanings of various
invariant quantities in the Riemannian space. - The inverse
of a covariance matrix of a real-valued random vector whose
asymptotic distribution is a Normal distribution is used as
a fundamental tensor of the metric in section 2.

In section 3, the Riemann-Christoffel curvature tensor

which is a typical'invériant quantity in a Riemannian space
is interpreted. It is shown that the condition for existence
of a covariance stabilizing transformation is that all
components of the Riemann-Christoffel curvature tensor are
zeros, and that a condifion given by Holland (1971) in two
dimensional case is equivalent to our condition.

In section 4, by calculating Gaussian curvatures of
some parameter spaces, it is shown that parameter spaces of
a multinomial distribution and one dimensional normal dis-
tribution have positive and negative constant Gaussian
curvatures respectively. Since a Riemannian space with a
constant curvature may be interpreted as a fundamental
hyperquadric of a higher (by éne) dimensional Euclidean
space, the coordinates of the Euclidean space in which the
Riemannian space 1is immersed are given.

In section 5, it is shown that a statistic with asymp-
totically constant variance is formed by a transformation

associated with geodesics in the parameter space. Such
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transformations are given with respect to the same examples
as in section 4. Finally in section 6, the relation between
this geometry and Fisher's information matrix is discussed.

Details of tiresome calculations will be given in fhe
appendices.

The idea that a parameter space may be regarded as a
Riemannian space by introducing an appropriate metric has
been proposed by Rao (1945) and Yoshizawa (1962) using
Fisher's information matrix. Rao gave a solution for geo-
desics in the case of a parameter space composed of the
parent mean and standard deviation of a normal distribution
in more complicated form than ours and tried to use it for
testing in large samples without noticing its asymptotically
constant variance. Yoshizawa, at the suggestion of Professor
Moriguti, gave some examples of spaces with constant Gaussian
curvatures and discussed their statistical meanings.

Recently Holland (1971) considered an asymptotic concept
of a covariance stabilizing transformation and‘gavé a nec-
essary and sufficient condition for its existence. The
author studied this problem again receiving impetus from

Holland's paper.
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2. Introduction of a fundamental tensor of the metric

Let X and 6 beba real valued p-dimensional random
vector with coordinatesfxi and a p-dimensional parameter with
coordinates ei, respectively. This vector parameter, 6,
varies over D, an open, simply connected region of RP,
Finally, assume that /ﬁ(xn—e) has an asymptotic multivariate
Normal distribution with zero mean vector and a non-singular

covariance matrix, i.e.

(1) ' £[/‘ﬁ(xn—e)] » N(0,32(8))

where I(8) is positive definite for all § ¢ D.
Let 8' be a new p-dimensional coordinate system trans-
formed one to one by

(2) , ' = £(8).

It is easily seen that /ﬁ(f(xn)—f(e)) has an asymptotic
multivariate Normal distribution with zero mean vector and

a non-singular covariance matrix, i.e.

(3) £/ﬁ[f(xn)—f(e)] + N(0,z'(8))
where
| \ _ (298" 36"
(4) t' (o) ("_”'ae )Z(e)(—ae )
1
and (%%—) means the Jacobian matrix of the transformation (2)

k exist

under conditions that all partial derivatives 36'%/36
and that the Jacobian is not zero (see Holland [1971]).
Let g*J and g''J denote the elements of £(8) and Z'(8)

respectively. We may rewrite (4) as
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i3 _ ka2 98't pe'd

(5) ' g =g
: , A 56X  5g%

where Einstein summation convention®* is used. We shall use
this convention hereafter. From (5) it is seen that gt is
a contravariant tensor of the second order.

Let g5 be components of the inverse matrix I(6), i.e.

ij - &1
(6) g 813 ék
where 5;'5 are Kronecker deltas. Since it is seen from (5)

and (6) that the law of transformation of 853 to g'ij is
) g, = g 285 20"
ij k& 5511 5513

gij is a covariant tensor. It is also positive definite.

Therefore we may take formally as the basis of the metric
of a parameter space, a space of parametef 8, a real funda-
mental quadratic form

(8) ¢ = gijdeld93

The tensor gij is called the fundamental tensor of the metric.

