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Note on shape theory

Yukihiro Kodama

Department of Mathematics, Tokyo University of Education

591. Shape of compacta.
In (2], [3] K.Borsuk introduced the notion of shapes of
metric compacta. Let X and Y be compacfa lying in the Hilbert

o
cube Q (=T I

s
me; 1

In a copy of the interval I =[O,1] , €N, where
N is the set of positive integers). A sequence f = {fn} of maps
(= continuous maps) L Q—2Q, ne N, is said to ve a fundamen-

tal sequence of X to Y if for each neighborhood V of Y (in Q)

there is a neighborhood U of X such that fn[U.’_." fn+1{ Uin V
for almost all n, that is, there is a homotopy H : UXI—V

such that H(x,0) = fn(x) and H(x,1) = f_ . (x) for x€U. We

n+1
write £ : X—>Y. Setting in(x) = x for each x€Q, for each
compactum X < Q j‘-X = {in} : X=X is a fundamental sequence

which is called the fundamental identity sequence of X.

Two fundamental sequences f, g : XY are said to be homo-
topic if for each neighborhood V of Y there is a neighborhood
U of X such that fnlU’_::gn]U in V for almost all n. We denote

it by £ &~ g. The collection of all fundamental sequences ho-
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motopic to a given fundamental sequence f is said to be the fun-

damental class with the representative f and it is denoted by (f].

The composition h = gf : X— Z of fundamental sequences f :
X—»Y and g : Y—> 7 is defined as the fundamental sequence con-
sisting of maps h =g f : Q—>Q. If f~f':X—>Yand g g':
Y—»> Z, then gf &> g'f' ¢+ X—> 7.

Bach map £ : X—>Y defines a fundamental sequence £ : X—>Y
as follows. Take any eiten’sion h : Q== Q of £ and put fn =h
for each n. Then £ = {:f:‘n} is a fundamental sequence of X to Y.

We call f the fundamental sequence induced by f.

Proposition 1. Let X and Y be O-dimensional compacta. Then

every fundamental sequence f : X—Y is induced by a map f :

X=>Y and £ is uniguely determined by f.

Proof. Let £ = {f } : X-—>Y. From the definition of a fun-
damental sequence and the compactness of Q the sequence {fn(x)},
x e X, converges some point f(x) of Y. Obviously the corres-
pondence x> f(x), x€X, defines a map f : X~ Y and it induces

Compacta X and Y in Q are said to be fundamentally eguiva-

lent if there exist two fundamental sequences f : X—>Y and g :
Y—> X such that gf o~ }-X and ig/_.‘:_j_.Y. Then we write X% Y. If
we assume only that the relation gf Q.'_j_._X holds, then we say

that Y fundamentally dominates X and we write Y ?i‘ X, If X and

Y are homeomorphic, then X "-:F Y, because if £ : X Y and g :

Y— X are fundamental sequences induced by f and g = f—1 then
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gf ~ iy and fg o iy. Also, if X and Y are homotopically equi-

valent, then XLC% Y.

It is known that the relation of the fundament~l equivalence
and the relation of the fundamental domination have an absolute
character, that is, they do not depend on locations of compacta
X and Y in Q. Since the relation of the fundamental equivalence
is equivalence relation, the class of'all compacta decomposes
into mutually disjoint classes of compacta, called- shapes. We
denote by Sh(X) the class containing X and we call it the ghape
of X. Also we write Sh(X) = Sh(Y) if XzF Y. If X and Y are
ANR's (= compact ANR's for metric spaces), then it is known that
Sh(X)== sh(Y) if and only if X dominates homotopically Y and
S(X) = Sh(Y) if and only if X and Y have same homotopy type.

The shape of a2 space consisting of only one point is said to be
trivial and denote by Sh(1). If X is contractible, then it is
obvious Sh(X) = Sh(1). |

Let X be a compactum contained in a compactum Y. A funda-

mental sequence f = {fn} : Y—>X is said to be a fundamental

retraction if _f_j_xf_‘: iy, where jy : X—?Y is a fundamental se-
quence induced by the inclusion jX : X<Y. If there is a fun-

damental retraction f : Y- X, then we call X a fundamental re-

tract of Y. If there is a fundamental retraction £ : Y—>X

~such that f ~i_, then X is a fundamental deformation retract

of Y. A compactum X is said to be a fundamental absolute re-

tract ( a fundamental absolute neighborhood retract), written

as PAR (PANR), if X is a fundamental retract of an AR (an ANR).
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The following theorem characterizes a compactum with trivial
shape ((41,(8), (18]).
Theorem 1. (K.Borsuk, D.M.Hyman, S.Marde$iC) For a comp-

actum X the followings are equivalent.

