<table>
<thead>
<tr>
<th>Title</th>
<th>Title on the Number of Moduli of Certain Algebraic Surfaces of General Type (代数幾何学の研究)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>HORIKAWA, EIJI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1973), 183: 87-93</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1973-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/107166</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
On the number of moduli
of certain algebraic surfaces
of general type

By Eiji Horikawa
University of Tokyo

0. Introduction. Let \(\mathbb{P}^3 \) denote the projective
3-space defined over the field of complex numbers, \(S \) an
irreducible hypersurface of degree \(n = 2r \) in \(\mathbb{P}^3 \), defined
by the equation

\[
g^2 + Agh + Bh^2 = 0
\]

where \(g, h, A, \) and \(B \) are homogeneous polynomials of
degree \(r, s, r-s, \) and \(2(r-s) \), respectively, with two
positive integers \(r > s \). Clearly, the curve \(\Delta \), defined by
\(g = h = 0 \), is contained in the singular locus of \(S \).

We assume that \(S \) is generic in the following sense:
1) \(S \) has only ordinary singularities (see [4]) and
is non-singular outside of \(\Delta \).
2) \(\Delta \) is non-singular.
3) The normalization \(X \) of \(S \) (which is non-singular
by 1)) is a surface of general type.

In [4], Kodaira studied families of surfaces with
ordinary singularities in \mathbb{P}^3. In particular, he proved that above S belongs to an effectively parametrized family \mathcal{F} of surfaces S_t, $t \in M_1$, with ordinary singularities in \mathbb{P}^3 whose characteristic system on each S_t is complete (see [14], Theorem 8 and §5.4). In our case, the number $\mu(S)$ of effective parameters of the family \mathcal{F} is given by

$$\mu(S) = C(r) + C(s) + C(2r-2s) - C(r-2s) - 2$$

where

$$C(m) = \begin{cases} \frac{(m+3)(m+2)(m+1)}{6} & \text{for } m \geq 0 \\ 0 & \text{for } m < 0 \end{cases}$$

On the other hand, Kodaira-Spencer introduced the concept of the number of moduli $m(X)$ of a compact complex manifold X (see [5], Definition 11.1).

Main Theorem. Let S be a generic hypersurface in \mathbb{P}^3 defined by the equation (1), X the normalization of S. Then, the number of moduli $m(X)$ is defined, and we have

$$m(X) = \dim H^1(X, \mathcal{O}_X) = \mu(S) - 15 - 4 \mathcal{S}_{r,s+1}$$

where \mathcal{O}_X denotes the sheaf of germs of holomorphic vector fields on X, and $\mathcal{S}_{r,s+1}$ is Kronecker's delta.

Let $f: X \to \mathbb{P}^3$ denote the composition of normalization and the embedding. Then the difference of $\mu(S)$ and
m(X) is the contribution of the number of parameters on which the holomorphic map \(f \) depends.

For \((r, s) = (3,1)\) or \((4,3)\), \(S \) is one of the examples of M. Noether [6].

For \((r, s) = (3,1)\), \(X \) is a minimal algebraic surface with \(p_g = 4, \ q = 0, \) and \(c_1^2 = 6 \), where \(p_g \), \(q \), and \(c_1^2 \) denote, respectively, the geometric genus, the irregularity, and the Chern number. We have

\[
m(X) = 10(p_g - q + 1) - 2c_1^2 = 38,
\]

\[
H^2(X, \mathcal{O}_X) = 0
\]

(cf. Kodaira [8]).

For \((r, s) = (4,3)\), \(X \) is a complete intersection of two hypersurfaces of degree 2 and 4 in \(\mathbb{P}^4 \). We have also \(H^2(X, \mathcal{O}_X) = 0 \).

1. Preliminaries. Let \(E \) be a hyperplane section of \(S, \ \tilde{E} = f^*E, \ \tilde{\Delta} = f^{-1}(\Delta) \). From the equation (1), we infer

Lemma 1. \(\tilde{\Delta} \) is linearly equivalent to \(s\tilde{E} \) on \(X \).

We note that \((n-4)\tilde{E} - \tilde{\Delta} \) is a canonical divisor on \(X \), and that

\[
H^\nu(X, \mathcal{O}(m\tilde{E} - \tilde{\Delta})) \subseteq H^\nu(S, \mathcal{O}(mE - \Delta)) \quad \text{for} \ \nu = 0, 1, 2
\]

(see [4]). By a standard computation (cf. [7]), we get

Lemma 2. \(\dim H^0(X, \mathcal{O}(\tilde{E})) = 4 + \delta_{r,s+1}, \ H^3(X, \mathcal{O}(\tilde{E})) = 0 \).
Lemma 3. 1) The canonical bundle K of X is ample. In particular, X is minimal.

2) \[p_g = \binom{2r-1}{3} - (1/2)rs(3r - s - 4), \]
\[q = 0, \]
\[c_1^2 = 2r(2r - s - 4)^2. \]

Remark. If $r = s + 1$, then the complete linear system $|\widetilde{E}|$ is very ample, and X is a complete intersection of two hypersurfaces of degree 2 and r in \mathbb{P}^4.

