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On solutions of initial-boundary

- 1
problem for u, = u,  + NPT

Hideo Kawarada

University of Tokyo

§1. Introduction and Theorem

1),2),3)

Various works have been published on the blowing-

up of solutions of the Cauchy problem and the initiél—boundary
value problem qf nonlinear partial differential equations. -
Blowing-up means that the solutions of these problems become
infinite in a finite time.

The objective of the present paper is to introduce the
concept of quenching which has more general sense than blowing-
up and to find some sufficient conditions for quenching of the
solutions of the following initial-boundary value problem for

u=u(t,x), t>0, =x€&(0,),

1
(1.1a) u, = w13 . t0, xe(0,2) ,
(1.1b) u(t,0) = u(t,2) =0 , t>0 ,
(1.1c) u(0,x) =0 , x&(0,2) ,
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where & 1is a positive constant. The above initial-boundary

value problem (l.lanc) is denoted by IVP. Our study may be

said to be more illustrative than general, since we restrict
ourselves to one-space-dimensional mixed problems of semilinear

heat equations. . Nevertheless, we hope that our results will

give an insight into a more general situation. The nonlinear

perturbation I%E (u#l) in (l.la) is a locally Lipshitz
continuous. Thus IVP has a unique solution which may be local
in t .

The present problems came to our attention in connection
with the diffusion equation generated by a polarization

Co 4)
phenomena in ionic conductors ).

We shall define quenching for the solutions of the initial

value problems.

Definition 1. Let u = u(t,x) be the solution of the initial

value problems which are defined in t>0, x€Q. { means R™

which stands for the m-dimensional Euclidean space or the

bounded domain in rRM .

We shall say that u quenches if | u becomes infinite

tle

in a finite time where | -

lc denotes the maximum norm over & .
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In order to clarify the nature of gquenching, let us take

some examples.

Example 2. o being constant, the solution of the initial

value problem for u = u(t) , t>0,

du _ 1
dt  I-u ' t>0
u(0) = a ,

is u=1+ V(1l-a)® - 2t, if o>l and u=1 - Y(1-a)% - 2t ,

—a) 2
if a<l. In both cases, we see quenching at t = ilfﬁl_ .
Example 3. Let o be as above.. The solution of the initial-

boundary value problem for u = u(t,x) , t>0, xe&(0,%),
f = Uy *Tog 0 £20 . x€(0,2)
ux(t¢0) = ux(t,l) =0, t>0

u(0,x) = a , x€(0,8)

is the same as above.

Example 4. Blowing-up in the initial value problems means

guenching. As our main result, we have
Theorem. In the IVP, suppose 2>2/2. Then the solution of

the IVP quenches.



140

The present paper has two sections apart from this section.

In §2, we shall give a Lemma. §3 is devoted to the proof of

our Theorem.

§2. Lemma

As a preparation for the proof of Theorem we state the

following lemma. Henceforce, let u = u(t,x) be the solution

of IVP.

Lemma. In the IVP, suppose 2>2/2 . Then u reaches 1 in
c . '

a finite time at x = 7 .

Proof:

1st Step. We show that u(t,x) 1is increasing in t for

every x in (0,2) as long as u exists. 1In fact, putting

v = ut , we have
(2.1) vV, =V + ———i—— v xX€(0,48)
. t XX (1“1.1)2 ’ rr
v(t,0) = v(t,2) =0 ,
and
v(0,x) =1, x€(0,2) as long as u exists.

We notice that v 1is a solution of the linear parabolic
equation (2.1) and is non-negative on the "parabolic boundary”.

Thus v 1is non-negative everywhere, which implies the required

4L
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monotonicity of u

2nd Step. The solution wu, = ul(t,x) of the initial-boundary

1

value problem for u = u(t,x),

U = U + 1, t>0 , X€(0,2) ,
u(tlo) = u(trz) =0, t>0 ,
u(OIX) =0, XE(OIK)
converges its stationary solution ¢ (x) = %z(l—x) (0<x<%) as’

t > +=. Thus u; crosses 1l in a finite time if L>2Y2 .

Suppose that u does not reach 1 in a finite time if
2>2Y/2. Then IVP has a global solution, i.e., u satisfies
0<u<l in (0,%) % [0,+») by virtue of the monotonicity of u .
in (0,%) x [0,+x)

Comparing u with u, , we get u > u

1 1

since T%T > 1 in 02A<1l. This contradicts the assumption.

We shall denote the time when u reaches 1 by t =T

0"
3rd Step. u satisfies (i) uX(t,O) > 0 by virtue of positivity
of u ; (ii) ux(t,&) =.0 since u is an even function with
, 2 .
respect to x = 5 - Putting @ = u, o, we have
m, =7 1 o t€l0,T,) x€(0 L2
t %X (lTu)z ’ 40 r ) ’

m(t,0) >0, w(t,& =o0, te[o,T,) ,
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and
L
m(0,x) =0, xe(O,E) .
Repeating the same argument as in lst Step, we see that
(2.2) T = ux(tlx) >0, t&[O,TO) ’ X&(ol&)
Combining (2.2) and (ii), we get that u takes its maximum

at x = % for any te[O,TO). This completes the proof.