(1) X is of trivial shape.

(2) X is an FAR.

(3) For a certain imbedding X C Q there is a seguence {Xn}

of neighborhoods of X such that each Xn is homeomorphic to Q,

X C Interior X n€N, and /D X =X

Por a compactum X, Borsuk defined Fd(X), the fundamental

dimension of X, as the minimum of dimensions of all compacta Y
with Sh(Y) 2 Sh(X) :

PA(X) = Min dim Y
Sh(Y)= sh(X)

Obviously it holds that if Sh(X) < Sh(Y) then Fd(X)< PFd(Y) and
if X and Y are compacta and Y # @ then Fd(X) < Fd(XXY) =
Fd(X) + Pd(Y).

Let X be a compactum. A closed subset Y of X is said to be
a fundamental k-gkeleton of X if dim Y=< k and the homomorphi-
sms 3 ﬁn(Y:G)'—) f{n(X:G) and T“(Y’yo)_—) ?M(X,yo) induced by
the inclusion (Y,yo) < (X,yo), ¥,2 point of Y, are isomorphisms
for 0 € n< k and an epimorphism for n = k, where ﬁn(X:G) is
the n-dimensional Eech homology group of X with coefficients
in G and E%(X,yo) is the n-dimensional fundamental group of

(X,yo) defined by Borsuk[S].



We do not know whether every compactum has a fundamental O-
skeleton or not. If X is a solenoid of Van Dantzig, then X
has a fundamental O-skeleton which homeomorphic to a Cantor dis-

continuum. (See Corollary of Theorem 5).

§2. Approach to shapes by Mardesic and Segal.
By an ANR-sequence we imply an inverse sequence X = {Xn,‘;'l;mﬂ]

over the set of positive ingers N, where X is an ANR and Tyms]

X .4~ X, is a map, n€N (Mum = Ty T, pfor n<m). Let X =

%_i_gl X and let m, : X-—*Xn be the projection. Amap f : X—2Y =
{Y,, s[4uny} consists of an increasing function f : N— N and of

. . —_
a collection of maps‘ fn : Xf(n) Yn such that

fn qrf('u)f(n’)/':: /{"'not'fn' forn £n', n,n'€ N.

Two maps f,g2 : X—>Y are said to be homotopic, forg, if for
each n €N there is an n'€é N, n' = f(n), g(n), such that

fn ’”;[ﬂ)ﬂ-, - gn 77:}(‘&)”" ¢
The composite gf : X2 of £ : XY and g : Y22 = {Z ,Yns)

is a map of sequences h : X-* 7, where h = fg : N—=>N and h_ =

X

n
: . 1 i i, ¢+ X—=
gnfg(n) ng(n)—‘) Zn The identity map of sequences i X

X is given by the ideuntity 1N : N— N and the map 1 : Xn—e X

X n

n
n€N. Two compacta X and Y are said to be of the same shape

in the sense of ANR-systems, written as Sh(X) = —S_B(Y), Lro-

vided there exist ANR-systems X and Y with X = ;i_m X and Y =

(]i.ln Y and maps £ : X—=> Y and g : Y—>X such that &i"—‘-_j;x and
Ig == iy.

Marde$ié and Segal [15,16] gave the following useful cha-
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racterization of shapes.
Theorem 2. (S.MardeSié and J.Segal) Let X and Y be comp-

acta. Then Sh(X) = Sh(Y) if and only if Sn(x) = 5n(Y).

§2. Shape of decomposition spaces.
According to Borsuk [4,p.266), a compactum X is said to be

approximatively k-connected if for a certain imbedding X C Q

and for every neighborhood V of X in Q there is a neighbor-
hood U of X such that every map of.a&k—sphere Sk into U is null
homotopic in V. It is known that the approximative k-connec-
tedness is the shape invariant.

Theorem 3. (Kodama) Let f be a map of a compactum X onto

a compactum ¥ with dim Y = n such that for each y€Y £ (y) is

approximatively k-connected, k¥ = 0,1,..,n. Then Sh(X) = Sh(Y).

