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Monotonic spaces

By Keid Nagami

(Faculty of Science, Ehime University)

O, Introduction. In this paper all spaces are assumed

to be regular(Tl + T3), all mappings to be continuous onto,
and all images and preimages are those by mappings, unless
"otherwise specified, Thé index i always runs through the
positive integers, As for undefined terminologies refer to
Arhangelski?[1 and 2] and Michael[}3].

Let @D be a class of spaces, A mapping which is the
composition of open mappings and perfect mappings is said
to be an OP-mapping, An OCP-mapping is definea similarly if
open mappings in this definition are replaced by open compact
mappings, The operations O, OP, OCP, etc,, are defined as
the operations taking images under the corresponding type
of mappings, The operation P—1 is the one of taking preimages

1 and ocpp™?

under perfect mappings., Then the operations OPP
are defined naturally, By these operations we can define

the classes of spaces OP(()), OCPP_l(ﬁg), etc., which are
the minimal invariant classes of spaces containing € under

the operations OP, OCPP“I, etc,.
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If GD is a class of good spaces, some of good properties
for () will be still inherited to OP((Q ), etc.. This idea
stems from Arhangel'skigL2]. Along this line a great progress
has been made by Wicke and Worrell[19-26, 28, 29], Nagami[lé]
is also devoted to the study in this‘field, Chaber-é@ban—
Nagami[5], introducing the concept of monotonic spaces
defined extrinsically, gives another view point for the theory
by Wicke and Worrell, The main purpose of this paper is to
give self-contained proofs for the results in [5] with the
usage 6f intrinsic definition of monotonic spaces, Many
results eséentially due to Wicke and Worrell will be proved
without any specifications, while in the final section we
acknowledge the correspondence between them and the equivalent
originai theorems due to Wicke and Worrell, It should be
noted that our present view point,transferring extrinsic
definitions in [5] to intrinsic ones, is essentially obfained
by Coban independently,

Section 1 gives basic definitions of monotonic spaces
from the present view point, Section 2 gives basic properties
of monotonic spaces, In Section 3 characterization theofems
for monotonically complete spaces are given, In Section 4
further properties of monotonically non-complete spaces
will be studied, In Section 5 a role of the concept of
complete mappings will be shown, Examples which illustrate

the position of each kind of monotonic spaces are given
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in Section 6, The final Section 7 is devoted to exhibit
the relation between the concepts and propositions in this

paper and the original ones by Wicke and Worrell,

Basic definitions and lemmas,

1,

1,1, DEFINITION, Let X be a space and { Ui} a monoton-
ically decreasing sequence of subsets of X, { Ui} is said
to be a k-sequence(by Michael[l3, Definition 1,2]) if the
following two conditions are satisfied,

N Ui is compact and non-empty,

(1)

(2) For each open neighborhood U of A Ui there exists

c u.
AU,
1

an m with U
m
is said to be converging to

In this case {Uiﬁ
1.2, DEFINITION, Let X be a space.

{@iz {U(a,) # 02 0. € AT .;olj:Ai-a Aj(i>j) }

is said to be a directed structure or simply a structure

of X if it satisfies the following three conditions,

(1) For each i, Cﬁ% is an open covering of X,

(2) { Ai; @lj } forms an inverse system,
-y !l . l-i+1 -

(3) U(Oéi)-\)-lU(OLi_’_l). i(ai+l)—ai” i

In [5§] we introduced the concept of sieve which was

defined extrinsically, A structure can be considered as an

intrinsic sieve,
A structure is said to be strict or closure-refining

if it satisfies the following condition.
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i+1 _
(4) If 7 7. (0;,) = ;5 then C1 U(a,, )< U(a,),

A sequence {U(ai)} with (di) € inv lim A; can be

considered as an intrinsic thread, while we defined it

in [5] extrinsically, Consider the following four conditions
for a structure, where (ai) is a generic element of inv lim Ai'

