On solutions of initial-boundary problem for $u_t = u_{xx} + \frac{1}{1-u}$

Hideo Kawarada

University of Tokyo

§1. Introduction and Theorem

Various works^{1),2),3)} have been published on the blowing-up of solutions of the Cauchy problem and the initial-boundary value problem of nonlinear partial differential equations.

Blowing-up means that the solutions of these problems become infinite in a finite time.

The objective of the present paper is to introduce the concept of quenching which has more general sense than blowing-up and to find some sufficient conditions for quenching of the solutions of the following initial-boundary value problem for u = u(t,x), t>0, $x \in (0,l)$,

(1.1a)
$$u_t = u_{xx} + \frac{1}{1-u}$$
, $t>0$, $x \in (0, l)$,

(1.1b)
$$u(t,0) = u(t,l) = 0$$
, $t>0$,

(1.1c)
$$u(0,x) = 0$$
, $x \in (0, l)$,

where ℓ is a positive constant. The above initial-boundary value problem $(1.1a \sim c)$ is denoted by IVP. Our study may be said to be more illustrative than general, since we restrict ourselves to one-space-dimensional mixed problems of semilinear heat equations. Nevertheless, we hope that our results will give an insight into a more general situation. The nonlinear perturbation $\frac{1}{1-u}$ ($u\neq 1$) in (1.1a) is a locally Lipshitz continuous. Thus IVP has a unique solution which may be local in t.

We shall define quenching for the solutions of the initial value problems.

Definition 1. Let u=u(t,x) be the solution of the initial value problems which are defined in t>0, $x \in \Omega$. Ω means R^m which stands for the m-dimensional Euclidean space or the bounded domain in R^m .

We shall say that u quenches if $\|\,u_t^{}\|_C$ becomes infinite in a finite time where $\|\,\cdot\,\|_C$ denotes the maximum norm over Ω .

In order to clarify the nature of quenching, let us take some examples.

Example 2. α being constant, the solution of the initial value problem for u = u(t), t>0,

$$\begin{cases} \frac{du}{dt} = \frac{1}{1-u}, & t>0 \\ u(0) = \alpha, & \end{cases}$$

is $u=1+\sqrt{(1-\alpha)^2-2t}$, if $\alpha>1$ and $u=1-\sqrt{(1-\alpha)^2-2t}$, if $\alpha<1$. In both cases, we see quenching at $t=\frac{(1-\alpha)^2}{2}$.

Example 3. Let α be as above. The solution of the initial-boundary value problem for u = u(t,x), t>0, $x\in(0,\ell)$,

$$\begin{cases} u_{t} = u_{xx} + \frac{1}{1-u}, & t>0, & x \in (0, l), \\ u_{x}(t,0) = u_{x}(t, l) = 0, & t>0 \\ u(0,x) = \alpha, & x \in (0, l) \end{cases}$$

is the same as above.

Example 4. Blowing-up in the initial value problems means quenching. As our main result, we have Theorem. In the IVP, suppose $\ell > 2\sqrt{2}$. Then the solution of the IVP quenches.

140

The present paper has two sections apart from this section. In §2, we shall give a Lemma. §3 is devoted to the proof of our Theorem.

§2. Lemma

As a preparation for the proof of Theorem we state the following lemma. Henceforce, let u=u(t,x) be the solution of IVP.

Lemma. In the IVP, suppose $\ell > 2\sqrt{2}$. Then u reaches 1 in a finite time at $x = \frac{\ell}{2}$.

Proof:

lst Step. We show that u(t,x) is increasing in t for every x in (0,l) as long as u exists. In fact, putting $v=u_t$, we have

(2.1)
$$v_t = v_{xx} + \frac{1}{(1-u)^2} \cdot v$$
, $x \in (0, l)$, $v(t, 0) = v(t, l) = 0$,

and

v(0,x) = 1 , $x \in (0, l)$ as long as u exists.