Moreover, if dim X < n then Sh(X) = Sh(Y).

In the proof of Theorem 3 ({11]) an argument in the proof
of Theorem of [9] is used essentially.

The following corollary is a generalization of Borsuk [4,
Theorem (6.1)].

Corollary 1. An n-dimensional compactum X is of trivial

gshape if and only if X is approximatively k-connected for k =

O0,1,..,n0.
For the proof it is sufficient to apply Theorem 3 to the
case where Y is a space consisting of one point.

Corollary 2. (R.B.Sher) If X and Y are finite dimensional

and £ is a map of X onto Y gsuch that £~ (y) is of trivial shape

6



This is an immediate conseqguence of Theorems 1 and 3.

For a compactum X, denote by mJ(X) the set of all components
of X. We consider DO(X) as the decomposition space of X. Then
it is a compactum. As an application of Theorem %, we obtain
the following theorem by Borsuk [3,Theorem (8.1 )] .

Corollary 3. (Borsuk) Let X, Y be compacta in Q. Then

for every fundamental sequence f : X=» Y there is a unigue

(continuous) map gt OX— QY such that for each component

X of X £ : X — A;-(Xo) is a fundamental sequence. Moreover

/\f depends only on the fundamental class f and this depen-

dence is covariant, that is, if g : Y= 72 is a fundamental se-

guence then /\” = /13 Ag.
Proof. Let m : X-> OX end M : Y>OY be the decomposi-
tion maps. Since 'Tl'x"‘(x) is a continuum for each x € OX, it |
is approximatively O-connected. Since dim [ X = 0, by Theo-
rem 3 there is a fundamental sequence h : OX-» X such that
T, h &~ iy,. Consider 'Lr\r;'_g : QX-=>0%Y. By i’roposition 1,
W fh is induced by a map /\+: OxX->07Y. It is obvious that
Af satisfies Corollary 3.
The following generalizes Sher [2£,Theorem 12] and it is

given by a similar method as in a proof of Theorem 3 (cf. [11]).

Corollary 4. Let (X,xo) and (Y,yo) be pointed compacta.

Let f be a map of (X,x ) onto (Y,y ). If f—1(y) is approxi-

matively k-connected for each y€¢Y and k = 0,1,..,n, then the

induced homomorphism f, : lrk(X,xo)—» T (Y,yo) is an isomor-

phism for k = O0,1,..,n, where ‘1_1'_k3'_§_ the k-dimensional fundamen-
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tal group of Borsuk [3].

Corollary 5. Let f be a map of a compactum X onto an n-

dimensional compactum Y such that £~ (y) is approximatively k-

connected for each y€Y and k = 0,1,..,n. Then Fd(X)= Fda(Y).

4, A -gspaces and fundamenﬁal dimension.

A compactum X is said to be a A4 -space if there is an in-
verse sequence {K ,T,,y} of finite simplicial complexes such
that X = lim {K } and each bonding map M,,: K  ,— K 1is simp-
licial.

Theorem 4. (Kodama) (1) BEvery O-dimensional compactﬁm and

every finite polytope are A -spaces.

(2) ZIThere is a 1-dimensional AR with property (4) which is

not a 4 -sgpace.

(3) Every A-space is dimensionally full-valued for para-

compact spaces (cf.[14]).

In the shape category every compactum has a A-space as its

representative as shown by the following.

Theorem 5. (Kodama) For each compactum X there is a A-

1]

space X' such that Sh(X) = Sh(X') and Fa(X) Fa(x').

Corollary. For every compactum X there is a compactum X'

such that X' contains X as a fundamental deformation retract

and X' has a fundamental k-skeleton for each k = 0,1,2,..

We only give a proof of Corollary. For a given compactum
X, find a A -space Y by Theorem 5 such that Sh(X) = Sh(Y). By

Moszyﬁska [20] there is a compactum X' such that both X and Y
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are fundamental deformation retracts of X'. Let {Kn,mgnﬂ} be
an inverse sequence of finite simplicial complexes such that Y =

. \ . . .. 1 .
%i@ {An} and each 7, is simplicial. Denote by Kn the i-gkele-

#t
ton of K ,.i=0,1,... Then {Ki,%;”ﬂ] forms an inverse se-
quence. Put Y, = lim (€}, 1 = 0,1,.. . Then it is obvious
that Yi is a fundamental i-skeleton of X'.

