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L o . . . 2n+1
A classification of simple spinnable structures on §

By Mitsuyoshi Kato '

§1. Introduction

Thé notion of a spinnable structure on a closed manifold has
been introduced by I. Tamura [5] and independently by Winkelnkemper'
6] ("open books" in his term), who obtained a necessary and suf-
ficient condition for existence of it on at least a simply connected
closed manifold.

The purpose of the paper is to classify "'simple" spinnable
structures on an odd dimensional sphere SZn+l‘ in terms of their
Seifert matrices.

Definition. A closed manifold M is spinnable, if there is a
compact manifold F, called ggggfégng a diffeomorphism h : F —
F, called qﬁ§;§gggg}g;}gwgiggggggzghigg, such that h.{‘BF = id.,
and a diffeomorphism g : T(F, h) —? M, where T(F, h) 1is a
closed manifold obtained from- F X [0, 1] by identifying (x, 0)
with (h(x), 1) for all x €F énd (%, t) with (x, t') for all
X & 3F and t, t' € [0, 1]. A triple & ={F, h, g} will be
called a spinnable sﬁructure on M. A second spinnable structure
KB = {F', h', g'l on M 1is isomorphic with &, if there is a
diffeomorphism £ : M —» M such that f’o g(F xt) = g'(F')( t)
for all te [0, 1]. A spinnable structure >8=={E3 h, g} on M
1s simple if its generator is of the homotopy type of a finitg CW-

complex of dimension $ {QE%Jﬂ] .
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. . . . +
We are interested in simple spinnable structures on S2n 1.

In the case, a generator F 1is (n-1)-connected and a characteristic
diffeomorphism h : F — F induces an isomorphism h, : Hn(F’ Z)

——ﬁiHn(F, Z) of the integral n~-dimensional homology group of F

b

which will be called the monodromy of the spinnable structure. 1In

§ 2, we shall define a Seifert matrix [(&§) of a simple spinnable

2n+1 . . . .
structure ,XS on S so that it is unimodular and determines

the intersection matrix of F and the monodromy.

Theorem A. For a unimodular mXm matrix A, there is a

S2n+1

simple spinnable structure x3  on with fof) = A, provided

that n 2 3.

Theorem B. If 9 and .8 are simple spinnable structures

2n+1 . . . .
on S with congruent Seifert matrices, then 4 and _J&' are
isomorphic, provided that n 2 3,

These theorems imply that there is a one to one correspondence
2nt+1

f isomorphism classes of simple spinnable structures on S

with congruence classes of unimodular matrices via the Seifert matrix.
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§ 2. Seifert matrices of simple spinnable structures on an Alexander

manifolds,

A —————————

First of all we prove:

Proposition 2.1. 1 4 % {F; h, g}' is a simple spinnable
structure on a closed orientable (2n+l)-manifold M, then g|F x t:
FXt—>M is n-éonnected, in particulgr, if M= Szn+l, then ?

is (n-1)~connected and hence is of the homotopy type of a bouquet of

n-spheres;
mo
Fa~ \/ S, .
: . i
i=1

'vfgggf. For the proof, putting Ft = g(va t), it suffices to
show that (M, FO) is n-connected. We put W = g(F.x [0, 3]) and
W' o= gF x [%, 11). Since J is simple, it follows from the géneral
position_thét there is a PL embedding £ : K —> Int W' from an
n-dimernsional compact polyhe&ron K inte Int W' which is a homotopy
equivalence. Since BW'\f EﬁJ is a deformation retract of W' -£(X),
we have that

: ’Ei(M, FO.) ~ ’rci(M, W) = TCi(M, M-W")

'n:i(M, M- £(X))

S

=0 for i< n,
completing the proof.
We shall call a closed orientable (2n+15:manifold M is an Alexander

- 3v;
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manifold, if HD(M) = Hn+l(M) = 0. By the Poincaré duality, then
Hn-l(M) is torsion free and hence if 8 1is a simple spinnable
structure on M, -then Hn_l(F) and Hn<F) are torsion free.
Then a bilinear form

¥Y:H (F)®H (F) —2Z
is defined by

(0@ B) = Ligu o xt)), Balox X)),

|~

where 0 & € <y, ¥< t1< 1, and L(g ) 7 ) stands for the

linking number of cycles § and )2 in M so that L(§ s )Z )]
= intersection number <X ,% > of chains A and 7 in M

for some A with al=§ .

