ooooboooao
1890 1973 0 60-69

PREPARATIONS FOR FORMAL STUDY OF A SIMPLE PROGRAM INCLUDING

FLOATING-POINT ARITHMETIC

Kazuo USHIJIMA

Faculty of Engineering Kyushu University, Fukucka

1. Introduction

Almost all programs solving scientific and engineering
problems are not free form floating-point arithmetic. It is
difficult to study these programs formaelly for many reasons.
In flosting-point arithmetic round-off errors are not avoidable
and several laws in real arithmetic do not always hold. Moreover
round-off mechanism is ofteﬁ in a different way on every processor
and floating-point operstions are often imprecisély defined., The

round-off mechanism is .dependent not only on machine environment

but also on software environment, since most of those programs

mentioned above are wfitten in high level languages such as
FORTRAN, ALGOL or PL/I. In spite of standardization of those
languages, actual specifications are partly accomplished in rather
different ways on different processors. TFor example ISO or JIS
FORTRAN [1, 2] says that the resultant element of combination of

two real elements is of type real, but in reality there

exist & number of processors where the resultant element is of

type double precision. Moreover precise information is hardly

open to us how compilers of those languages are implemented,

-1

although there exist in language standards a number of pointé such
that they are left to compiler implementors, for example, to adopt
chopping or rounding in floating-point cperations in FORTRAK.

To overcome these difficulties Good and London [3] defined
computer interval arithmetic and proved the correctness of this
implementation on a specified machine by the inductive assertion
method described by Floyd and Knuth. In this paper we shall Pre-
sent & program with simple floating-point operations. It has no
loops and is independent of numericdal algorithms for the purpose
of exclﬁding logiéal and numerical difficulties. In the course
of examining every process of this program, we shall make prepara;

tions for corfect‘implementation of such progrems mentioned above.

2. A program including simple floating-point operations

Let A, B &and lee real type variables and Y and Z be double
precision tYpé variables. The following floating-point numbers
are assigned to A and B:

A =1.0, 2.6, 4.0, 8.0 and

B=zt2 for i = 10, 11,....
If we call a FORTRAN function INDEX (see below), which value (-1,

0 or 1 for the statement number 1, 2 or‘3 respectively) is returned

for every pair of A and B?

] FUNCTION INDEXCA,B)

2 DOUBRLE PRECISION Y« 2
3 X = (1.0+B)%A

4 Y = (1.0+DBLE (B))+#A

5 L = 1.0/Y
6 TF(SNGL(1.0/2)=X) 1+ 24 3
1 1 INDFX = =1
.8 RETURN
9 2 INDFX = O
10 RETURN
11 3 INDEX = 1
12 RETURN
13 END

-2-

61

<

o

In order to clarify every process of computation in executing
this program on particular computers, so many points must be
considered as under. |
(1) Floating-point numbers treated in FORTRAN are always normal-
ized. Any normalized floating-point number has the form
t.d,d,...4, x 8°

where base-f digits dl’dz""’d satisfy the inequalities

t
1s d1 s 8-1
04, $8-1 fori=2, 3,00
end e is an integer with a specified interval. In this paper
B is restricted to 2 and 16 in consideration of actusl machines.
(2) Though ISO or JIS FORTRAN says that a real détum is a proces-
sor approximetion to the value of a real number, 2ii cén be re-
presented without eny round-off as normslized floating—point
numbers within the specified interval of the exponent part e
so long as B = 2 or 16. Therefore it is assumed that four
constants 1.0, 2.0, 4.0 and 8.0 are exactly converted to machine
numbers by every compiler. Moreover assignment of 2_i to B must
be carefully executed. We assume that the statement
B = 1.0/(2.0%%1) for I = 10, 11,...
does make no deviation between B and 2'1. Thus, to evaluate the
function INDEX, tﬁe values of A and B are assumed to be exactly
assigned as normelized floating-point numbers.
(3) In the process of computation of the right part in line 3 or

L of the function, there exists in almost all processors such i

that

1+27 0 #1
- and

~(141) _)

1+2
hold. It is expected to be as follows:
if g =2,

i=+t-1 in case of chopped operation -

i=t in case of rounded operation

and if B = 16,

i=kx(t 1) in case of chopped operation

i=4x (t-1) +1 in case of rounded operation.
(4) The resultant type of combination between type real and type
double precision such as the right part‘in line 4 or 5 of the
function is of type double precision.
(5) It is assumed that the lower part is filléd-with zero when
& single precision argument is expressed in double precision form
by the intrinsic function DBLE.
(6) In line 3 or 4 of the function, put the result of 1 + 2% o
be C, then if B = 2, the mantissa of the result of C x A is the
same as that of C, but the exponent part is added O, 1, 2 or 3
according as A = 1.0, 2.0, 4.0 or 8.0. Therefore the returned
value INDEX is not dependent on the value of A. If 8 = 16 on the
other hand, the exponent part of C x A is equal to that of C and
the mantisse of C x A is made by shifting that of C by 0, 1, 2 or
3 bits to the left according as A = 1.0, 2.0, 4.0 or 8.0, since
the most significant digit 4 of C is equal to OO0l in binsry

digit. It is imagined that the order between shift operation‘

(multiplication of A) and round-off operation (addition of 2™ to

.