If element of length ds is defined by

ds® = gijdeldej

noticing that gij is positive definite, from (7) it is seen
that ds? is invariant under the transformation (2). This
definition of ds may_be acceptable as an extension of the

concept of concentration matrix by Dempster [1969]. When 6

* When the same letter appears in any terms as a subscript

and superscript, it is understood that this letter is summed

up for all the values, say p, which this letter takes. k and

2 in (5) are the examples of such letters, called dummy indecies.
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is a mean vector of a multivariate Normal distribution with
constant I this distance is no mure than Mahalanobis'
generalized distance (Mahalanobis [19361]).
Invariant quantities in a geometry have very important
meanings in its application. In the follewing chapters we
will discuss statistical meanings of several geometrical

concepts in parameter space as a Riemannian space.

3. Riemann-Christoffel curvature tensor and covariance

stabilizing transformation

Holland [1971] defined a covariance stabilizing trans-

formation f as a set of functions (2) which satisfies

[ L
1 1
(10) gl 2980 . gk,
36T 363
We may rewrite this condition as
i J
(11) g.. 28 387 . K

i Jg1K 5412 7 T2
from (6).

A space which has Gt as the fundamental tensor of the
metric is called a Euclidean space. Therefore the condition
(10) or (11) for existence of a cevariance stabilizing trans-
formation may be replaced by fhe condition that a Riemannian
space be Euclidean. Since it 1s well known that the latter
condition is that the Riemann-Christoffel curvature tensor

vanishes(e.g. see Veblen [1933], pp 69-71), we obtain the

following theoren.
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Theorem 1: The necessary and sufficient condition that
a covariance stabilizing transformation exists is that all
components of the Riemann-Christoffel curvature tensor are
equal to zero, i.e.
(12) ‘ | Rhijk = 0,
where

- 9 . 9 ‘s L 2 .

38:,. 08:y. 0L
(14) [i3,kx] = %( ik, %E =,
967 98T 39

(18) | (453 = g*ris,x.

[ij,k] and {ij} are called Christoffel 3-index symbols of
the first and second kinds, respectively.
From the definition (6) we find that the componépts of

Riemann-Christoffel curvature tensor satisfy the following

identities:
Rnije ® “Ringie

(16) Ryisx © “Rnikse
Rpijk = Rjknio

and

17) Rhijk + thki + thij‘: 0.

The number of independent components of Riemann-Christoffel
curvature tensor is at most p2(p2—l)/12 due to the identities

(16) and (17). 1In the two dimensional case

Ro121  “Ry921 = “Ropy1o

Rig12 7
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and the other components are zero. Therefore we may write

the condition (12) in two dimensional case as

(18) ~ R1212 = 0.

The equivalence between (18) and the condition obtained

by Holland [1971] will be shown in Appendix A.

4. Gaussian curvature and space with a constant curvature

Baussian curvature defined as

Rhijx
€hi8ik"8nkBi]

(19) K =

has an important role in Riemannian geometry. In particular
a p-dimensional Riemannian space with constant Gaussian
curvature can be immersed in p+l dimensional Euclidean space
and can be interpreted as a fundamental hyperquadric of the
Euclidean space. The hyperquadric is defined by
p+l
(20) re (z%% =%,
o K

: a=1

where cu‘s are plus or minus one according to the character

of the fundamental form and z%'s are a set of solutions of

the equations

h
ij

o

azz“ 3z%
v c a2,
1]

h

(21) T - (a=1,...,p*1)
367907 20

{

} = -Kg

(See Eisenhart [1926]). The left-hand of the above equation

(21) is called covariant differentiation with respect to a

tensor 53 and denote:l by za,ij
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Example 1: A parameter space of means of a p-dimensional
Normal distribution with constant covariance matrix g.

The fundamental tensor of the metric is the inversé of
., It is obvious that this space'is Euclidean since the
fundamental tensor is constant and it may be diagonalized
by simple transformation. Of course, K is zero in this

case.

Example 2: The trinomial distribution
| Let nTn have a trinomial distribution. The parameter
space, D, is given by:
1

D = {(92): 6>0 and o
5 ,

l+62<l}.

