On homotopy P⁵ Shinji Fukuhara

§2. Brieskorn involutions on 5-sphere.

We consider the Brieskorn 5-sphere \sum_d^5 d ≥ 1 odd integer. This is the submanifold of C^4 described by equations,

$$z_0^d + z_1^2 + z_2^2 + z_3^2 = 0$$

 $z_0\overline{z}_0 + z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3 = 1$.

Then Σ_d^5 is a homotopy 5-sphere and therefore diffeomorphic to the standard 5-sphere S^5 . The involution $T_d: \Sigma_d^5 \longrightarrow \Sigma_d^5$ given by $T_d(z_0) = z_0$, $T_d(z_i) = -z_i$, i > 0, is a fixed point free involution on Σ_d^5 . We denote an orbit space Σ_d^5/T_d by T_d^5 . Then T_d is a homotopy projective 5-space. For $L_d(P^5)$ — homotopy smoothing of P^5 —, it is known that $L_d(P^5) = \{T_d\}_{d=1,3,5,7}$ and T_{d+8} is diffeomorphic to T_d .

§2. A spinnable structure on \prod_{d} .

Let T_0 be the standard involution on $s^5 = \left\{ (z_1, z_2, z_3) \in \mathbb{C}^3 \,\middle|\, z_1\overline{z}_1 + z_2\overline{z}_2 + z_3\overline{z}_3 = 1 \right\},$ that is, $T_0(z_1) = -z_1$, i = 1, 2, 3. Define $f = Z_1^2 + Z_2^2 + Z_3^2$, $K_0 = \left\{ (z_1, z_2, z_3) \in S^5 \,\middle|\, f(z_1, z_2, z_3) = 0 \right\}$ $F_0 = \left\{ (z_1, z_2, z_3) \in S^5 \,\middle|\, f(z_1, z_2, z_3) \leq 0 \right\}$ $K_d = \left\{ (z_0, z_1, z_2, z_3) \in \Sigma_d \,\middle|\, z_0 = 0 \right\}$ $F_d = \left\{ (z_0, z_1, z_2, z_3) \in \Sigma_d \,\middle|\, z_0 \geq 0 \right\}$

where for $z \in \mathbb{C}$ " $z \ge 0$ " means "the imaginary part of z = 0 and $z \ge 0$ ".

Let $\psi_d: \Sigma_d \longrightarrow S^5$ be a map defined by $\psi_d(z_0, z_1, z_2, z_3)$ $= (\frac{z_1}{1 - z_0 \overline{z_0}}, \frac{z_2}{1 - z_0 \overline{z_0}}, \frac{z_3}{1 - z_0 \overline{z_0}}). \text{ Then } \psi_d \text{ is a d-fold branched}$ $\text{covering map with } K_0 = \psi_d(K_d) \text{ as branched locus. The restriction}$ $\text{map } \psi_d \mid F_d \text{ give a diffeomorphism between } F_d \text{ and } F_0.$ Define

$$\varphi_0: F_0 \times [0, 1] \longrightarrow S^5$$

by

$$\varphi_0((z_1, z_2, z_3), t) = (z_1 \exp(\pi i t), z_2 \exp(\pi i t), z_3 \exp(\pi i t))$$

$$\varphi_d : F_d \times [0, 1] \longrightarrow \Sigma_d$$

bу

$$\phi_{d}((z_{0},z_{1},z_{2},z_{3}), t) = (z_{0} \exp(2\pi i t), z_{1} \exp(d\pi i t), z_{2} \exp(d\pi i t), z_{3} \exp(d\pi i t)).$$

It is easy to observe that ψ_d , ϕ_0 , ψ_d are equivariant with respect to T_0 and T_d , that is, the following diagrams commute.

$$\sum_{d} \xrightarrow{T_{d}} \sum_{d} \qquad F_{0} \times [0,1] \xrightarrow{g_{0}} \qquad S^{5}$$

$$\downarrow \psi_{d} \qquad \downarrow (T_{0}|F_{0}) \times id_{[0,1]} \qquad \downarrow T_{0}$$

$$S^{5} \xrightarrow{T_{0}} S^{5} \qquad F_{0} \times [0,1] \xrightarrow{g_{0}} \qquad S^{5}$$

$$\downarrow (T_{d}|F_{d}) \times id_{[0,1]} \qquad \downarrow T_{d}$$

Thus ψ_d , φ_0 , φ_d induce maps $\overline{\psi}_d$, $\overline{\varphi}_0$, $\overline{\varphi}_d$ of orbit spaces, that is,

$$\overline{\psi}_{d}: \Sigma_{d}/T_{d} \longrightarrow s^{5}/T_{0}$$
 $\overline{\varphi}_{0}: (F_{0}/T_{0}) \times [0, 1] \longrightarrow s^{5}/T_{0}$

$$\overline{\varphi}_{d}: (F_{d}/T_{d}) \times [0, 1] \longrightarrow \sum_{d}/T_{d}$$
.

