Fourier 変換の凝局所性について

東大 教養 内山康一

佐藤の超函数におりて重要な層でに対応する層を Distribution の場合にFourier変換を用りて構成することを目的とする。 すなわち、 cosphere bundle $\pi: S*\Omega \longrightarrow \Omega$ に対して、 $D'(\Omega)/E(\Omega) \cong \pi_* M(\Omega)^*$ $\cong \Gamma(S*\Omega, M)$ となる層 M を作る。応用上は M の section の台 (singular support S-S) が重要であり、Hörmander は直接これを (wave front set)構成した。

記号を導入しておく、 $\widehat{\Sigma}$ を R_s^n における原臭Oを頂臭とする錐体とする。 $\Sigma = \widehat{\Sigma}$ - \sqrt{R} とおき R_s^n 中の単位球 S^m と同一視する。

次の官数空间を導入する。 (Hörmander [1],[2]) $H_{\text{ecc}}^{2,\infty}(\Omega \times \Sigma) = \{ u \in H_{\text{ecc}}^{\epsilon}(\Omega) ; \forall (x_0, \xi_0) \in \Omega \times \Sigma \}$ $\exists \varphi \in C_0^{\infty}(\Omega) \text{ s. t.}$

(1) 9 (x0) #0

 $(2) \forall N$, $| \Phi \mathcal{L}(\xi) | \leq \frac{C_N}{(1+|\xi|)^N}$; ξ id ξ o の近く

*) Carの記号は 80/a 用に保留 になく. 藤原[3]、

ここで Ω は R%の 南集合. ∑は SMの (南) 集合. (2)の 5。 の近くで成立するという 意味は 5。 を内部に含む 錐体が存在してそこで成立することである。

 $H^{s,\infty}_{loc}(\Omega \times \Sigma)$ は $H^{\infty}(\Omega \times \Sigma)$ と略記もする.

 $H^{s.\infty}_{\omega c}(\Omega \times S^{n+}) = C^{\infty}(\Omega)$ は明らかであろう。(以下の補題から従う.)

定義中に現りれた局所的条件を少しりりかえておこう.

補題 1. $u \in \mathcal{E}'(\Omega)$ に対して急減少評価

(*) N, |û(\$) | ≤ CN/(1\$1+1)N

が ξ_0 の 近傍 δ_{ξ_0} で 成立しているとせよ、任意の $\alpha \in C^\infty_0(\Omega)$ に対し、 α について評価 (*) が δ_{ξ_0} を少 0 ちが めた 近傍 δ_{ξ_0} α で 成立する、

(証明) | (ま) | = | 公 * û(ま) |

$$\leq \int |\mathcal{Q}(\xi-\eta)| |\widehat{\mathcal{U}}(\eta)| d\eta + \int |\widehat{\mathcal{Q}}(\xi-\eta)| |\widehat{\mathcal{U}}(\eta)| d\eta$$

$$\mathcal{C}_{\xi_0}$$

$$R^{\gamma_0} G_{\xi_0}$$

| \$ (\$-1) | ≤ Cm/(1+15-11) M , M= 1.2,

$$\xi \in \delta_{\xi_0}'$$
, $\eta \in \delta_{\xi_0}$ (:.)

補題2. $\Omega \subset \mathbb{R}^n$, $\Sigma \subset \mathbb{S}^{n-1}$ をそれぞれ雨集合とする. $u \in H^\infty_{\mathrm{loc}}(\Omega \times \Sigma)$ とする. Compact集合 $K \subset \Omega$ と $K \subset \Sigma$ に対して次のような $\mathcal{G} \in C^\infty_{\mathrm{loc}}(\Omega)$ が存在する. (1) \mathcal{G} は K の近傍で框等的に 1. $(\mathcal{G} \geqslant 0)$.