As shown in the above, every 4 -space has a fundamental k-
skeleton for each k = 0,1,2,.. . On the other hand, consider
the 2—dimensional continuum () constructed in [JO,p.390]. It
is easy to know that Q(s) has no fundamental 1-skeleton. Also,
we can see that every ANR has a fundamental i-skeleton for i =
0, 1. The following example is a trivial modification of the
example constructed by Borsuk [1].

Example. There is an infinite dimensional ANR X which does
not have a fundamental k-skeleton for each k = 2,3,.. .

To find such an ANR X, let S° be a 2-sphere and let A be
an arc in 82. Take a map f from A onto the Hilbert cube Q and
let X be the adjunction space obtained by S2, Q and f. Then
X is an infinite dimensional ANR. If Xk is a fundamental k-
skeleton of X for k 2 2, then Xk has to contain a subset S2—A
of X. Since SZ—A is dense in X, we have Xk = X. Thus there

is no fundamental k-skeleton of X, k = 2,%,.. .

Proposition 2. If X is a compactum in an n-dimensional

euclidean space R", then Fd(X) =< n - 1.

Proof. Take a sequence {Kk} of triangulable neighborhoods
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k+1

Since Ky is an n-dimensional polyhedron in Rn, there is a sub-

of X in R™ such that K, < Ko k=1,2,.. , snd AK =X

plyhedron Lk of Kk such that I‘k is a strong deformation retract
of Kk and dim Lks n-1. By induction, we can find a simplicial
- 3 I3 ~ . 3 . . N‘ ~
subdivision Lk of Lk and a simplicial map Tkt Lk+1—-> Lk such
Vo d

that quriehﬂc:lkﬂ It Lk+1 in Kk for k = 1,2,.. , where Jy

j : —> i, : — i -
L= Ky Jppq 3 D By and 3, ¢ K 7> K are the inclu
P

It is known by Theorem 2 that Sh(X) = Sh(X'). Since dim X' <

B

sions. Consider the inverse sequence I s Tegs) and X' = 11

!

n-1, we Know Pd(X) < n-1.
Let & = {X4[«€A} be a collection of compacta. A member’

Xo of € is said to be majorant for the shapes of members of

- € if Sh(X) Z Sh(X,) for each %€, For example, let € ve

the collection of all O-dimensional compacta Y such that Sh(Y)

‘.é Sh(X) for a given compactum X. Then the decomposition space
O X of X consisting of all components of X is majorant for the

shapes of members of €. This follows from Corollary 3 of The-
orem 3.

Proposition 3. (wWatanabe) For the collection ¢ of all

compacta in R1 a Cantor discontinuum is majorant for the shapes

of members of (.
This is a consequence of Proposition 2.
Theorem 6. (1) (S.Spie%) There is a compactum in R which

is majorant for the shapes of all compacta in R2.

(2) (K.Borsuk and W.Holsztyfski) For the collection of
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2ll solenoids T~ no compactum XO satisfies the condition Sh(X) =

sh(x_) for every X € 7. Hence, if € is the collection of all

compacta in RS, then there is no compactum which is majorant

for the shapes of members of &.

Problem 1. Let X be a compactum and let t& be the collec-
tion of all compacta Y such that Sh(X)> Sh(Y). Does there
exist a compactum which is majorant for the shapes of members
of C} ?

The following problem is raised by Borsuk [ 3].

Problem 2. (Borsuk) Let X and Y be compacta. If Fi(Y) >
0, then does it hold FA(XXY) 2 Fd(X) + 1 ?

It is likely true that the following holds. However it
does not know yet.

Problem 3. For every compactum X, does it hold that

Fd(X)<S1) = PFd(X) + 1 ? Here s is a i-sphere.

§5. Movable compacta.

According to Borsuk [3,5], a compactum X in Q is said to
be movable if fbr each neighborhood U of X there is a neighbor-
hood V of X such that for every neighborhood W of X there is a
homotopy H : VX I—%lj satisfying the condition:

H(x,0) = x and H(x,1) € W for each x€V.