63

b1
1.0) will delicately affect the result.
(7) If B < 0, the computation of (1 - 21y x A is more compli-
cated than that of (1 + 2°1) x A. For all values of A in cese
B =2or A=1.0 in case B = 16, the exponent part of (1 - o yx a
is less than that of A so long as 1 - 2"i < 1. For A = 2.0, L.0,
8.0 in case B = 16 the exponent part is equal to that of 1.0,
because

1<A-Aax2<6,
Moreover it is dependent on machine eivironment whether there
exists such i that

1-2%t41
and

1 - o)

1

hold. For i §t - 1 in case B=2endishx(¢t-1) in case

g =16, 1 - 2-1 is exactly expressible. Otherwise several cases
are considered. At flosting-point subtraction,; in one case, if the
difference of the exponents of both opersnds is greater than or
equal to t + a(a 2 0), then the larger one is set to the result of
the operation with a proper sign. On another machine the result

of subtraction 1 - 2'i in chopped operation is always less than
1.0, even if i is much greatef then t or 4 x t according as B = 2
or 16.

(8) Let p be the length of mantissa of a single precision floating-
point number in binary digit and g be that of a double precision
floating-point number. In the process of computation of the

right part of line 5:

~3%3

~2%1
oo cees

(Q+2H1=3 o145

to what extent can this series be covered within double precision

AllV

q bits of Z? We must consider as many cases &as 2x1is=saqg,

I x i % q etc.

It should be noted that the round-off operation in the
neighbourhood of the g-th bit Is not always the same as that in
the neighbourhood of the p-th bit.

(9)‘Computation of SNGL(1.0/2Z). Operation of the function SKGL
is only described in ISO or JIS FORTRAN to obtain most signifi-
cant part of double precision argument. Therefore it is dependent
on the compiler implementor whethér chopped operation or raunded
operation is adopted in SNGL operation. In another processor

where the floating-point arithmetic is always done in double

precision, SNGL operation may often be & synonym of no operation.

3. Analysis of the results of the program execution

The results of the program executea .n two processors of

oW
]

16 (FACOM 230-25 and HITAC 8350, where p = 24 = L x 6 and
q =56 =4 x 1) are as follows:

INDEX{(A, B) = 1 . for

-21
2

2-21, 2-22’

- -22 -
2 21’ > , 2 23’

A =20 and B

A =1L4,0 and B

A=8,0andB
INDEX(A, B) = -1 for
A =1.0, 2.0, 4.0, 8.0 and

B=-2"2

for 21 £i 252 ...FACOM 230-25 and
25 S 1 S ## ... HITAC 8350

where ** = 52,56,56,53 according as A = 1.0,2.0,4.0,8.0,

-6

<0

INDEX(A, B) =0 otherwise
Here we restrict our investigation about these results within the
interval 21 S i < 24, where the characteristics of both processors
are regarded to be well reflected. We can rewrite the computation
of ¥ for B> 0

Y

(1 + 1676 x 25) x4

X A where k=0,1, 2, 3.

Since 16718 << 167!, we obtain by neglecting terms smaller than
16718 | . '

2= (1 - (25 x 1678 < 22K » 16712)) x 27!
Therefore it is expected in line 6 of the function

1.0/2 = (1 + 25 x 1675) x 4
For B < 0 we obtein in the same way

1.0/2 = (1 - 25 x 167) x A.
In Teble 1 are lisfed the expected results of the computation of
1.0/Z, SKGL(1.0/Z) and X in both chopped and rounded opersations
for B > 0. By examining all pairs of A and B to make INDEX(A, B)
= 1 in Table 1, the results coincide with those in column (1)-(3)
in the table. Therefore we can conclude that the sinéle precision
floating—point sgrithmetic in the riéht part of X is done in
cﬁopped operation and SNGL operation is also executed as chopped
operation. On the other hand for the results of INDEX(A, B) = -1,
where B < 0, if we assume based on the above conclusion that when-
ever the difference of the exponents of both operands is
greater than or equal to 6 in the single precision subtracfion,
the larger one is set directly to the result of the operation with

a proper sign, then in the computation of X the result of

67

(9T = 9)
Vx (p2-T) ‘2ot

| 8] _9TxT-8| 9 _9Tx8-8 |H2|
| 8| -9TxT-8| 5 9TXT-g |€2 0'g
8] ¢ 9Txe-g| ¢ ITxc-8 |2c _
| 8] 59Tx18| g 9TxN"8 | T2
T | e_9TXTn| o 9TxN—N |fE|
| g 9TXTN g 9TRH (€