(2) $\forall N$, $|\widehat{\mathcal{G}}\mathfrak{l}(5)| \leq C_N/(|S|+1)^N$, $\xi \in \mathcal{K}$. (証明) (I). $z_o \in K \varepsilon$ 固定する。 $u \in H^\infty(\Omega x \Sigma)$ だから各 $\xi \in K$ に対し \mathcal{G}_{ξ} が存在して ξ の 近傍 \mathcal{G}_{ξ} で \mathcal{G}_{ξ} ル が急減かである。 $\bigcup_{i \in K} \mathcal{G}_{\xi}$ つ K で K は Compact だか \mathcal{G}_{h} が存在して \mathcal{G}_{i} (Ω) が存在して \mathcal{G}_{i} (Ω) が存在して \mathcal{G}_{i} (Ω) \mathcal{G}_{i} (Ω) が存在して (i) \mathcal{G}_{i} (Ω) ψ とせよ、 \mathcal{G}_{i} (Ω) で \mathcal{G}_{i} の \mathcal{G}_{i} かんに近傍 \mathcal{G}_{i} (Ω) で \mathcal{G}_{i} の \mathcal{G}_{i} かんに近傍 \mathcal{G}_{i} (Ω) で \mathcal{G}_{i} の \mathcal{G}_{i} かんに近傍 \mathcal{G}_{i} (Ω) の \mathcal{G}_{i} かんに近傍 \mathcal{G}_{i} の \mathcal{G}_{i} の \mathcal{G}_{i} かんに近傍 \mathcal{G}_{i} の \mathcal{G}_{i} の \mathcal{G}_{i} かんに近傍 \mathcal{G}_{i} の \mathcal{G}_{i

mKかつ gu は水で急減少.

(皿) $\psi \in (\mathcal{C}(\Omega))$ を K上で $g^{-1}(\alpha)$ に等しいものとせよ。 $\psi \in \mathcal{C}(\Omega)$ を $g^{-1}(\alpha)$ に等しいものとせよ。 $\psi \in \mathcal{C}(\Omega)$ を $g^{-1}(\alpha)$ に等しいものとせよ。 $\psi \in \mathcal{C}(\Omega)$ を $g^{-1}(\alpha)$ に等しいものとせよ。 $\psi \in \mathcal{C}(\Omega)$ に対象を表します。 $g^{-1}(\alpha)$ に等しいものとせよ。 $\psi \in \mathcal{C}(\Omega)$ に等しいものとせな。 $\psi \in \mathcal{C}(\Omega)$ に対象を表します。 $\psi \in \mathcal{C}(\Omega)$ に等しいものとせな。 $\psi \in \mathcal{C}(\Omega)$ に対象を表します。 $\psi \in \mathcal{C}(\Omega)$ に等しいものとせな。 $\psi \in \mathcal{C}(\Omega)$ に対象を表します。 $\psi \in \mathcal{C}(\Omega)$ に対象を表しま

定義
$$M^{s}(\Omega \times \Sigma) = H^{s}_{loc}(\Omega) / H^{s,\infty}_{loc}(\Omega \times \Sigma)$$
.

 $H^s_{\omega_c}(\Omega)$ の元 ル の $M^s(\Omega \times \Sigma)$ における商 E[U], $[U]_{\Sigma}$ などと記す。 $X \subset \mathbb{R}^n_{\Sigma}$ 領域に対し、 $X \times S^{m-1}(X$ の余球接束) 依の基本近傍系として $\{\Omega \times \Sigma\}$ がとれる。

 $\Omega \times \Sigma \longmapsto M^s(\Omega \times \Sigma)$ は presheaf を作る。 同伴する $X \times S^{m-1}$ 上の層を M^s とする。

v.e.
$$\mathcal{M}^{s} = \lim_{\Omega \times \Sigma} M^{s}(\Omega \times \Sigma)$$
.

中間的なものとしてQを固定して、

$$\mathcal{M}^s(\Omega) = \lim_{\Sigma \subset S^{n-1}} \mathcal{M}^s(\Omega \times \Sigma)$$
 を考える。これは S^{n-1} 上の層である。

命題. sections の同型 $\Gamma(S^{n-1}, \mathcal{M}^s(\Omega)) \cong H^s_{loc}(\Omega)/\varepsilon(\Omega)$. が成立する.

 $SO \setminus K$ compact $E \neq a$ 。 Kの近傍で1に等しい $\mathfrak{L}_{k} \in \mathbb{C}^{\infty}(\Omega)$ があって $\mathfrak{P}_{K}(u_{i}-u_{j})$ は Σ'_{ij} で急減少。 $f \Sigma_{i}$ に同伴する 1 の分解を $\beta_{i}(\xi)$ とする。 (i.e. $\beta_{i} \in \mathbb{C}^{\infty}$ かぬれ $\beta_{i}(\xi)$ Λ $\{1\xi\} \gg 1\}$ C Σ_{i} , $\Sigma_{i}^{\beta_{i}}(\xi) \equiv 1$ ($\beta_{i} \gg 1$)).