We denote the class of $(z_0, z_1, z_2, z_3) \in \sum_d$ in \sum_d/T_d by $[z_0, z_1, z_2, z_3]$, also we use $[z_1, z_2, z_3] \in S^5/T_0$ similarly. Then

$$\overline{\varphi}_{d}([z_{0}, z_{1}, z_{2}, z_{3}], 1) = [z_{0}, -z_{1}, -z_{2}, -z_{3}]$$

$$= [z_{0}, z_{1}, z_{2}, z_{3}] = \overline{\varphi}_{d}([z_{0}, z_{1}, z_{2}, z_{3}], 0),$$

also

$$\begin{split} \overline{\varphi}_0([z_1,\,z_2,\,z_3],\,1) &= \, \overline{\varphi}_0([z_1,\,z_2,\,z_3],\,0). \\ \text{So, if we regard } s^1 \text{ as } [0,\,1]/0{\sim}1, \\ f_0:\, (F_0/T_0) \times s^1 &\longrightarrow s^5/T_0 \\ f_0([z_1,z_2,z_3],\,t) &= [z_1 \exp(\pi i t),\,z_2 \exp(\pi i t),\,z_3 \exp(\pi i t)] \\ f_d:\, (F_d/T_d) \times s^1 &\longrightarrow \sum_d/T_d \\ f_d([z_0,z_1,z_2,z_3],t) &= [z_0 \exp(2\pi i t),\,z_1 \exp(d\pi i t),\,z_2 \exp(d\pi i t),\,z_3 \exp(d\pi i t)] \end{split}$$

are both well defined maps.

Simply we denote F_0/T_0 , K_0/T_0 by F, K where $\partial F = K$. Easily we can observe that K is diffeomorphic to 3-dimensional lens space of type (4, 1) and $f_0 \mid (K \times S^1) : K \times S^1 \longrightarrow K \subset S^5/T_0$ is the standard free S^1 -action on K. Thus we use a simple notation $\rho: K \times S^1 \longrightarrow K$ instead of $f_0 \mid (K \times S^1)$. Under the notation above, we obtain

 $s^5/T_0 = F \times s^1 \cup \{ \text{ mapping cylinder of } \rho : K \times s^1 \longrightarrow s^1 \},$ more exactly, s^5/T_0 is diffeomorphic to $F \times s^1 \vee K \times D^2$ where an attaching diffeomorphism $h : K \times s^1 \longrightarrow K \times s^1$ is defined by

 $h(x, t) = (\rho(x, t), t)$ for $x \in K$, $t \in S^1$.

For $\sum_{\mathbf{d}}/\mathbf{T}_{\mathbf{d}}$, there is a similar decomposition. It is described

as follows. One can easily verify commutativity of the following diagrams,

$$(F_{d}/T_{d}) \times S^{1} \xrightarrow{f_{d}} \sum_{d}/T_{d} = \pi_{d}$$

$$\downarrow \{ \overline{\psi}_{d} \setminus (F_{d}/T_{d}) \} \times \overline{d} \qquad \downarrow \overline{\psi}_{d}$$

$$F \times S^{1} \xrightarrow{f_{0}} S^{5}/T_{0}$$

$$(K_{d}/T_{d}) \times S^{1} \xrightarrow{f_{d} \setminus \{(K_{d}/T_{d}) \times S^{1}\}} K_{d}/T_{d}$$

$$\downarrow \{ \overline{\psi}_{d} \mid (K_{d}/T_{d}) \} \times \overline{d} \qquad \cong \downarrow \overline{\psi}_{d} \mid (K_{d}/T_{d})$$

$$K \times S^{1} \xrightarrow{f} K$$

where $\overline{d}: S^1 \longrightarrow S^1$ is given by $\overline{d}(t) = dt$ for $t \in S^1$.

We define $h_d: K \times S^1 \longrightarrow K \times S^1$ by $h_d(x, t) = (p(x, dt), t)$. Then, observing that $p \cdot (id_K \times \overline{d})(x, t) = p(x, dt)$, we have the following result.

Theorem 1.
$$\mathbb{T}_d$$
 is diffeomorphic to
$$\text{F x S}^1 \underset{h_d}{\cup} \text{ K x D}^2.$$

This theorem means that, for any odd integer d>0, \mathbb{T}_d has a spinnable structure $\{5\}$ with the same axis and generator, that is, K and F, and the trivial spinning bundle. Thus, for $d'\neq d$, the whole difference between \mathbb{T}_d and \mathbb{T}_d is due to attaching diffeomorphisms h_d and h_d .