Standard theory implies that

£[/H(Tn—6)] > N(0,5(8))

where
ol(1-01) ~o12
£(8) =

—o1p? 62(1-02)

Therefore, the fundamental tensor of the space is given as

follows:
1-p2 1
| T, 1.7 17
(g.‘) - Z(e) l = e (1 e e ) 1-6 "9
1] 1
1 1-6
1-pT-62 82(1-81-52)



Holland [1971] showed that there exists no covariance

stabilizing transformation in this case and Yoshizawa [1962]

obtained the Gaussian curvature as

K =

£

This space has a positive constant Gaussian curvature
and may be regarded as a sphere in a three dimensional
Euclidean space. The coordinates of the Euclidean space are

obtained as a set of solutions as follows:

(22) Y AT SV A T VA

where 63 = 1—81—82 (See Appendix B). From (20) the equation

of the sphere is
(23) (zH?2 + 252 ¢ 2H2 =,

that is,

This fact gives a convenient interpretation of the parameter
space of a trinomial distribution.

The results‘obtained here can be extended to the
parameter space of the multinomial distribution (See

Appendix B).

Example 3: The Normal distribution N(u,oz)

2

Let 81 and 6° be the mean i and variance 02 respectively.

The fundamental tensor of the metric is given as follows:

g ‘;—g =8, =0, g8,, = 1
- ) = = Uy - TS TH
11 e2 12 21 22 2(82)2

-10-



The only one independent components of the Riemann-

Christoffel curvature R1212 is
1
R = 3.3
1212 u(62)3
and Gaussian curvature is
R Ri212 1
K = = - 7.

£118227812891

Therefore no covariance stabilizing transformation exists.
Since this space has a negative constant Gaussian curvature it
may be regarded as a hyperbolic surface in a three dimensional

Euclidean space. The coordinates of the Euclidean space are

given as
1
L B,
/62
1,2 /.2 2
(24) 22 - L0707 =2 Y8 _pt-2, o

3 . eh%2 | Je? _ pleo

z = +

g
/3 /92 V2 V20 V72

solving the equations (21) and comparing the fundamental
forms of the Euclidean space and of the Riemannian space.

The equation of the hyperbolic surface is given by

(25) (z5)2 + (22

2—

) (z3)? = -2,

..]_ll..
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5. Distance and geodesics

The distance between two points in a parameter space
has a meaning as a kind of measure for the difference or
divergence between two distributions. The distance may be
naturally defined as the arc of geodesic curve between two
points due to the theory of Riemannian geometry. The
elements of length ds is defined by (9) and the arc of
geodesic curve is given by the solution of the following
equations: |

2

d®e

ds

% L, asd aek

(26) IRV R ol Fal

These equations are Euler's equations of the integral
& ‘ .

- dej
5% 83 3t at_ 9t

1 ' :
where t*is a parameter which defines real curve. Along the

geodesic we have

(27) g, 20d6° . 4,

If we put new coordinates associated with the geodesic

passing through the particular point eo such that

i [aet

(28) ‘ 6 a—g—- o S

the arc of the geodesic may be expressed as

2 _ i3
(29) s” = (gij)o B'very

-12-
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Notice that this form may be interpreted as an extension of
Mahalanobis' generalized distance. Moreover if we transform

o't to gnt such that 6"1 will express the arc of the

geodesic, the fundamental form of "' is reduced to
(30) o = (de"HH? 4 ghgd6"%a0"®  (a,B=2,...,p)

(See Eisenhart [1926], p. 57). From the form (30) it is
seen that if we use the transformation gnl we may get a
transformation of random variables which obeys asymptotical

Normal distribution with unit variance. Therefore
2
ns (xn.eo)

will obey Chi-square distribution of one degree of freedom

asymptotically. Then we have

‘Theorem 2: Under. the assumpfion (1L substituting 90 in ©

(31) nsz(xn:eo)

asymptotically obeys Chi—squafe distribution of one degree
of freedom, where s(e:eo)ris the geodesic given as the
solution (26) using the inverse of the asymptotic variance
of v/n x  as a fundamental tensor.

It is known that the equation (27) may reduce to

(32) - dz o,

-13-
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with respect to the coordinates z% of the Euclidean space

in which a Riemannian space with a constant Gaussian curvature
ic immersed. There are two cases to be considered according

to the sign of K.