§3. Proof of Theorem
lst Step.

l.a) Put u = u(t) = u(t,%) in [O,TO). U satisfies

au
(3.1) 3t b

—_

= in [To-e,To)

for sufficiently small e(>0) since uxx(t,&) < 0 in [O,To).

Put Tl‘= TO- € and Qe = (0,28) x [Tl,TO). Comparing u(t)
with v = v(t) =1 = /EVTO-t in [Tl,TO), we get

(3.2) Ww2v o, in [T),T)

since v satisfies (see Example 2)

dv _ 1
I =I5 ¢ té[Tl,TO)

and

lim v(t) =1 .
t+T0

(3.2) implies that there exists the domain De in which

u satisfies
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u(t,x) > v(t)

Denote the compliment of D_ by E_ and put E(l)=E€nRO,&)X[Tl,T0)}

€
(2)
€

N %
and E_“'=E_n{(5,2)x[T,T})}

For D€ , there may be two cases:

Case (a) De has no interior points; i.e., there holds

uxx(t,%-)=0 in [T,,T,).

Case (b) D, has interior points.

For the case (a), u quenches obviously. Henceforce we

consider only the case (b).

(1)

1.b) Denote the boundary between D, and Eg

by x=s(i%t)

(té[Tl,TO)) for i=1,2. Then x=s(l%t) satisfies

(i) lim s(i%t) = % ;
t->T
i) ue,s e ate = e e,s ey, vetry, Ty

< (1) as Hle)
where s ~{t) means - for i=1,2. In fact, there holds

(3.3) u=von x = s(i%t) ’ t€&[T,,Ty).
Differentiating both sides of (3.3) and using (3.3), we get
3.4)  u te,s ey +ug e, sHhen) sy = —2 .

1-u(t,s The))

By virtue of (l.la) on x = s(l%t) and (3.3) we have (ii).

l.c) Obviously we have the following inequalities
(3.5a) A > > in D
* 1-u = 727T0—E g ’
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and
(3.5b) 1 1 in E
1l-u 7§7T0—? €
2nd Step.
2.a) Let p = p(t.x) b 1 in D 4 —Y— in E
.a e P =P X e 'Z—T,fOTtS- in e an (l-u)2 e®

Then the solution Vl= vl(t,x) of the initial-boundary value

problem for v = v(t,x) in Qs ’

v, = + p- in
t Vxx pev n €

V(t,O) = V(tlg’) = 0, t&[TlJTO) ’

V(Tllx) = B(x) ut(Tl’X) I} x€(0,8) ,

exists and satisfies vy 2V in Qs by virtue of (3.5a).

2.b) Put W = W(t,x) = VTO—t°vl . Denoting W in D€ by
(1) (1y_ (L) .

W » We have W, '= Wxx in DE

3rd Step.

3.a) We shall deal with the following initial-boundary value

problem for V = V(t,x) in (-w,+w) x [Tl’TO)'

(3.6a) Vt = Vxx in (-®,+®) x [Tl'TO)

(3.6b) v =y in D_

(3.6¢c) v

I

ey, xelo,s My Uos e e

¥
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(3.64) v=20, x€(-»,0) U (&,+=)
In what follows we impose on the solution V(t,x) the following
conditions at infinity: V(t,x) and Vx(t,x) are bounded as
X > *to uniformly with respect to t in [Tl’TO)' We see the
. A N . : .
solution W = W(t,x) of (3.6) unigquely exists. Uniqueness of

ﬁ is shown by Holmgren's theorem. Using the Green's function

1 _ (x-§)?
Efﬁfff?? expl T }

r

K({t,x;1,8) =

W is represented by

t
[ e, s Moywte, s Moy
Ty

]

Wi, x)

- whhe, s Phoyyx, (e,xit,s Ty yrar

g

- s(lle)
(3.7) +‘/‘ K(t,X;Tl,E)/E'B(E)dE
0

+

t
[ xees0i,s Mo w e, s Moy -3 Moy ac,

T

1
-0 < x < s(l%t) ’ te[Tl,To) .

Also in s(z%t) < X < 4o, tG{Tl;TO), we have the similar

expression as (3.7).

3.b) Using the positivity of B , W and maximum principle, we

have

W(t,x) > 0 in (-»,+®) x [T;,T,) -
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Thus from (3.6) and (3.5b) we see

W(t,x) > W(t,x) in a_

4th Step. We claim that

i B 2
lim W(t,f) >0 .
t->T
0
On the contrary, we suppose that

LA L
lim W(t,s) = 0 ,
t->T

0
which implies that 0 = W(t,x) > W(t,x) 2 0 in Q_ by the
strong maximum principles). This is a contradiction. Thus we
get that
lim Q) - lim viem) > 1 e =1 W)
im === = lim v(t,x) > lim v, (t,5) = lim = +o
t-r 9t £ par. L '2 0 hp VET,
0 0 0 0
This completes the proof.
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