(5) {U(ai)} is a k-sequence,

(6) ¢ U(ai)} is a k-sequence or N U(a.) = @,

(7) {U(ai)} is a k-sequence such that f\U(ai) is
a singleton,

(8) V{U(ai)} is a k-sequence such that f}U(ai) is
a singleton, or n U(ai) =@,

A structure satisfying (5)/(€)/(7)/(8) is said respect-
ively to be an mcc-/mp-/mcm-/mm-structure, which can be
considered as an intrinsic mc-/mp~-/ A —/md-sieve(cf,[S,
Definition 2,1]). A space having an mcc-/mp-/mcm=-/mm-
structure is said respectively to be an mcc-/mp-/mcm~-/mm-
space, The empty space is any one of these spaces, In the
sequel we always treat non-empty spaces to avoid this
" trivial case, An‘mcc—/mp—/mcm—/mm—space is respectively

v
an abbreviation for a monotonically Cech complete/monotonic

p-/monotonically complete metric/monotonically metric space,
A monotonically complete metric/monotonically metric space
can be considered as amintrinsic equivalent to a space with

a A -base/monotonically developable space in [5],



The following two lemmas are easy exercises,

1.3, LEMMA, Let {Hi} be a k-sequence of subsets of

a space X, If, for each i, Hi > Gi # @ and Gia Gi+l’ then
i Gi‘ is a k-sequence,
is a

1,4, LEMMA, Let f:X — Y be a mapping, If { Hi'}

k-sequence of subsets of X, then {f(Hi)} is a k-sequence

in Y,

1.5. LEMMA, Let X be a space and g@lg a sequence of

open coverings of X, If {@iz '{U(“i)’ otiE Ai.f' ; Plj }

is an mcc-/mp-/mcm-/mm-structure of X, then there exists

respectively a closure-refining mcc-/mp-/mcm-/mm-structure

1 TN 7 . . i Y < . .
t\\pi —iV(Bi)" BiE Bi§ 5 jt and transformations gi.Bi—9 Ai

satisfying the following three conditions,

(1) @i < (refines) @.o

1

(2) 9. is a refine-transformation from @i t @i'

i to
i+l _ o, i+l
(3) 9; ¥ i~ ¢ 19541

let B(Otl) be the set such that

Proof, For each 0616 Al

{V(Bl): Blé B(al)} is the collection of all non-empty open



6

sets of X refining (:5[U(a1), Let B, be the disjoint sum of

1

1 Define 91281—9 Al by:

g, (By) = @ s Bi€ B(a)).

B(al), ale A

Set
C =f(a8,)€ Ayx B s B1€ B(PZ (x,)), Ula,)nV(B)) # B},
For each (az,Bl) € C let B(a2,51) be the set such that

is the collection of all non-empty open sets of X whose

; A : stod ‘
closures refine (@%lU(a2) V(Bl), Let 82 be the disjoint sum

: . 2 .
of B(az,ﬁl), (az,ﬁl) € C, Define g2.B2—9 A2 and ¥ l.Bz~9 B1
by : ‘
= 2 -

where (az,Bl) € C, Continuing in this fashion we obtain the
desired closure-refining monotonic structure {C:§=-§V(Bi):
51 é Bi} . 2 lj } of the corresponding kind by virtue of

Lemma 1,3, That completes the proof,

1,6. DEFINITION, Let {Hi} a decreasing sequence of non-
empty subsets of a space X, { Hi} is said to be a weak k-
sequence if it satisfies the following condition,

If, for each i, Hi > Gi Z @ and.CE > E§+l’ then {Gi}
is a k-sequence,

If 'k-sequence' in the definition of monotonic structures
is weakened to 'weak k-sequence' we obtain the concept of a
weak mcc-/mp-/mcm-/mm~-structure,

Since we need only the fact that @% } is a weak

monotonic structure in the proof of Lemma 1,5, we get at once
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the following,
1.7. LEMMA, A space has an mcc-/mp-/mcm-/mm-structure if

2, Basic properties of monotonic spaces,

(cc) rezpresents the class of Cech complete spaces., This
type of notion is used for other classes of spaces, Since,
by Lemma 1.4, a monotonically complete structure is mapped
to a monotonically complete structure of the same kind under

a mapping, the following is obvious,

2.1, PROPOSITION, O(mcc)

(mcc)., O(mem) = (mcm),

2.2, PROPOSITION, OC(mp) = (mp). OC(mm) = (mm).

Proof, Let f:X —> Y be an open compact mapping of an
- . .
mp-/mm-space X and {dgi,_ § U(ai). aié Ai} H i } an
mp-/mm-structure of X, By Lemma 1,5 we can assume without
. i . L.
loss of generality that { @2} e 3 } is closure-refining,
i .
To see that { f(Q)i); ") ;j} is an mp-/mm~structure of Y

let (ai) be a generic element of inv lim f{ Ai; ?.lj .
When § U(ai)} is a k-sequence, f(U(ai))} is also a
k-sequence by Lemma 1.4, Conversely, consider the case when

N f(U(ai)) # @, Pick a point y from this intersection, Since
f_l(y) is compact and C1 U(ai) n f—l(y) # P for any i,

n Cl U(ai) = N U(ai) # @. Thus f{ U(ai)} is a k-sequence
and hence { f(U(ai))} is a k=-sequence, The rest to be prbved

is trivial, That completes the proof,
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Since an mcc-/mp-structure of the image space is transferred

respectively an mcc—/mp—structure by the operation P l, we get

at once the following,
2.3, PROPOSITION, P—l(mcc/mp) = (mcc/mp).