1°. K>0. 1In this case we have
o a2 _ 4 . 2 /Ks
(33) an(z —zo) = g sin® ——,
a
where zg is the value of z% at a point 6, From (20) we may
rewrite (33) as
(34) kic z%z% = cosyK s.
a o
2°. K<0. Similarly we have
a_,o0y2 _ _ 4 . 2 /-Ks
(35) Eca(z —zo) = 7 sinh 5
o
(36) Kanzazg = cosh/-Ks
a

Example 4: The trinomial distribution of the example 2.

From the example 2, the arc of geodesic is given by:

(37) s = 2 cos_l <4V816i +‘V8282 + \%363 > s

substituting (22) and K = 1/4 in 34. 1In the case of multi-

nomial distribution we have

(38) s = 2 cos_lz e“eg
a

The half of s has been introduced as a measure of

divergence by Bhattacharyya [1942].

-14-
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From theorem 2 it is seen that the asymptotic variance

of

(39) 2c0s t5de%p®

a

is 1, where 8% is the usual maximum likelihood estimator of 6%.

Example 5: The Normal distribution of the example 3

Since the Gaussian curvature K is negative constant
-1/2, substituting (24) in (33), we obtain the arc of geodesic

as follows:
-1 (u—uo)2+2(02+og)
(40) s = V2 cosh .

4000

The statistic associated with the geodesic is

= 2 2, 2
(X-u ) +2(S +02)

u/gz—co

and by the theorem 2 it has asymptotic unit variance, where

2 2

(41) jES(;n’Sn: Hya0g) = Yon cosh™1

= 2 . .
X, and Sn are the sample mean and variance respectively.

6. Fisher's information

Fisher's information matrix in several parameters are

bl

defined by:

(42) i3 o g (alogjL Blog'L)
36t 3gd

where L is the likelihood function of parameters ot
(Fisher [1921]). It is easily shown that 1'J is a covariant

tensor under transformations of parameters. Rao [1945] and

-15-
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Yoshizawa [1962] used Iij as the fundamental tensor of a
parameter space. The inverse of the matrix Iij gives the
lower bound of the variance of the estimators 6 under some
regularity condition by Rao-Cramer inequality. The funda-
mental tensors of the metric in the examples here are

quite the same as Fisher's information matrix and they are
rather easily calculated directly from (42) or from the
following formula equivalent to (42) in the case that

maximum likelihood estimators are used:

A3 L g {2’10 L
RLRELE
Anyway this geometry of parameter spaces is concerned with
asymptotic variance and the limit of this method should be
considered in this poiﬁt.
FinallyknOtice that the various definitions of distance
or divergence between two distributions, e.g. Kullback's

divergence [1959] and Matusita's [1955], are often locally

equivalent to Fisher's information.

-16-
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Appendix A: A proof of the equivaler

'~ between Holland's
theorem and the theorem 1 in this paper.

Holland's condition for existence of a covariance

stabilizing transformation in two dimensional case is

d9a da
3 1 11 12
(A-1) 502 [det(A) {éll( B

) ‘4 (8a21 ) aa22) ]
o2 o1 21172 T
)

.
_ 1. (P PP
oL Laet(® 1_12

_ ) ‘A (aa2l _ 38.22)]
, ae2 Bel 22 ae2 1 s

96

where A is any matrix (2x2) that satisfies
(A-2)

A'A = z(o) L

OQur condition (12) is reduced to

R
(A=3) K = 212

= 0
g

in two dimensional case and Gaussian curvature K may be
written as follows:

1 [ a [ 812 811 1 %8y
(A-4) K = . > - =+ 2
2v/g L38 gll/g 38 Yg 28
. 3 (_g %81 1 %811 By agll)]
s b
362 \vg 8T ,E 98° g,,7E 20"

(See Eisenhart (19u40), p. 154 Ex. 10)

We will prove that
(A~4) is equivalent to (A-3) using the form (A-u).

-18-
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We may assume that A(8) is an upper triangular matrix

without loosing genera

expressed as follows:

411

(A-5) 19

a99

lity.