A compactum X is said to be k-movable if for every neighbor-
hood U of X there is a neighborhood V of X such that for every
compactum A< V with dim A < K and for every neighborhood W of

X there is a homotopy H : AXI->U satisfying the condition:
-11=-



H(x,0) = x and H(x,1)¢€ W for x€ A.
Marde$ié and Segal [17] gave a characterization of mova-
ble compacta in terms of ANR seqguences.

Theorem 7. (Marde§if and Segal) A compactum X is movable

if and only if there is an ANR sequence {Xn,'ll,‘.,,,,} satisfying

the following condition: X = 1._'3:21 {Xn} and for each n € N there

is an n', n'=n, such that every n" 2 n there is a map /14%,,%,:

Xn,—-:" Xon satisfying the homotopy relation Ac ... Mo 2= Ty pyr e

For movable compacta, the followings are known.

Theorem 8. (Borsuk) (1) ILet X and Y be compacta with

Sh(X) = sh(Y). If X is movable (k-movable), then Y is mova-

ble (k-movable).

(2) If X is movable (k-movable), then the suspension 2> X

of X is movable (k~-movable).

(3) Every compactum in R? is movable.

(4) If Xi is a movable compactum for i = 1,2,.. , then

T X, is movable.
i L= =
(5) ZEvery FANR is movable.
Theorem 9. (Kodama and Watanabe) An n-dimensional and n-

movable compactum is movable.

Theorem 10. (1) (MardeSié) An n-dimensional c® ! . mp-

actum is movable.

(2) (Borsuk) An 1! compactum is n-movable.

Let X be a A -space. As we know from the proof of Corol-
lary of Theorem 5, for each k = 0,1,.. , there is a fundamen-
tal k-skeleton X, of X. It is easy to see X, is i-movable

-12-



for i = 0,1,..,k=-1, if X is movable.

Problem 4. Let X be a movable QA -space. For each k =1,
2yee does_there exist a fundamental k-skeleton Xk of X which
is movable ?

K.Borsuk[5] raised the following problems:

(1) Is it true that if X is m-movable and Y is n-movable
then ¥XY is (m+n)-movable ?

(2) Does there exist, for each n = 1,2,.. , a continuum
which is n-movable, but is not (n+1)-movable ?

(3) Does there exist a non-movable compactum which is n-
movable for every n = 1,2,.. ?

These were solved by Kodama and Watanabe [12].

Theorem 11. (Kodama and Watanabe) (1) For compacta X and

Y, XXY is k-movable if and only if both X and Y are k-movable.

(2) If X is k-movable, then X X is (k+1)-movable.

(3) There is a continuum X such that X is k-movable for

every k = 1,2,.. , but not movable.

To show (3) of Theorem 11, we remark that there is a non-
movable continuum XO such that = Xo is homeomorphic to XO L7].
Since an n-fold suspénsion of a compactum X is (n-1)-movable
by (2) of Theorem 11, the continuum X, mensioned above is k-
movable for every k = 1,2,.. . Borsuk proved every solenocid
is not 1-mavable., It is known that a suspension of a solenoid
is 1-movable but not 2-movable.

It is known that every 2-dimensional ANR is dimensionally
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full-valued (cf. (14]).

Problem 5. Is every 2-dimensional movable compactum dimen-
sionally full-valued 7?7

Let X be a compactum with metric d. Let K be a finite simp-
licial complex and let V(K) be the set of vertices of K. For
a map £ : V(K)=— X, we mean by mesh f the maximum of diameters
of f(snAV(K)) for every simplex s of K. Let € > 0. For maps
f,g : V(K)=> X with max (mesh f,mesh g) < €, by £ g we im-
ply that there is a sequence of maps h; : V(K)=—> X, i = 0,1,..,
n, suéh that £ = ho’ g = hn’ mesh hi<€- y 1 =0,1,..,n, and
max {d(hi(v)’hiH (v):veéV(K)) <€, i =0,1,..,n-1.

Proposition 4. A compactum X is movable if and only if for

every € 0 there is a § >0 satisfying the following conditions:

For every finite simplicial complex K, every map f : V(K)—>X

with mesh £ <<J and every v >0 there is a subdivision K' of K

and a map g : V(K')—> X such that mesh g < ¥ and f'irr\é g, where

a ¢ V(K') = V(K) i

a map defined by any projection of XK' 1o K.

This proposition gives a simple proof of Theorem 10. In -
a similar form to Proposition 4 we can obtain a necessary and
sufficient condition for a compactum X in order that X be an

FANR.
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