2. Relation between deformations of S and X. Let \(\{ S_t \}_{t \in M} \) be a family of surfaces of degree n in \mathbb{P}^3 with ordinary singularities, $S = S_0$, $0 \in M$. Letting $T_0(M)$ denote the tangent space of M at 0, we have the characteristic map

$$
\sigma : T_0(M) \longrightarrow H^0(S, \mathcal{N}_S^0)
$$

where \mathcal{N}_S^0 denotes the sheaf $\mathcal{O}_{\mathbb{P}^3}(-\Sigma B_i)$ in the notation of [4]. We note that we have an exact sequence

$$
0 \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{O}_{\mathbb{P}^3}|_S \longrightarrow \mathcal{N}_S^0 \longrightarrow 0.
$$

On the other hand, the normalization X_t of S_t form a family $\mathcal{X} = \{ X_t \}_{t \in M}$ of deformations of $X = X_0$ and the holomorphic map $f : X \rightarrow \mathbb{P}^3$ extends to a holomorphic map $\Phi : \mathcal{X} \rightarrow \mathbb{P}^3 \times M$ over M. Let \mathcal{O}_X and $\mathcal{O}_{\mathbb{P}^3}$ denote the sheaves of germs of holomorphic vector fields on X and \mathbb{P}^3 respectively, and let $\mathcal{F}_{X/\mathbb{P}^3}$ denote the cokernel.
of the canonical homomorphism \(F: \Phi_X \rightarrow f^* \otimes_{\mathbb{P}^3} \). Then we have the characteristic map

\[
\tau: T_0(M) \longrightarrow H^0(X, \mathcal{J}_{X/\mathbb{P}^3})
\]

(see [3], §1).

Lemma 4. There is a canonical isomorphism

\[
\mathcal{J}: \mathcal{N}^0_S \longrightarrow f_* \mathcal{J}_{X/\mathbb{P}^3}
\]

which induces an isomorphism

\[
\mathcal{J}: H^0(S, \mathcal{N}^0_S) \longrightarrow H^0(X, \mathcal{J}_{X/\mathbb{P}^3})
\]

such that \(-\tau = \mathcal{J} \circ \sigma\).

We have two exact sequences

\[
0 \longrightarrow \Theta_S \longrightarrow \Theta_{\mathbb{P}^3}|_S \longrightarrow \mathcal{N}^0_S \longrightarrow 0,
\]

\[
0 \longrightarrow f_* \Theta_X \longrightarrow f_* f^* \otimes_{\mathbb{P}^3} \rightarrow f_* \mathcal{J}_{X/\mathbb{P}^3} \longrightarrow 0.
\]

Moreover, there exists a canonical homomorphism

\[
f^*: \Theta_{\mathbb{P}^3}|_S \longrightarrow f_* f^* \otimes_{\mathbb{P}^3}.
\]

One can easily see that \(f^* \) induces a desired isomorphism.

Lemma 5. The coboundary map

\[
\mathcal{S}: H^0(X, \mathcal{J}_{X/\mathbb{P}^3}) \longrightarrow H^1(X, \Phi_X)
\]
is surjective.

Proof. Let $\mathcal{P} \in H^1(X, \mathcal{O}_X)$. Then \mathcal{P} corresponds to a deformation $X_\mathcal{P}$ of X over $I = \text{Spec } \mathcal{O}[t]/(t^2)$.

By Lemma 1, we have $K = (n - s - 4)[E]$. It follows that the line bundle $[E]$ extends to a line bundle on $X_\mathcal{P}$. Then, by Lemma 2, the holomorphic map f extends to a holomorphic map $X_\mathcal{P} \to P^3 \times I$ over I. This means that \mathcal{P} is surjective.

By the result of Kodaira cited in Introduction, and by Lemma 4, we obtain a family $\mathcal{F}_1 \leftarrow \{X_t\}_{t \in M_1}$ of deformations of $X = X_0$ such that

$$\tau: T_0(M_1) \longrightarrow H^0(X, \mathcal{F}_X/P^3)$$

is surjective. By Lemma 5 and [13], Proposition 1.4, the infinitesimal deformation map

$$\mathcal{P}: T_0(M_1) \longrightarrow H^1(X, \mathcal{O}_X)$$

is surjective.

This implies the existence of an effectively parametrized complete family of deformations of X and the equality $m(X) = \dim H^1(X, \mathcal{O}_X)$.

On the other hand, we have

$$\dim H^0(X, f^*\mathcal{O}_{P^3}) = 15 + 4 \cdot \delta_{r,s+1}$$

by Lemmas 2 and 3. Finally it follows that
\[\dim H^1(X, \Theta_X) = \mu(S) - 15 - 4 \delta_{r,s+1} \]

by Lemma 5.

References

7. 小平邦彦，数論曲面論，東大セミナーノート 20.

8. 小平邦彦，複素曲面についてのいくつかの未解決の問題，数理研講究録__.