_/ g
WAYY

2
_ol2 |
€11

Then the components of A are

[ & .
£11

Partially differentiating the both sides of (A-5), we obtain

8ay; 1 gy
56 56 °
27817
831, 1 %815 1 8yp gy,
Y11 £117811
9352 _ 1/B11 (3g22 _ 2812 %815 | 181242 28,
00 2l g 30 g17 06 g11 26 i
where 6 may take either ol or 82, Substituting (A-5) and

(A-6) in (A-1), and using det(A)

/g we rewrite (A-1) as

-19-



3 [ 12 611 1 %81p  B1p 38y
20 = 1117 2 1 1

39 /g é/EII 38 /EII 39 2gll/§IE 30

_ 0 [_;, 812 1 %811 1 %8, 1 81y 221
—T 7 T T
30" -/ |/E11 \ 2y, 99 Vg1 98 21178711 29

g 1 /8 (8g22 _ 2813 %815 [B12| % P81y
811 2V & |aet 811 a0t 811 aet ]

A

After simple algebra we get

B [_; 8812 %811 815 381, ]
502 Ly/g \aet 2002 2811 pel

_ 9 [ 1 [812 %811 38y }
3ot Lovg | 811 262 a6l

It is easily seen that the above equation is equal “to K=0.

-20-
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Appendix B: The multinomial dis*tribution

Let the likelihood of a multinomial distribution be

1 pt+l x.
(B-1) L= 7— T80 ,
PH x.! =1
i=1 *

where 8's are p+l parameters and x's are random variables.
Notice that we use subscripts for parameters in order not
to confuse superscripts and squares, etc. The first p
parameters are used for the coordinates of the population
space since

(B-2) zei =1

1°. Fundamental tensor of the metric.
By calculating Fisher's information matrix, the funda-

mental tensor of the metric is given as below:

8%0 41 1 1 ... 1°
919p41 Op+1 Op+1 Op+1
1 01%0541 1 ... 1
(B-3) (gy4) = 51 929541 9541 0p+1
1 1. . %ty
) . 0_8
pt+l p+l p ptl

The covariance matrix of the usual estimators xi/n, i.e.,

the inverse of (gij) is

-21-



(B-4)

fel(l—dl) -346, —elep x
_ !
—6162 82(1—82) GQGP }
(glj) . i
' !
, i
—epel -0 62 8 (1-ep) j .

Christoffel's 3 index symbols.

From (B-3) Partial derivatives of g.. are

(B-5)

ol @
[eviitis}

e
i

1]

-

1 1 ..
s— = = , i=j=k,
ep+l ei
\
1 .
B s otherwise,
ep+l
L

From the definition (14) and (15) Christoffel's 3 index

symbols of the first kind are

(B-6)

[i3,k1 = ¥

-

1 1 .
%—'(- 'é—é' + 8—2—'-), i=j=k,
i p+l
% 621 s otherwise,
p+l

and Christoffel's 3 index symbols of the second kind are

-22-
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0
—r i3,
ptl
g ¢, 1 1 : :
(B-7) {i'}: \ —"2'(-—2- + 5 Y, i=j, #i,
J 85 pt+l
ei l“el el
20 ., T Tme, 0 ISR
L ptl i
3°. Riemann-Christoffel curvature tensor

In two dimensional case, i.e. in the case of the
trinomial distribution, Riemann-Christoffel curvature tensor

&
is from (13)

(B-8) R

_ 3 2 2 (L
1212 ° 55;[22,1] ﬁ-2-[21,1]+{21}[12,z] {5,3[11,21]
1.1, 1L, 721
3 " 78 2 26, 20
63 05 3 267 3
8 8, 1-8
1, 1 1, 1 1 1 2 2y 1
- (5= + =) (- + =) - ( - )
2 &, 65" 2 gi 62 265 292 292
1 3 3
- 1
46,6,6,
Therefore
R
1212 _ 1
(B"'g) ——-—-—g——-——n—.

In p dimensional case it is seen from the identities

(16) that Rhijk is equal tq zero if h = i

or j

the condition h # i and j # k, noticing that

o
36 .

J

{ik,h]

P ..
- =[ij,h]l = 0
BGk ’

-23-
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R 's are calculated as follows:

nijk
[ ° h=3, i#k
Rpink = &% - )
. ptlh
°© h#j, i=k
(B-10) ﬁ 1
R, ... = Re. oo =T ——0nm
- “hiji ihij. qep+lei‘
°© h=zj, izk
_1,, 1 1 1 1 1
Rpini = 7l * 6‘:1)(§; '3 +1) Y }
. i p ptl o By

Therefore it is easily seen that Gaussian curvature

‘ Rpidx

(B-11) K = 4 = % .
€ni8ik"8hk8i ]
49, Coordinates of a Euclidean space in which the

population space of multinomial distribution is immersed.