いま compact Lok ならば $U_L - U_K \in E(\mathring{K})$ を示う。 $(U_K - U_L) = \sum \beta_i(\S) (\mathcal{G}_K - \mathcal{G}_L) U_i (\S)$. β_i を O階の Φ DO とみれば $\mathcal{G}_K - \mathcal{G}_L = 0$ in \mathring{K} から $U_K - U_L \in E(\mathring{K})$ が従う。 U_K を定めるともの $\{U_i, \Sigma_i\}$ のえらび方による任意性はKの内部では \mathcal{G}_K 1の分解 β_i のえらび方による任意性はKの内部では \mathcal{G}_K に吸収される。従って $\mathcal{K} \mapsto U_K$ によって $\mathcal{H}^{\xi_0}_{0c}(\Omega)/\mathcal{E}(\Omega)$ の 元が定まることがわかる。この対応を $\mathcal{G}_K \in \mathcal{G}_K$ の 元が定まることがわかる。この対応を $\mathcal{G}_K \in \mathcal{G}_K$

(II) \mathcal{X} Γ Γ $(S^{n-1}, \mathcal{M}^s(\Omega)) \xrightarrow{q} H^s_{loc}(\Omega)/\epsilon(\Omega)$

において $f \circ g = id$. , $g \circ f = id$. を示そう。 $H^{S}_{\omega_{c}}(\Omega)/E(\Omega) \ni [u] \qquad f_{[u]} = [u]_{\Sigma} \in M^{S}(\Omega \times \Sigma).$ $g \circ f[u] \longleftrightarrow K \mapsto U_{K} = \overline{f} \Sigma \beta_{i} \widehat{g}_{K} \underline{u}$ $= g_{K} \underline{u}. \quad \therefore \underline{u} = \underline{U}$

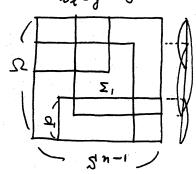
代表元のとり オは $E(\Omega)$ に吸収されて考えなくてよい。 ゆえに $g \cdot f = id$ in $H^{\epsilon}_{oc}(\Omega)/E(\Omega)$.

逆に、 $\Gamma(S^{nH}, \mathcal{M}^s(\Omega)) \ni m \leftrightarrow \int [u_i]_{\Sigma_i} \in \mathcal{M}^s(\Omega \times \Sigma_i)$ に対して $f \circ g(m) = U$ とおく、 $U - U_i \in H^{\infty}(\Omega \times \Sigma_i)$ を示せば十分である。 $) \ni \mathcal{V}(x_0, \xi_0) \in \Omega \times \Sigma_i$ に対し、 $\mathcal{Y}(x_0) \models 0$ かっ $\mathcal{Y}(u - U_i)$ か ξ_0 の近くで気減力となる $\mathcal{Y} \in (\mathcal{C}^o(\Omega))$ をおっければよい。 実は何でもよい。 $\mathcal{Y}(x_0) \models 0$ 、 $\mathcal{Y} \in (\mathcal{C}^o(\Omega))$ とする。 $\mathcal{Y} \in \mathcal{Y}$ となんが急減からななが急減からなに $\mathcal{Y} \in \mathcal{Y}$ となん。 $\mathcal{Y} \in \mathcal{Y}$ をなん。 $\mathcal{Y} \in \mathcal{Y}$ となん。 $\mathcal{Y} \in \mathcal{Y}$ となん。 $\mathcal{Y} \in \mathcal{Y}$ をなん。 $\mathcal{Y} \in \mathcal{Y}$ となん。 $\mathcal{Y} \in \mathcal{Y}$ となん。

定理1. $\Gamma(\Omega \times S^{m-1}, \mathcal{M}^s) \cong H^s_{\text{Loc}}(\Omega)/\epsilon(\Omega).$ (証明) $\Gamma(\Omega, \lim_{\Omega \to \Omega} H^s_{\text{Loc}}(\Omega')/\epsilon(\Omega')) = H^s_{\text{Loc}}(\Omega)/\epsilon(\Omega)$ は $H^1(\Omega, \epsilon) = 0$ から従う.

