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The present work is concerned with some geucral analysis
of type II von Neumann algebras. It 1s known that typc [
von Necumann algebras appear in connection with cauilibrium
states of statistical mechanics as well as algebras of loéul
observables. Type II von Neumann algebras are distinguished
from other types of von Neumann algebras by thec property
that it does not have a trace and have been considered patho-

logical by mathematicians at the beginning.
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Works in the past year or so indicates that one
something which can replace the role of tracc cven in tvpe
II von Neumann algebras. A very beautiful structure thecorem
for type IO algebra was reported on by Takesaki [10), [11].
The theorem says that any type IOl algebra can e built on a
semi-finite algebra which has a trace.

In the present work, you will again scc scmne structure

2]

encral von Neumann algebra which replacces the role o
tracce and as an example of 1ts conscqguence we shall write down
a generalization of some incqualitics in statistical mechanics,

wirtich contain trace in 1ts ususl form.



151

7. Tomita-Takesaki Theory

For the sake of non-specialist, we begin with an
introductory account of famous Tomita-Takesaki theory [9]:
It deals with d von Neumann‘algcbra M on a Hilbert space
F with a cyclic and separating vector VY. (¥ 1is cyclic
if My is dense in M and ¥ is separating if non-zero
X in M ncver annihilates VY.) Since any type 1II von
Neumann algebra on a separable Hilbert space has (many)
cyclic and scparating vectors in that Hilbert space, this
dcals with quitc. a general situation.

Notation: ¢{x) = (Y, x¥) for xeM.

The basic operators in this theory are S, , A and

JW defined in the following manner:

XY) = x*y | X € M.

This equation defines an antilinear operator Sv , which can
be shown to be closable. The polar deccomposition of its

closure §; given by
1/2
(2.2) Sy = Jyb /

defines AW and JW . More explicitly

= *
(2.3) . by = S§Sy

_ -1/2,-
(2.4) Jy = (SQAw )



where the adjoint  S$%  of an antvilinear operator S 015

defined in a similar manner as the case of lincar operators:

The positive selfadjoint operator . 1s called the

b

modular operator and has tihce following propertics.
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(4) KMS -condition.

pityatiT oy

Conversely, an operator satisfying these conditions 1s unique
and is a modular operator. ({Thce uniuucness of modular

+
|

automorphism is in [9], which determines 3 up to operators

[

p—t

+
s

in M'. (2) then uniquely determineg & L)

Among these 4 properties, the property (3) is most

difficult to prove. It allows onc to definc a onc-paramcter

group of x-automorphisms of M called modular automorphisms:

(2.5)

11
>
”
>
*

- it
I (X y *y

It depends only on the expectétion’functional ¥ and not
on how ¢ 1is represented by a vector VY.

The fourth condition, bearing the name of threce
physicists Kubo, Martin and Schwinger who found these
propcrties in connectilion with equilibrium states of statistical
mechanics, was first recognized its importénce in mathematical
study of statistical mechanics by tlaag, Hugenholtz and Winink

[7],[8] just at the time when Tomita has completed his theory.
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It states that two functions

it}

r(e) = wixaly)),

Fo(t) w(clﬁ(y)X)

1

arc connected by an analytic continuation:
‘ﬁz.é) Fz(t+1) = Fl(t).

This property of modular operators brings statistical
mechanics of equilibrium states and theory of type I von
Neumann algebras close together.

We call the operator J as modular conjugation operator.

Y
It has the following 5 properties, which in turn

characterize J? as in the case of 4 properties for 4, [2].

(1) Uyt , Jya) = (g,

2
2 =
(2) JW 1
(3) wa ="V,
P = M!
(4) JWWJW = M,

(5) (¥, xj(x)¥) >0, xeM, j(x) = JWXJW‘

The property (4) is most difficult to prove. The
property (5) 1s an immediate consequence of the propcrﬂy (1)
for AW . Nevertheless, it is crucial in exploring structures

which replace the role of trace.

One more important property of 4,

and J, are their

relation given by
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3 Simple exapmle — Finite natrix algebra.