2,4, DEFINITION, A structure {@%} ?lj } of a space X
is said to be saturated if the following condition is satisfied,

For each i and each element U(a;) € @%} {U(ai+l)

. i+l _ . o |
€ @quf P i(ai+l) = ai} is a base of U(ai).
The structure {Gz} constructed in Lemma 1,5 is more-

over assumed to be saturated without any change of its proof,

2.5. LEMMA, Let X be a space., Let for each i, { U(ai):

i+
a.€ A.} be a finite open collection of X and ?l LA, —> A,
i i —_— = — E— 1 i+l i

a transformation satisfying the following two conditions.

i+l

(1) ¢
(2) (ai) € inv lim Ai implies ¢{ U(ai)} is a k-sequence,

i(ai+l) = o, implies U(ai+l) c U(ai).

Set U, = v { U(a,): a.€ A.}, N U, =K, Then K is non-
== i i i i i — = —

empty and compact and { Ui} is converging to K,

This is essentially proved in Nagami[lé, Lemma 8.2].

2,6, PROPOSITION, P(mcc/mp/mcm/mm) = (mcc/mp/mcm/mm),
Proof, Let f:X —> Y be a perfect mapping and X a space
with a saturated closure-refining mcc-/mp-/mcm-/mm-structure
— - . : i+1
{ Qai = { U(ai). € Ai} - i} . Let B, be the set of all
finite subsets of Ai' Set
V(By) = U{U(e;): i€ By}, Bi€ Bys

W(Bs) =Y~ £(X = V(B;))s  By€ By,
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Let Ci be the set of all Bié Bi such that for .a point

Hv(g)) # 2.

Set D1 = Cl' For n 2 2 let Dn be the subset of C

, ; Ch e
y(Bi) € W(Si) and for each aié Bi, U(al) f
1ttt Y G
consisting of all sequences (Bl,--'58n) satisfying the follow-

ing two conditions,

(1) ¢ 31

i (Bi4q) € Bys i51smos,nl.

(2) C1 V(B

cop) € £EW(EL)) . sl e 01,

Set
H(Byse"58.) = W(B_),
@1 = { H(én): 61’16 Dn}

+
Define \Pn ln:

Dn+1—9 Dn by

¥ T (B et aB a8 aq) = (ByatttsBl).

n
n+l ;. .
Then { G%ﬁ ' n} is a saturated structure of Y,
Assume that for (6n) € inv lim Dn’ N H(én) =K # @, Set
65 = (Bl’...’Bn)’ n=1,2,**",

n
i+1

Then by (1), { Bi; p i} forms an inverse system, Let y

be an arbitrary point of K, Set

— . _1
v.={o€B s £ (y) N U(a) £},

i+l L .

Then Y, # @ and ¢ i(Yi+l) < ¥;. Thus { Yi} is an inverse
subsystem of { Bi} . Pick an element (ai) € inv lim Yi' Then

(3) n U(ai) PR

To prove that

] 1 4 s

(4) N U(a i) # @, (o i) € inv 1lim Bi,

assume that there exists an (a'i) € inv 1lim Bi with A U(a‘i)

= @, Pick for each i points X5 and x'i with
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x, € £1

: (v(B;)) N U(ey),

x' € £ H(y(8;)) 0 Uat;).

Since {U(ai)} is a k-sequence by (3), the sequence T = {xi}

has a cluster point x in N U(&i). Since N U(a'i) = @ and
' 1 [ B— 1 . .

U(a i):> Cl U(a i+l), the sequence T { x i} is discrete

and infinite, Moreover the equality N U(a'i) = @ implies

that { y(Bi)} is infinite, Therefore by the perfectness of f,
£f(T') is discrete and infinite, On the other hand f(T) has a
cluster point f(x), But f(xi) = f(x'i) = y(Bi) for each i,
This contradiction shows that (4) is true,

Since A V(B) = N f (W(B)) = £ |

K) by (1), then
{ f_l(W(Bn))} is converging to a compact set f~1(K) by
Lemma 2,5, Thus { H(én) = W(Bn)} is a k-sequence, -

Consider the case when n U(ai) is a singleton or empty
for each (di) € inv lim Ai’ Assume that 0 H(Yi) =N W(Bi)

contains two points y and y' for an element (Yi) € inv lim Di’

where Y, = (Bl,°",Bi). It is easy to find elements (a'i)

and (a",) of inv lim{ B ?i+1i} such that
nU(a'.) =¢{x} », f(x) =y,
nU(at,) ={x"'} , £f(x") =y'.