For a basis o(l, Ty

a square matrix ( T( O(i ® O(j)) = ( U-ij) will be called a Seifert

o(m of a free abelian group Hn(F),

matrix of .8 and denoted by [(8). It is a routine work to
make sure that the congruence class of [ () 4is invariant under
the isomorphism class of (M, 8 ).

We have an alternative expression of [(,8) in terms of an
isomorphism

€x 1 1 ~ n 1 N '
Hn+1(M, W) =< Hn+l(W , OW') W) = Hn(W )

(¢]

a..]_ -1 Poincaré dual dual space
~

a : Hn(w)

which will be called the Alexander isdmorphism.

We have homomorphisms

-1
3 -1
. T~ e,.}sg 1 a
PrHMW=H_ MW= H_ 0,300 (2W)

and

i R H 0L WS H M, 3W) —E_(9W)

so that 1i,° ?D = id. and i« ¢, = id. and the following

o
w
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sequences are exact:

0 —u (") Eou_(3W) —HE W) — 0,

I8
e

0 —>u ) ru_ (aW) Hu_ @) — 0,

where 1, Hn(DW) -—-—>Hn(W) and i} :Hn(aw) -——-?HH(W') are

*

homomorphisms induced from the inclusion maps. Let 1’ ’- Ty
be a basis of Hn(w). Then, putting ﬂi = a(di), i=1, -, m,
we have a basis f,, **+, B of H (V') By the definition of the

Alexander isomorphism, if we put Zi = ?(o‘ i) and Fi = Cf'(ﬂ i),

i=1, ***, m, then we have that the intersection number in 2W
- 0 for i # 3,
< d., >=§.. = { :
* PJ L3 1 for i = j.

LvEt g, F —>M be an embedding defined by
’gt(x) = g(x, t) for all x €F, t € [0, 41].
" For a subspvace X of M with gt(F) C X, we denote the range
restriction of g to X by X lgt : F —>X;
Xi gt(x) = gt(x) for all x g F.
We identify a basis oys T, A of Hn(W) with that of 'Hn(F)
via (W] gzls)* and a basis ﬁl’ -';, (3m of HD(W) with that of
Hn(F) via W j g%)*.
Again by the definition of the Alexander isomorphism, we have
that
L(oti, (3j)=81j for i, j =1, "',ml
Since W ! gy3 and W lg% =1ie(aW l g%) are homoto?ic in W ’and
I’ l g% and w'{ g% =1i'o (3W {g%) are homotopic in W', it follows

that -(awig;)*(«i) is of a form
2 :

213 P;

M=

(W g ), (x,) =, +

]

.

J

-5 -
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m m
and hence that w'f &,) =2 a,, B. = 2. a,.,a(,).
@' gl o) = 2 agy Bym Ioaggale)
J J
Therefore, we have that Kij = L((g%)# di, (g%)# dj) =
L( ol L_aijBk) = aji for i, j =1, ---, m. Thus we conclude
as follows: .
(ngé)*
Proposition 2.2. For a basis oG cxm of Hn(F) = Hn(W),

the following (1), (2) and (3) are equivalent.

B. .

m
(1) (AW | g (o) = & + T ay,

j=1 J3J
-1 , l m
(2) a e ('] gy(o) = T ax,
3 3=1 371

and

In particular, the Seifert matrix [  is unimodular.
Now we determine algebraic structures of simple spinnable struc-

tures on an Alexander manifold.

Theorem 2.3. Let % ={F, n, g} be a simple spinnable structure

. +
on an Alexander manifold MZn 1.