1

Let M be a matrix algebra acting on & finite dimensional
space ¢ with a cyclic and separating normalized vector @ .

~

Then 0 = {x0; x&M} and

(3.1) (xQ,yQ) = tr(x*®y)
(We usc physicist's convention for inner product.)

Any state ¥ of M can be written a

192}

(3.2) Y(x) = tr(p X)

in terms of the density matrix c, &M, o, 20 . W is
faithful if and only if »p, > 0 (strictly positive) We
: -Hy, 7

can then write pw = e where i, = -log 9, 1s the
Hamiltonian and ¢ is the Gibtbs state for this Hamiltonian
(with the inverse temperaturc § = 1) . If we sct

. ‘ 1/2

(3.3) v = o2 |
then we have v(x) = (¥Y,x¥) .

The modular conjugation opecrator J, in this ecxample

is common for all Y of the form (3.3) and is given by

(3.4) S J xR o= xEFQ .

e

The modular operator is given by
P g >
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(3.5) by = expl-H 3 ()} (= ey (y)

where j(x) = J?XJ? . The’modular gutomorphism is given.by -
(3.6) c%(x) = o TitHy (itHy

G% is called the time translation automorphism in physiés
except for an unfortunate discrepancy in the sign’(i.e. -t

is the time).
In this example, it is natural to define the relative
Hamiltonian h(%¥/¢) of g’ and ¢ -as the difference of

the Hamiltonian:
(3.7) h(P/v) = Hy-H,
Using the following definition of the right expansional

(time-antiordered product)

‘ t _ (t
(3.8) Expr(Jo; h(s)ds) (= T»expjoh(s)ds)

t Sn-l
. dsl---J dsnh(sn)"‘h(slj ,

and the following convenient formula (for example, sce [3])

. t

(3.9) oT(A+B) -Bt _ Expr([ s eMSpeASgs)
0

we can find the following properties of h(¢/y) in this

example:



(1) The Radon-Nikodym derivative satisfying chain rule

[2]:
“Hg/2 Hy/2 €ty ‘

(5.10) b= e ¥ eV - Expr(jo; oV (-h($/8)))¥

(2) The intertwining operator for modular automorphisms
(5]
. oy = PV Uy P
(3.11) : ot(x) ul ct(x)(u‘ ),

, -itH, itH, v,

(3.12) uf"’ = e e = Expr(}o; 0“5)(-1}(’%/\1»))_)

(3) - Chain rule:
(5.13) h (P /P 0Py /P5) = h(Py/Y5)

For é general von Neumann algebra M , Hamiltonians
”V can not necessarily be found and qg (at least for
some t) 1s an outer automorphism for type III M .
However our result shows that we can introduce the ndtion

of the relative Hamiltonian for a gencral M
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§4 The canonical cone.

" We denotc the weak closure of
{Al,u/ax‘?; xeM , x > 0}

by V, [2]. ( pﬁ in the notation of A. Connes [6].) In the
‘éxﬁmplc of §3, VW = {xQ; xeM, x > 0} , as is easily verified.
It plays the role of trace for type III M. The following is
a partial list of important properties of V\p

(1) VW is independent of ¥ in the sense that‘for all
cyclic and separating @éﬁVW , we have V¢ = VW

(2) All cyclic and separating <I>e’;\/\P has the common
modular conjugation operator Jg = JW

(3) All norﬁal states has a unique represen%ative‘in
Vy , i.e. for each YeM, there exists a unique gpev\y'
such that (Esp, xg?) = P(x) for x&M . The mapping
fﬁ - E¢ is bicontinuous.