We notice that v is a solution of the linear parabolic equation (2.1) and is non-negative on the "parabolic boundary". Thus v is non-negative everywhere, which implies the required

monotonicity of u .

2nd Step. The solution $u_1 = u_1(t,x)$ of the initial-boundary value problem for u = u(t,x),

$$\begin{cases} u_t = u_{xx} + 1, & t>0, & x \in (0, \ell), \\ u(t, 0) = u(t, \ell) = 0, & t>0, \\ u(0, x) = 0, & x \in (0, \ell) \end{cases}$$

converges its stationary solution $\psi(x)=\frac{1}{2}\ell(\ell-x)$ (0<x< ℓ) as t $\to +\infty$. Thus u_1 crosses 1 in a finite time if $\ell>2\sqrt{2}$.

Suppose that u does not reach 1 in a finite time if $\ell > 2\sqrt{2}$. Then IVP has a global solution, i.e., u satisfies $0 \le u \le 1$ in $(0,\ell) \times [0,+\infty)$ by virtue of the monotonicity of u. Comparing u with u_1 , we get $u \ge u_1$ in $(0,\ell) \times [0,+\infty)$ since $\frac{1}{1-\lambda} \ge 1$ in $0 \le \lambda \le 1$. This contradicts the assumption. We shall denote the time when u reaches 1 by $t = T_0$.

3rd Step. u satisfies (i) $u_x(t,0) > 0$ by virtue of positivity of u; (ii) $u_x(t,\frac{\ell}{2}) = 0$ since u is an even function with respect to $x = \frac{\ell}{2}$. Putting $\pi = u_x$, we have $\pi_t = \pi_{xx} + \frac{1}{(1-u)^2} \cdot \pi , \quad t \in [0,T_0) , \quad x \in (0,\frac{\ell}{2}) ,$ $\pi(t,0) > 0$, $\pi(t,\frac{\ell}{2}) = 0$, $t \in [0,T_0)$,

142

and

$$\pi(0,x) = 0$$
 , $x \in (0,\frac{\ell}{2})$.

Repeating the same argument as in 1st Step, we see that

(2.2)
$$\pi = u_x(t,x) > 0$$
, $t \in [0,T_0)$, $x \in (0,\frac{\ell}{2})$.

Combining (2.2) and (ii), we get that u takes its maximum at $x = \frac{\ell}{2}$ for any $t \in [0,T_0)$. This completes the proof.

§3. Proof of Theorem

1st Step.

1.a) Put
$$\mu = \mu(t) = u(t, \frac{\ell}{2})$$
 in $[0, T_0]$. μ satisfies

$$(3.1) \frac{d\mu}{dt} \leq \frac{1}{1-\mu} in [T_0 - \epsilon, T_0]$$

for sufficiently small $\epsilon(>0)$ since $u_{xx}(t,\frac{\ell}{2}) \leq 0$ in $[0,T_0)$.

Put
$$T_1 = T_0 - \varepsilon$$
 and $\Omega_{\varepsilon} = (0, \ell) \times [T_1, T_0)$. Comparing $\mu(t)$

with $v = v(t) = 1 - \sqrt{2}\sqrt{T_0 - t}$ in $[T_1, T_0]$, we get

$$(3.2) \qquad \mu \ge \nu , \quad \text{in } [T_1, T_0]$$

since ν satisfies (see Example 2)

$$\frac{dv}{dt} = \frac{1}{1-v} , \quad t \in [T_1, T_0]$$

and

$$\lim_{t\to T_0} v(t) = 1 .$$

(3.2) implies that there exists the domain $\, {\rm D}_{\epsilon} \,$ in which u satisfies

 $u(t,x) \ge v(t)$.

Denote the compliment of D_{ε} by E_{ε} and put $E_{\varepsilon}^{(1)} = E_{\varepsilon} \wedge \{(0, \frac{\ell}{2}) \times [T_1, T_0)\}$ and $E_{\varepsilon}^{(2)} = E_{\varepsilon} \wedge \{(\frac{\ell}{2}, \ell) \times [T_1, T_0)\}$.