(1) The intersection matrix I = I(F) of F and the Seifert
matrix \f”=l—-(A5) of 35 are related in a formula:
1=+ (DT,
where [7§ is the transposed matrix of [~7.

(2) 'The n-th monodromy h, : Hn<F) -ﬁ>Hn(F) is given by a

formula:
h* - (_l)ﬂ'l‘l[—vt-r“l ,

or

h, -E =1I-[" "

”

Proof. For the proof of (1), we follow Levine [3], p.542. We
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: - 1 2 . .
take chains d = gu( oy X [3, 3]), e; and e, in M such that
- 2y Ly . -
de; = - (g,;.)ﬁ; ()
and

Since d+-e1+-e2 is a cycle, we have that

0 =(dbe;te,, (gé)#(aj)>
=<dy (gl CoyddH<ep, (gl (g + <oy, (gly (o)
= <oy 2 PFCDLUE g (%)s (g %) +L((gg(), (g)ge,)
Since

| _ nt+l
L((g%)# (o) (g%)# (oij)) = (-1)

L8y (o), (82 (o))
- (-l')n—H' : o k

¥ o ® o)
and

L((g_;_);; ( O(i)s (bg%)# ( dj)) = -b’( O(i ® O(j)a
we have that

- 1= P+ (_1>nrt >

completing the proof of (1). To prove (2), we take chains d =
g%( o{i ¥ [0, 1]), ey and e in M so that 2d = gl#(ai) -go#( O(i)’
aeo = gO#‘( O(i) and ae]_ = '81#(o<i) = 'go#(h*(o(i))- Since
d+e,+e; isan (n+1)-cycle in M, we have that ‘

0 =§d+e0+el, (g%)#(o(j»

=<d, (g%)#(o(j)>+<eo, (g )y (X )7 + ey (g%)#fo(j)>

]

(xgr ot 5>+ Tl ® o4) - ?f(h,.g(di);@ O<j)
CoXg> okyr ¥ ?f((id~h*)(0<i)®o(j)w;}

and hence that
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= (E 'h*)'r ’

where E 1s the identity matrix (gij). Therefore, by making use

of (1), we have that

(h,-E) =1- %
o E + (_l)n'i'll—'tr"l ,
or
'h n+1rtr
*

completing the proof.

§ 3. Proof of Theorem A.

Suppose that we are given an m X m unlmodular matrlx A = (a..).

1]
Let K denote a bouquet of m n-dimensional spheres; V \/ S
. 2okl
We have a PL embedding £ : K —> S . Let W be a smooth regular
gt
neighborhood of £(K) in S ol =S and W' =S -Int W. We denote

the Alexander isomorphism
H W) ¥H'(S-Int W) = H (W') = Hom(H (W')) ¥ H (')

by a : Hn(W') 'an(W'). Thus we have that. W, W' and 2W are
(n-1) -connected, and there are splittings

P oo OH () ZH_ (S, W) xH_ W', OW) —H_(3W)

70' : H (W) TH (S, W) xH W, oW) — H_( 3W)
of 1, : Hn(aW) ——?‘HH(W) and i;“’: Hn(GW) ——QHH(W'), respec-
tively. Note that the following sequences are exact.

‘1
0 — u (1 Lru_(aW) “Hr_ @) — 0

and

0 —H_(W') ieﬁn'(aw) —H_ (W) —0.
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« s 3 1 ~ ' 1
1f o(l, R o(m is a basis of. Hn(K) >~ Hn(W) and we put a'( i)

= ﬁi’ ‘f((Xi) = 571, and Y(ﬁi) = /Z;i’ i=1, -+, m, then we

have that the intersection numbers in OW {o.s K> =0,

By Byy=0 and (o, Byy= by, for 1, =1, """, m, and
the linking numbers in S L( O(i, ﬁj) = éij’ i, 5 =1, ", m.
A splitting s : Hn(w) --—9Hn( oW) of i,

w

: Hn(aW) —_— Hn(W)
will be called a non-singular section, if ijos : Hn(W) '——?I-In(W’)
is an isomorphism. Indeed, a section s : Hn(W) —-)Hn( oW) has

to be of a form
s(o) = o + jél a5 B

1

m , . ‘
and hence i} s( o(i) = JZ; 3 5 B.. Thus the correspondence s (aij)