(I) 対応の構成. $H_{\infty}^{\varepsilon}(\Omega)/\epsilon(\Omega) \Rightarrow [u] \mapsto [u]_{\Omega \times \Sigma} \in H_{\infty}^{\varepsilon}(\Omega)/H^{\infty}(\Omega \times \Sigma)$ は制限と商によって定まる。

 $\Gamma(\Omega \times S^{m-1}, M^s)$ $\ni m$ はある $loc. finite to open covering <math>U\Omega_i \times \Sigma_i = \Omega \times S^{m-1}$ L, $\{U_i \in H^s_{loc}(\Omega_i) \times \Sigma_i\}$ $\{U_i \in H^s_{loc}(\Omega_i) \times \Sigma_$



 $\Omega_j \times \Sigma_e$; $j=l^2,...$, $l\in S_j$ がとれる。 U_e , $l\in S_j$ を U_j に制限して $\{u_e\in H^\infty_{\mathrm{ec}}(\Omega_j')\}$ を考えれば U_e-U_e $\in H^\infty(\Omega_j') \times \Sigma_{ee'}$, $\ell'\in S_j'$.

これは 加の別の表現である。

まず $\{U_{\ell} \in H_{exc}(\Omega_{j})\}_{\ell \in S_{j}}$ で各うごとに命題の証明の方法に従ってはりあわせて $\{U_{j} \in H_{exc}(\Omega_{j})/\mathcal{E}(\Omega_{j})\}$ を得る。 U_{j} , U_{k} の Ω_{jk} 上の差を U_{j} かんか。 $\forall g \in C_{g}^{\infty}(\Omega_{j}^{\prime})$

 $C_0^{\infty}(\Omega_{jk})$ right, supply = K & six &,

 $g(U_j - U_k) = g \cdot \exists \exists \mathcal{S}_{k} \mathcal{S$

(II) fog=id, gof=id.を示そう。

 $g \circ f = id$. は容易である(命題の証明)、 $f \circ g = id$. については以下の通り、 $\Gamma(\Omega \times S^{m+}, M^s) \Rightarrow m \longleftrightarrow$ $\{u_i \in H^s_{loc}(\Omega_i) \text{ s.t. } u_i - u_j \in H^o(\Omega_i) \times \Sigma_{ij})\}$ $\longleftrightarrow \{u_e \in H^s_{loc}(\Omega_j) \text{ s.t. } u_e - u_{e'} \in H^o(\Omega_j) \times \Sigma_{ee'}\}$ $\to \{U_j \in H^s_{loc}(\Omega_j) / E(\Omega_j')\} = U \in H^s_{loc}(\Omega_j) / E(\Omega_j')\}$ で $\{U_j \in H^s_{loc}(\Omega_j') / E(\Omega_j')\} = U \in H^s_{loc}(\Omega_j) / E(\Omega_j')$ \mathcal{X}_{r} \mathcal

 $\leftrightarrows [U]_{\mathcal{L}_{j}^{\prime} \times \mathbb{Z}_{e}} - u_{e} \in H^{\bullet}(\Omega_{j}^{\prime} \times \Sigma_{e})$ $\text{Etherson. } U = \{U_{j}\}_{\sharp, 1} = U_{j}\}_{\Omega_{j}^{\prime} \times \Sigma_{e}} - u_{e} \in H^{\bullet}(\Omega_{j}^{\prime} \times \Sigma_{e})$

に同値でこれは命題ですんでいる。 (二)

定理 2. 層 M^s は柔軟 (soft) である。 (証明) $K \subset \Omega \times S^{m-1}$ を闭集合とする。 仕意に $m \in \Gamma(K, M^s)$ を考える。これは loc. finite open covering $K \subset \bigcup_i (\Omega_i \times \Sigma_i)$ が存在レて $U_i \in H^s_{oc}(\Omega_i)$, $U_i - U_j \in H^\infty(\Omega_{ij} \times \Sigma_{ij})$ となる組 $\{U_i\}$ によって表現される。

 $(I)^{k_i}, Q_i = U$ となっている場合.