Pick for each i points Xs and x'i with

x; €U(e') nf H(y(By)) s

-1
t "
X ie U(a l) nft (Y(Bi))'
Since 1im X; = X 1im f(xi) = f(x) =y, Since 1im~x'i = x',
1lim f(x‘i) = f(x') = y', Since for each i, f(xi) = f(x'i)
= y(Bi), then y = y', which is a contradiction,

All of the essential part to be proved has been verified

and the proof is finished,
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The fbllowing three theorems are almost evident from the
definition,
2,7, THEOREM, A locally mcc-/mp-/mcm-/mm-space is

respectively an mcc-/mp-/mcm-/mm-space.,

2,8, THEOREM, The countable product of mcc-/mp-/mcm-/mm-

spaces is respectively an mcc-/mp-/mcm-/mm-space,

2.9. THEOREM, A closed subset of an mcc-/mp-/mcm-space

is respectively an mcc-/mp-/mcm-space, A subset of an mm-

[0)]

ace is an mm-space,
2,10, THEOREM, A G6 set S of an mcc-/mp-/mcm-space X is

respectively an mcc-/mp-/mcm-space,

- . ) i .

Proof., Let {€2f'{U(ai)' € Aig ;B i } be a monotonic
structure of any kind of X, We only consider the case when
i S S = G. wi G, i G. G,

S is not empty. Set n i with ; open and with i o i41e

By an analogous argument to that for Lemma 1,5 there exist,

for each i, an open collection 62i= {V(Bi): BiE Bi i,

a transformation Y—lj:Bi~% Bj(i>~j) and a transformation
gi:Bi—é Ai satisfying the following three conditions, where

621“ denotes the sum of all elements of @%,

H = G
(1) @ e
i+l . s 3
(2) ¥ ; is a closure-refining transformation from
@4 to @

Then éC@iIS; v-lj } is a monotonic structure of S cf the

corresponding kind, That completes the proof,
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2,11, THEOREM, (mcc) N (mm) = (mcm),

Proof, Let X be an mcc- and mm-space, Let {@l = {U(oci):

o, € Ai};'?ij} and {®i= { V(B. be

1

) B3€ Bt 975

respectively an mcc-structure and an mm-structure of X,

Let Ci be the set of all elements (Oci,Bi) € Ai x Bi such that

U(Oti) n V(Bi) # @, Define G‘i+lizci+1_9 Ci by :
Ac~1+li(ai+l’6i+1) = ‘Pi+li(°‘i+1), V‘i+1i(51+l)).
Then {{ U(a,) a V(B,): (a;.B;) € C.}; c_i+1i }

is a weak mcm-structure of X and hence by Lemma 1,7 X is

an mcm-space, That completes the proof.

3. Monotonic complete spaces,

3.1, LEMMA(Engelking[8, Theorem 2, p.143]). A completely

v
regular space X is Cech complete if and only if there exists a

sequence @i’ i=1,2,**+, of open coverings of X satisfying the

following condition,

If ® is a non-empty collection of closed sets with the

finite intersection property such that, for each i, ® has

an element refining @i’ then N {F: F ¢ @ } # 2.

3.2, PROPOSITION, A éech complete space X is an mcc-space,

Proof, Let {@l} be a sequence of open covérings of X
as in Lemma 3,1, Let {@1} be a closure-refining structure
of X such that @i <@i for each i. Then { @l} is as can

easily be seen an mcc-structure, That completes the proof,

3.3. THEOREM, A space is an mcc-space if and only if it

v
is the image of a,Cech complete space under an open mapping.
lparacomEa\c‘cI

-11-
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Proof, Sifficiency is obvious by Propositions 2,1 and 3.2,

Necessity. Let { @% = { U(ai): o« € Ai} ; ?ij } be a
saturated closure-refining mcc-structure of a space X, Set