3
gives rise to a one to one correspondence of non-singular sections
Hn(w) — Hn( 2W) with unimodular m X m matrices (aij). As is
found by Winkelnkemper [6] and also Tamura [4] for a non-singular
section s : Hn(w) — Hn(aw), there is a PL embedding f£'

K® — 3 W, provided that n 2 3, which is homotopic to f :
K—2W ahd f;{(O(i) = s(ho(i) in' 9W. Moreover, if F 1s a
regular neighborhood of £'(K) in OW and F' = 2W-Int F, then
W; F, F') and W'; F', F) are relative h-cobordisms, _since’
S(O(l>’ RN s(o(m) is a basis of Hn(F) as a subgroup of Hn(aW)

and the inclusion maps induce isomorphisms

B P HOP) FH WD 5 3(s(ex)) = ot
and
’ m
et BUE) TH ()5 33(s(0G)) = 10 8( %) = {'i 255 B3
and W, W', F, F' are l-connected. ’
| 2ntl

It follows that by the h-cobordism theorem, S * admits a

-9 -
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spinnable structure VJA = {F, h, g} for a given unimodular matrix

A = (aij)‘ such that

g X [0, ¥]) =W,
g(F X [%, 1]) = W'
and ' g(x, %) for all x €& F.

We would like to show that ['(AXA) = At. We have seen that

m

= = hvi P -
(QW} g%)*(O(-l) s ( O(i) O(i + ; It follows from Prop

1aijf9j'

osition 2.2 that fﬁ(JJA) = At. Therefore, for a given unimodular

. . . . . 2n+1
matrix A, g . 1s the required spinnable structure on S s

: A
completing the proof.

§ 4. Proof of Theorem B.

The crux of the proof of Theorem B is due to J. Levine [2], who
proved essentially the following:

Proposition 4.1 (Levine). Let B={F, n, g} and g o=

{F’, h', g'} be spinnable strcutures on 82n+l. Suppose that n 2 3.

S2n+2

Then two generators FO and Fé are ambient isotopic in if

(&) and [7(,8') are congruent.

Proof. By a suitable change of bases, we may assume that
[ﬁ()a) = r_(zﬁr)- The rest of the proof is what Levine has done in
his classification of simple knots (Lemma 3, (2], §14- §l6,'pp.l91—
192). His arguments work equally well in our case, completing the
proof.

S2n+1 — S2n+1 such that

Thus we have a diffeomorphism £
(Fg) = Fy , and £ is diffeotopic to the identity. By opening
out

- 1 -
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the spinnable structure, we have a diffeomorphism H : FXx [0, 1] —
F'X [0, 1]  such that

(k(x), t) for all (x, t) € 2F x [0, 1]

Hx, 0) =
H(x, 0) = (k(x), 0) for all x& F and
H(x, 1) = (h' " keh(x), 1) for all x& F,
where “
k@), 0) = (g')°L fog(x, 0) for all xe F :
Thié implies that (k—lx\ id) H:FXIJ[0, 1] —»FX [0, 1] 1is an

pseudo-diffeotopy from id to k-lo j'_} ke h keeping ©oF fixed.

Since n 23, F and ©OF are l-connected, it follows from Cerf [1]
that the pseudo-diffeotopy is diffeotopic to a diffeotopy G : FX I
—3FX I keeping o(F X I) fixed. This implies that £ is dif-

2n+1

+ 2 .
feotopic to an isomorphism (S2n 1, By — (8 , $8') keeping F

0
‘fixed. Therefore, .8 and &' are isomorphic,‘completing the
proof.

Remark. As is known from the proof, . and &' are iso-

morphic by an ambient diffeotopy.
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