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Some Remarks in General Theory of Flow-Charts

By Ken Hirose and Makoto Oya

0. 1In this note, we state some remarks in general theory of
flowcharts. In order to know the detail of definitions and proofs,

see [1] and [2].

1.

We use following symbols to define "flowcharts".
variable symbols: Xis o "7 Yy Yoo
function symbols: fl, 52,
predicate symbols: Py Pys
logical connectives: V , =7
logical constants: T, F
auxiliary symbols: ( , ),

object symbols:

(Note: 1Individual constants are considered as O-ary function

symbols.)

From above symbols, terms, formulas, and thus flowcharts are
defined. Simultaneously, we can give their interpretation. Inter-
preted flowcharts are called programs. Then, we can say programs

are equivalent to relativized partial recursive procedures.



2.
We say a flowchart S is in normal form if S is as in Fig.1;

where L, Ll and L2 are loop-free flowcharts (i.e. fldwcharts

without loops), and A 1is a formula.
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Fig.l1 (Normal Form)

We proved following theorem.

Normal Form Theorem. For every flowchart S, there exists
a flowchart in normal form which is equivalent to S.

In this theorem, it is important that there exists effective
procedure to get the equivalent flowchart in normal form from a

given flowchart.

3.

We make mention of some application of Normal Form Theorem.

The first application is that we can effectively get a predicate
which is correct w.r.t. a given program. And we also obtain Davis'
result about diophantine predicates.

The second application is about ''termination', however we have

not obtained any satisfiable result.

Let (S, I) be a program, where S 1is a flowchart in normal



form and I 1is an interpretétion.
Def.1 Ter(S, I, §) <> [(S, I) terminates for ihput £ ]
Ter(S, I) < (VYg)Ter(s, 1,%)
Ter(S) & (VY I)Ter(S, I).

On the other hand, from Normal Form Theorem, we can consider
the condition that (S, I) terminates for f passing the loop
(i.e. L in Fig.l) n times. This condition is denoted by
Ter(S, I, § , n). Then,

(1) Ter(s, I, §) & (I n)Ter(S, I, ¥, n).

Hence,

(2) Ter(s, I) &< (V¥)(3n)Ter(s, I, ¥, n).

We shall define another kind of "termination'. That is,
(S, I) terminates boundedly.

Def.2 b-Ter(S, I) < (@ANM(V §)(3n< N)Ter(s, I, T, n).
Then we have,

(3) b-Ter(S, I) = Ter(S, I).

Clearly the converse of (3) is not true.

Moreover,

Def.3 b-Ter(S) < (VI)[b-Ter(S, 1)]

b* -Ter(s) <& (IM(VI)(VE)(In<N)Ter(s, I,¥, n).
Then,

(4) b* -Ter(S) => b -Ter(S) => Ter(S).
( Noié . PY‘OS, Wea‘/ﬂ’&mcﬁ, and Fvof, NO}m’tL showed. us

a proof 9j &= e 4) ot K&ol‘o S‘amrosi.uku_ )

Following propositions are easily shown:

Prop.1 If we can answer to the problem of equivelence

between loop-free programs, then
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(1) Whether b -Ter(S, I) or not is semidecidable (i.e. if
b -Ter(S, 1), we can show b -Ter(S, I)).
{b- b- '
(2) If\ff;r(sl, I) and ‘Ter(Sz, I), then equivalence between

(s I) and (S I) 1is decidable.

1’ 2’
Prop.2 (1) b*-Ter 1is semidecidable.
(2) >If. b* -Ter(Sl) and b*’-Ter(Sz), then equivalence
between Sl and 52 is decidable.

(Note: In Props. 1 and 2, S, S1 and S2 denote flowcharts.)
Furthermore, in the case L (in Fig.l) has some property (e.g.

"has only one path", etc.), b*-Ter is decidable.

4,

We shall mention about the equivalence of loop-free flowcharts.
Ll’ L2, +++ denote 1oop-ffee flowcharts in this section.

An interpretation with equality is said a structure in this
paper.

We proved following two theorems:

Theorem I If I is a structure, for (Ll’ I) and (LZ’ 1)
it can be constructed a formula A satisfying

(5) [(Ll’ I) 1is equivalent to (LZ’ )]

&= [A is valid in 1I].

Theorem IT For a formula A, Ll and L2 can be constructed
satisfying (5).

Above two say that the equivalence of loop-free programs is

equivalent to the validity of an open formula.

From Theorem I, we get some results about decidability.
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Prop.3 Whether L1 Asz is decidable. (Where Ll’w L2 means

L1 and L2 are equivalent. That is (Ll’ I) and (LZ’ I) are

equivalent for every interpretation 1I.)

Prop.4 If two loop-free programs Pl and P2 has only +

and = as operations, then whether P1 N'Pz is decidable.

Proof. Because it 1s well known that whether given formula A

is valid or not is decidable if A has only + and = as operations.

From Theorem II, we also get a result about undecidability. '
Prop.5 Let T be the set of loop-free programs whose
domain is integers and which has only +, ° (product) and = as
operations. Then there is no algorithm that determines whether

P, ~ P, or not for given P, P, € .

Proof. By the negative solution of Hilbert's 10th problem [3],-
there is a Diophantine equation D = 0 having no algorithm that
determines whether any solution of D = 0 exists or not for given
coefficients of D.

Consider D # 0 as A 1in Theorem II. Then,

(D # 0 1is identically true) < P, ~ P

1 2

where P1 = (Ll’ I) and P2 = (L2, I) in Theorem II. Hence,

(D = 0 has some solution) &3 not (Plfv PZ)’
So, if whether Pl A’Pz or not 1is decidable, then whether D = 0

has any solution or not 1is decidable. That is a contradiction.

Note: 1In Theorem II, Ly and L2 are constructed as follows:
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In the above proposition, we do not mind the domain. But the

equivalence between loop-free flowcharts is also undecidable even

if we consider "axioms'" on it. (See [1].)
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