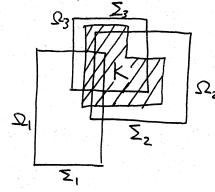
 $Kon S^{n-1} \land on 射影を に とする。 に <math>CU\Sigma_{\hat{L}}$.
ここで $\beta_{\hat{L}} \in C^{\infty}(R_{\hat{L}}^n)$ をえらんで, $sump \beta_{\hat{L}}$ は 目 か + 分大きいとき $\Sigma_{\hat{L}}$ に属し、かっ $\Sigma \beta_{\hat{L}}(\mathfrak{F})=1$ か \mathfrak{C} の近傍で成立させられる。

 $\widetilde{\mathcal{U}} = \mathcal{F}^{-1}(\Sigma \beta_i(\xi) \widehat{\mathcal{G}}_{\pi K} \widehat{\mathcal{U}}_i)$ とかく、 $\pi K \bowtie K \mathcal{O} \Lambda \mathcal{O}$ の射影、 $f(\alpha)$ は

はじめの かの抗張である。なせなら、 $f(\widetilde{\alpha}) \leftrightarrow \int [\widetilde{u}]_{U\times\Sigma_i}$ だから、 $\forall (x,s) \in K$ だがり、 $f(\widetilde{u}) \leftrightarrow \int [\widetilde{u}]_{U\times\Sigma_i}$ だから、 $\forall (x,s) \in K$ だがり、 $\exists U_x, [\widetilde{u}]_{U_x\times\Sigma_i} - u_i \in H^\infty(U_x\times\Sigma_i)$ をみればよく、 $\exists \Sigma_i, U_x \in L$ はよい。 $\mathcal{G}_{\pi K}$ が恒等的に1である範囲にとればよい。 $\mathcal{G} \in C^\infty(U_x)$ に対し、 $\widehat{\mathcal{G}}(\widetilde{u}-u_i) = \widehat{\mathcal{G}}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}}(\widetilde{u}-u_i) = \widehat{\mathcal{G}}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}}(\widetilde{u}-u_i) = \widehat{\mathcal{G}}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}}(\widetilde{u}-u_i) = \widehat{\mathcal{G}}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}(\widetilde{u}-u_i)$ に対し、 $\widehat{\mathcal{G}(\widetilde{u}-u_i)}$ に対し、 $\widehat{\mathcal{G}($

これは Σ_3 で急減力。 (ここで (ス、3) \in U_x Σ_c). (エ) 一般の場合

定理1の証明と同様に coveringをとり直す、後、て



$$\begin{array}{ccc}
\Gamma(K, M^s) \ni u \\
& \iff \{u_e \in H_{eoc}(\Omega_f); j \ni e \\
& \iff u_e - u_{e'} \in H^{\infty}(\Omega_{\hat{U}} \times \Sigma_{ee'})
\end{array}$$

としてより、 π K の近傍で有効な Ω_j トに属する1の分解 $\varepsilon \alpha_j(x)$, $\bigcup_{l \in S_j}$ K $\Omega_j(x)$ Σ_e の S^{n-1} の 射撃分 の近傍で有効な 1 の 分解を $\Omega_j(x)$ をする。 $\Sigma_j(x)$ を $\Sigma_j(x)$ の $\Sigma_j(x)$ を $\Sigma_j(x)$ の $\Sigma_j(x)$ の

 $u = \sum_{i} \alpha_{j} \exists^{-1} \left(\sum_{\ell \in S_{j}} \beta_{j} e^{(\xi)} \widehat{\psi_{j}} u_{\ell} (\xi) \right)$ $\xi \sharp \forall \quad u \in H^{s,j}_{loc}(\Omega).$

次に $\forall (x_i \xi_i) \in K$ に対し, $(x_o, \xi_o) \in \Omega_j^c \times \Sigma_e$.

素が1に等しい所の内部に台をもつ $\mathcal{G} \in C_o^o(\Omega_j^c)$, $\mathcal{G}(x_o)$ = 0 をとる. $\widehat{\mathcal{G}}(u-u_e) = \sum_{j} \widehat{\mathcal{G}}_{q,j} * (\sum_{\ell \in S_j} \mathcal{G}_{j} e \psi_j U_{\ell'})$ (補限)

 $\mathfrak{D}/\mathfrak{Q}$ について、 $\mathfrak{D}'(\mathfrak{Q}) \supset \mathfrak{Q}(\mathfrak{Q})$ の特長づけを Fourier、変換の増大度によって行っても、そのを言句での 局所化と合成に困難があって、このような方法だけでない通せるかどうか不明である。 (藤原 [3] の試みがあった。)

- [] Hormander: C.P.A.M. 1971. 671-704p.
- [2] " Acta Math. 1971 Eciz 119~133p.
- [3] 藤原 1972 超函数 シオ・ジウム 6月, および 1972, 6月 東大、小松やミナー