U mIWHXHI: mlm..ﬁx.hl:. cc

| ¢_9Txe~h| g_9Txe—H |T2
2| ootxt-z| g _9Txe-2 |h2| |
| 2| 59TxT2| 9 9TX1-2 |€2| .
2| ¢_9TxT-2|4_9Txg-2 |22
e e e

T| 9 9TxT-Tjg 9TxT-T |hC

T 9 91x@-T|o 9Txe-T |€2| ..

T| 9 9Tx=Tig_9Txq-T |22

T| ¢_9Txg~T|g_9Txg-T |12

paddoyo .
X (z | /0T (¥ | V¥
0'T)TONS| - R

(9T = 8)
Vx (,2+T) 'T ST
e
+|(+41 0] 0 8 8 g _9TxT+8| 8 9. 9Tx@+B | e
| + | + | + Q 8 ¢ 9TxT+8| ¢ _9TxT+8| g _9TxT+Q | €S
s+ |+l | 8 g |g_9Tx@+8| _9Txe+g| g 9Txesg |22 08
-+ =+ g 9Txg+g 8 g 9Txt+8| g _9TxH+B| o _9TxH+y HNW
ol o|lolo| = n n N | 9 9Txsh | N2
sl +loj0]| n N e 9Tkt | o 9Txgn |€2
sl]+] 1 N | 9TxTH| ¢_9TxTH| g_9TxTy |22 0™
-) T+ g 9TxhrHY k§ S 9TxCH | g_9TxC+N ¢ 9Txe+y | T2
olololol 2 | 2 | &2 | & |q9mxee el |
ol ololo| =z 2 2 2 | g 9Txn+2 mm_
s+l +{ 0|0 @ 2 < 9TxT+2] 2 |9 9Txg+2 |22 0°
Sl =1 a lootxere] 7 | 9TxTHE| o_9TxT4E ¢ _9TxTHE | T2
olololo| = | © | © | 1t |eomat|ne
ol ololo| T T T T | 09T |2 ..
ofololo| T | T T T | o 9Txn+T | 22
ol +] =] 0 |ooTxt+T| T | 9TxTAT T | o 9Ts8+T | T2
(n=E)m-1e)-| (n) €) (2) T) .
(z) (@) (1)] (1) [pepmoa |paddouo |pepunos | peddousd z/0°T | T |V
(a)-(®) 3o uAys (a) X (®) (Z/0°T) NS

-8-

k -
x 16™® is set to 1.0 and we obtain Table 2. The

1x16° -2
result; of FACOM 230-25 coincide with Table 2. Supposing that the
subtraction is always significant whenever the difference of‘the
exponents. of both operands is less than or equal to at least 6
in single precision and 14 in double precision, we can explain
the results of HITAC 8350,
For the results of B = 2, we show the only one case of
NEAC 3200-30 (p = 23 and q = 39), where every floating-point
arithmetic is executed by using subroutines. The results are
independent of the value of A, since B = 2. They are as follows:
INDEX(A, B) = -1 for -
1 (1551 519) ana

38),

B = +2°

B=-2"1

A
A

(30 21
INDEX(A, B) = O otherwise.
INDEX(A, B) = 1 is not realized for any pair of A and B. We can

get information about floating-point subroutines on this processor

to scme extent by analyzing these results as sbove,

L, Closing remarks

It does not seem so practical and meaningful to discuss the
correctness of such a simple program, but investigations in the
process of determining meaning of each step of the program by ana-
lyzing the execution results have given us several pieces of
information about round-off mechanism on particular processors,
which will be useful for correct implementation of more compli-
cated algorithms. In general a collection of such simple programs

as above [4, 5] is helpful for writing programs on a particular

69
processor or transferring programs from one processor to another.
We can make use of the collection to examine characteristics of

the processor in advance of prograrmming or reprogramming.

References

1) Draft ISO recommendation FORTRAN, ISO/TC97/SC5, 1965.

2) Japanese Industrial Standard, Programming Lenguasge for Computers
FORTRAN (level 7000) JIS C 6201 (in Jépanesé), 1972,

3) Good, D. I., and London, R. L., Computer interval arithmetic:
definition and proof of correct implementation, J. ACM 17, 4,
1970, 603-612. |

k) Ushijima, K., A test program for & unit round-off error in
floating-point arithmetic, Information Processing in Japen,
11, 1971, 176-18%.

, Test programs for detecting formation sequences

5)
of expressions, ibid., 159-168.

=10~