(4) Vv

y is selfdual. Namely f,g'evy implies’

(f,g) 20 and (f,g) > 0 for all g eVW implies f'evw
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§5 Multiple IS property and

From the XS condition (2.06), onc can derive the following
multiple KNS propertices [1], [4]:
For any xl,"-,xje M, there exists a function
4

F(z srrz) which is analytic in the tube domain

2 e 2 Im T, Im(zl—zn)i:l},

i

continuous and bounded in tihe closure of T, and its value

on Silov boundariecs of T are given by

n
(5.2) F((t1+i),"'a(tj+i):tj+l>'°"tn)
= v ¢ Ny Yoy v
= V(o (X: 1) 0l (x D)ol (X:)e--0l (x.))
t]“‘l J+l tn n -1 e LJ J

v

[
o)

1

Ui

wilere ty,ree,t are real and j=0,1,.--,n-1. (

A property

rcduces to the KdMS condition when n=2.)
Using this multiple KMS property and a multi-variable
version of the three line theorcm, we obtain the following

estimates:

If a* =heM, t

v

0,++-,t

1 n

v
[an]
[
o
[aN
H
\
(4]
v
I o~
ct

n, , tn-1 51
then By hA? «++A, hY is meaningful and

s

(5.3) uA;nh
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§6  Relative ilamiltonian

Duc to the estimate (5.3), the following expression is
absolutely and umiformly {(for h in a bounded set) convergent

in norm:

5 s'n -< S =
(6.1) i)z fl/z e N TR C A F St
i , ;

o

e~ 8

In the example of §3, (6.1) reduces to (3.10), where h=-h(¥/y).
llence we call a selfadjoint element h of M as a r@lative
hamiltonian of 9"and v 1if ¢ = 5y and V¥ = gwb are

rclated by ¢ = ¥Y(-h) and denote it by L = h(@/y). We

also define (in view of (3.11) and (3.12))

t

(6.2) u%w Expr(j

; odmds) (e
0 o

if ¢ = ¥(h).
Our main results on relative hamiltonian are as follows

[4]:

(1) For all h* n &€ M, there exist ¥ and ¥ in

M; such that h(¥/y) h. (We have seen this above as a
consequence of (5.3).)

(2) PFor given &% and Y, the relative>Hamiltonian
n(¥/v) 1is unique if it exists.

(3) If ¢ = ¥(h), then ufweﬂM is an intertwininé

operator for modular automorphisms:

(6.3)  of(x) = uf¥el(x) (u]¥y,
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(©-4 ub‘w(uf?)* = (Uiv)*u(iow =1,
(6-5) (US;*})’ = u{"a.

(3) 1If ¢ = ¥(h), then

(6.6) log

v
.F‘
u

log by + h - j(h)

where j(a) = thJg. (C£. (3.5) and (3.7).)

(3) Chain rule holdsﬁ
(6.7) (P /P * n(F/P5) = WP lps)
viicre if two of h(?k/gﬁ) exist , then the third also cxists
and satisfies (6.7). Since n(P/¥) = 0, a special casc of
(6.7) yiclds

(6.8) W(#/v) = -h(w/9P).

(6) 1f Qlw(x) > P(x) > zzw(x) for all x € M, x > 0,

then there exists h({®/v) and
(6.9) log &, 2 -h(#/¥) 2 log 12.
(7) The relative modular operator [6] can be expressed as

wy it . ; by L it
ugﬁv = exp (-it{log Aq - h}) = J(Qtf)Ag .
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§7 Goiden-Thompsen and Peicrls-Bogolubov Inequalities

Although there is no trace for type III M, we can still
find incqualities which reduces to Golden-Thompson and Peierls-

Bogoiubo? inequalities for finite matrix algebra M. Namely
' h 2 ]
(7.1) ple ) 2 vy ® > exp v(h)

where h* = h&M, v(x) = (¥, x¥) and the second inequality
holds when |Y¥| = 1.

For finite matrix. algebra M, we have

v(x) = tr{e'x),

vee™ = tr(etle™,
ey ® = tr(eH+h)$(W(h) - (rh) /2oy

and hence the first inequality reduces to the GoldenfThompSBng
inequality

tr(eHeh) > tr(eH+h).

Similarly, we have for Y = eH/ZQ/(treH)l/2

v(x) = tr(ex)/tr(e,
e ? = tr ey /er(eh,
exp v(h) = exp{tr(eHh)/tr(eH)},

and hence the second inequality reduces to the Peierls-Bogolubov

inequality

tr(élﬂh/tr(eH) > exp{tr(eHh)/tr(eH)}.
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