For D_{ϵ} , there may be two cases:

Case (a) D_{ϵ} has no interior points; i.e., there holds $u_{xx}(t,\frac{\ell}{2})=0$ in $[T_1,T_0)$.

Case (b) D_{ε} has interior points.

For the case (a), u quenches obviously. Henceforce we consider only the case (b).

- 1.b) Denote the boundary between D_{ϵ} and $E_{\epsilon}^{(i)}$ by $x=s^{(i)}(t)$ $(t \in [T_1, T_0])$ for i=1,2. Then $x=s^{(i)}(t)$ satisfies
- (i) $\lim_{t\to T_0} s^{(i)}(t) = \frac{\ell}{2} ;$
- (ii) $u_{x}(t,s^{(i)}(t)) \cdot \dot{s}^{(i)}(t) = -u_{xx}(t,s^{(i)}(t)), t \in [T_{1},T_{0})$

where $s^{(i)}(t)$ means $\frac{ds^{(i)}(t)}{dt}$ for i=1,2. In fact, there holds

(3.3)
$$u = v \text{ on } x = s^{(i)}(t), t \in [T_1, T_0].$$

Differentiating both sides of (3.3) and using (3.3), we get

(3.4)
$$u_t(t,s^{(i)}(t)) + u_x(t,s^{(i)}(t)) \cdot \dot{s}^{(i)}(t) = \frac{1}{1-u(t,s^{(i)}(t))}$$
.

By virtue of (1.1a) on $x = s^{(i)}(t)$ and (3.3) we have (ii).

1.c) Obviously we have the following inequalities

$$(3.5a) \qquad \frac{1}{1-u} \ge \frac{1}{\sqrt{2}\sqrt{T_0-t}} \qquad \text{in } D_{\varepsilon} ,$$

144

and

(3.5b)
$$\frac{1}{1-u} < \frac{1}{\sqrt{2\sqrt{T_0}-t}} \quad \text{in } E_{\varepsilon}.$$

2nd Step.

2.a) Let p = p(t,x) be $\frac{1}{2(T_0-t)}$ in D_{ϵ} and $\frac{1}{(1-u)^2}$ in E_{ϵ} . Then the solution $v_1 = v_1(t,x)$ of the initial-boundary value problem for v = v(t,x) in Ω_{ϵ} ,

$$\begin{cases} v_{t} = v_{xx} + p \cdot v & \text{in } \Omega_{\epsilon} \\ v(t,0) = v(t,\ell) = 0, & t \in [T_{1},T_{0}), \\ v(T_{1},x) = \beta(x) = u_{t}(T_{1},x), & x \in (0,\ell), \end{cases}$$

exists and satisfies $v_1 \leq v$ in Ω_{ϵ} by virtue of (3.5a).

2.b) Put W = W(t,x) = $\sqrt{T_0-t} \cdot v_1$. Denoting W in D_E by W⁽¹⁾, we have W⁽¹⁾_t = W⁽¹⁾_{xx} in D_E.

3rd Step.

3.a) We shall deal with the following initial-boundary value problem for V = V(t,x) in $(-\infty, +\infty) \times [T_1, T_0)$.

$$(3.6a) V_t = V_{xx} in (-\infty, +\infty) \times [T_1, T_0]$$

(3.6b)
$$V = W^{(1)}$$
 in D_{ε}

(3.6c)
$$V = \sqrt{\varepsilon} \cdot \beta(x)$$
, $x \in [0, s^{(1)}(T_1))$ $U(s^{(2)}(T_1), \ell]$

$$(3.6d) \qquad V = 0 , \qquad x \in (-\infty, 0) \cup (\ell, +\infty) .$$

In what follows we impose on the solution V(t,x) the following conditions at infinity: V(t,x) and $V_x(t,x)$ are bounded as $x \to \pm \infty$ uniformly with respect to t in $[T_1,T_0)$. We see the solution $\widehat{W} = \widehat{W}(t,x)$ of (3.6) uniquely exists. Uniqueness of \widehat{W} is shown by Holmgren's theorem. Using the Green's function

$$K(t,x;\tau,\xi) = \frac{1}{2\sqrt{\pi(t-\tau)}} \exp\{-\frac{(x-\xi)^2}{4(t-\tau)}\}$$
,