Let z% denote the coordinates of the Euclidean space.

a . . .
z 's are given as a set of solutions of (21), i.e.

322(1 _ IZD ?__Z_i{h } - - _]__. Za
36,90~ 50, 1] T Bij

1773 h=1""h

It is easily seen that a set of solutions is given as

2% = cveu , a=l,...,pt+l.

-24-



Appendix C: The normal distribution N(U,GQ)

Let 61 and 6% be u and o? respectively. We shall use
61 and 92 for 6% and 6° because of practical convenience in
algebra.
1°. Fundamental tensor of the metric
Standard theory implies that
8 0
(c-1) T(8) = = (g*d)
2
0 282
Therefore the fundamental tensor of the metric is

_ 1

1
(C-2) » gll = 7 glz = ng = 0, g22 = —=5 .
2 262

2°. Christoffel's 3 index symbols.
Since partial derivatives by elAand 82 are zeros éxcept

that

a8
1, and 22
a8,

- -

g
(C-3) -a-a-l—l- s -
2

8

2 2

from (14) and (15) Christoffel's 3 index symbols of the first

and second kinds are as follows:

First kind:
[11,1] = O,
[11.2] = 2,
26,
(c-1) o [12,11 = [21,1] = - 4,
26,

[12,2]1 = [21,2] 0,

1

[21,1] = 0,
[22,2] = :lg,
26



Second kind:

1
{ll} = 0,
2
tid = 5
1 1 1
{51 = {551 - ==
(Co5) 217 T ' 25, °
2 .2
{12} - {21} D)
1
{22} = 0,
2 1
{5,} = - =
272 62
3°, Riemann-Christoffel curvature tensor

Substituting (C-4) and (C-5) in (13), we obtain

; - _9 3
R1212 - §€I[22,l]- 55;[21,1]
1 2 1 2
+{511012, 1345, 3012,23-{;,}[11,1]-{;,}[11,2]

-2l ziyy - (%_)(_l_)

3 20 2 3
65 2 20, 2 2,
!
- T3
4,

Ther:fore no covariance stabilizing transformation exists.

Gaussian curvature becomes

where g is the determinant oi (gij)'

-26-



4°9. Coordinates of a Euclidean space in which the

population space is immersed.

Let z* denote the coordinates of the Euclidean space.

From (21) z® must satisfy the following equations:

QZa ) 52% ) T o
2 96
1

1772 2 1
822“+ 1 3z2* _ 2°

2 6, o - 2 °
392 2 2 492

From the third equation it is seen that z® must be of the

form
f(el) 6.)
+ g(6,)v/e
/5, 1772

where f and g are some functions of only 6 Substituting

l.
it in the first and second equations, it is seen that f(el)

and g(el) must satisfy

als dg_ _
— = 8 gg- = O
d6? 1

Therefore z% must be of the form

2

a 0%+b 6. +d

el el o, .. /5
/"—e [0

2

9
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Since the fundamental form of the Euclidean space is of

the form

1.2 2.2 3,2
cl(dz )<+ cz(dz ) +‘c3(dz )

2 and cy are plus or minus one, comparing it with

the fundamental form of the Riemannian space

where cq» C

(a8 )% + L (ds,)?
) 1 2 2
2 265
we obtain that cl=02=—c3=l and that
1 0y
z27 = —,
o,
2 65’2 LD
Z = +
2/7/62 V2
6242 Vi
;3 - 1 . 2
2/7/62 V2

It is easily seen that the coordinates satisfy (20), i.e.

(z5) 242922252 = L = o,

=i

5°. Transformation by geodesic
It is seen from (24) that the arc of geodesic from
2 .

(uo,ao) to_(u,cQ) is

(u-u )+2(c2+g )

LH)'O'O

s = V2 cosh”™
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By the law of transformation (5), if we use s as a

transformation it follows that

Since partial derivatives s by u and o are

ds _ 1 2(u"ug)
38 - 7 ,
ou sinh®— uodo
o)
. 1 40leTu-u ) %42(0%40%) ]
_E = /7 Q [o] ,
99 sinhS— 46002 '
VZ
it is seen that
. g'll =1,

This fact shows that theorem 2 is certainly valid in this

case.
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