W is represented by

$$\hat{W}(t,x) = \int_{T_1}^{t} [K(t,x;\tau,s^{(1)}(\tau))W_{\xi}^{(1)}(\tau,s^{(1)}(\tau))$$

$$- W^{(1)}(\tau, s^{(1)}(\tau)) K_{\xi}(t, x; \tau, s^{(1)}(\tau)) d\tau$$

$$+ \int_{0}^{s^{(1)}(T_{1})} K(t, x; T_{1}, \xi) \sqrt{\varepsilon} \cdot \beta(\xi) d\xi$$

$$+ \int_{T_{1}}^{t} K(t, 0; \tau, s^{(1)}(\tau)) W^{(1)}(\tau, s^{(1)}(\tau)) \cdot s^{(1)}(\tau) d\tau,$$

$$-\infty < x < s^{(1)}(t), te[T_{1}, T_{0}).$$

Also in $s^{(2)}(t) < x < +\infty$, $t \in [T_1, T_0)$, we have the similar expression as (3.7).

3.b) Using the positivity of β , W and maximum principle, we have

$$\hat{\mathbb{W}}(\mathsf{t},\mathsf{x}) \; \geqq \; 0 \quad \text{in} \; (-\infty,+\infty) \; \times \; [\mathsf{T}_1,\mathsf{T}_0) \; .$$

Thus from (3.6) and (3.5b) we see $\widehat{\mathbb{W}}(\mathsf{t},\mathsf{x}) \, \geq \, \mathbb{W}(\mathsf{t},\mathsf{x}) \qquad \text{in } \Omega_{\varepsilon} \ .$

4th Step. We claim that

$$\lim_{t\to T_0} \widehat{W}(t,\frac{\ell}{2}) > 0 .$$

On the contrary, we suppose that

$$\lim_{t\to T_0} \hat{W}(t,\frac{\ell}{2}) = 0 ,$$

which implies that $0 \equiv \widehat{W}(t,x) \geq W(t,x) \geq 0$ in Ω_{ϵ} by the strong maximum principle⁵⁾. This is a contradiction. Thus we get that

$$\lim_{t\to T_0}\frac{\mathrm{d}\mu\left(t\right)}{\mathrm{d}t}=\lim_{t\to T_0}v\left(t,\mathbf{x}\right)\geq\lim_{t\to T_0}v_1\left(t,\frac{\ell}{2}\right)=\lim_{t\to T_0}\frac{\widehat{W}\left(t,\frac{\ell}{2}\right)}{\sqrt{t-T_0}}=+\infty$$

This completes the proof.

References

- 1) H. Fugita: On Some Nonexistence and Nonuniqueness

 Theorems for Nonlinear Parabolic Equations, Proc. Sympos.

 Appl. Math., 18 Amer. Math. Soc., Providence, R.I, 1968,
 p.105.
- 2) J. B. Keller: On Solutions of Nonlinear Wave Equations, Comm. pure appl. Math. 10 (1957) p.523.

- 3) H. Kawarada: On Solutions of Nonlinear Wave Equations,J. Phys. Soc. Japan, 26 (1971) p.280.
- 4) H. Yanagida and H. Kawarada: Mathematical Representation of Electric Current Transient in Polarized Ionic Conductors, to appear.
- 5) A. Friedman; Partial Differential Equations of Parabolic type. Prentice-Hall, Englewood Clifs, N.J., 1964.