Y ={((ai),x)e(inv lim A;) x X: x € nU(ai)} .
The topology of inv 1lim Ai is the one induced by the discrete
topology of Ai's, Y enjoys the relative topology of the product
topology, Let f:Y — X and g:Y —2 inv lim Ai = M be the
restrictions of the corresponding projections,

f is evidently onto, To prove f is open let (¢,x) be an
arbitrary point of Y, where a = (ai). Let (afn) be the cubic
neighborhood of o determined by the first n coordinates
(al,-wo,an), Let V be an open neighborhood of x, Set W = (a{n)
x V, It suffices to prove f(W N Y) D U(an) nv, éince
U(an) Nn V is a neighborhood of %, Let x' be an arbitrary
point of U(e )0 V, Since { @2_} is saturated, there exists
an element f = (Bi) € (ain) N M such that x' € n U(Bi), Hence
(Box') € WN Y and £(B,x'") = x', Thus £(Wn Y) > U(an) nv,
which proves that f is open,

Let d = (ai) be an arbitrary element of M, Since‘

{ U(ai)} is a k-sequence, we can pick a point x from N U(e),
Then (a,x) € Y and g(a,x) = o, Thus g is onto. Since gal(a)
={a} x (0 U(ai)) and 0 U(ai) is compact, each point-
inverse under g is compact,

To prove g is closed let F be a closed set of Y, Pick

a point o = (ai) € M — g(F), Since g_1

g_l(a) nF =0, {U(ai)} is a k-sequence, and g_l(a) is

(¢) ={a} x (A U,)),

compact, then there exists an n with ((aln) x U(an))r\ F =@,

-12-
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Pick an arbitrary element B = (Bi) from (ain) n M, Let (B,x)
be an arbitrary point of g—l(B), Since Bi = a, for i=l,***,n,
then x € n U(Bi) C,U(an), Thus (B,x) € (a’n) x U(an) and hence
g_l(B) n F = @, This equality implies that (a{n) n g(F) =¢
and that g is closed,

Since g is now a perfect mapping of Y onto M and M is a
complete metric space, Y is a paracompact Cech complete space
by Frolfk[9]. That completes the proof,

By Propositions 2.1, 2,3, 2,6 and Theorem 3,3 we get the

following,

3.4, THEOREM, (mce) = OPP—l(mcc) = O(éech complete)
= O(paracompact 5éch complete),

When an mcc-structure in the pfoof of Theorem 3,3 is
replaced with an mcm-structure, each point-inverse under g is
a singleton, Hencé in this case the perfect mapping g of Y to
M has to be a homeomorphism and Y is a complete metric space,

Thus we get the following,

3.5. THEOREM, A space is an mcm-space if and only if it

is the image of a complete metric space under an open mapping.
By Propositions 2,1, 2,6 and Theorem 3,5 we get the
following, since each complete metric space is evidently an

mcm-space,
3,6, THEOREM, (mcm) = OP(mcm) = O(complete metric).

3,.7. THEOREM, Each inductively open mapping f of an mcc-

space X is compact-covering,

=13~
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Proof, Let £:X —> Y be such a mapping and K a compact set
of Y. By Theorem 3,3 there exist a Eech complete space Z and
an open mapping g:Z —> X, Then fg:Z —» Y is an inductively open
mapping. Since by Nagami[]7, Theorem 1] each inductively open
mapping of a Cech complete space is compact-covering, there
exists a compact set L of Z with fg(L) =.K, Since g(L) is a
compact set of X, f is compact-covering, That completes the

proof,

3.8, THEOREM, Let f:X —» Y be an inductively open mapping

of an mcc-space X, Then Y is an mcc-space,

Proof, Let X' be a subset of X such that £(X') = Y and
¢ s - . . i
X ‘15 open, Let { @i {U(Oti) Otié Ai }s o j} be a
closure-refining mcc-structure of X, Set
= '
V(oci) f(U(oci) A X'), onie Ai’
. = .€ A, : .
B, = { a€ A V(a) #8},

@, = {V(B;): B;€ B, },

\rlj - ?1j[Bi°

i+l

Since P c Bi,.then {Bi; y.lj} forms an inverse

i (Biaq)
subsystem of {Ai} and { @i; \/-ij} is a structure of Y,

To prove { @1} is a weak mcc~structure, let (Bi) be an
arbitrary element of inv lim Bi" For each i let Gi be a non-
empty set of Y such that V(Bi) > Gi.:> 614_1. Set Hi = f_l(.é-i)
n C1 U(Bi), Since (Bi) € inv 1lim Ai’ {ci U(Oti)} is a

k-sequence, Since Hi B, Hi > Hi+1 and Hi is closed,

. e L . .= -
{Hi} is a k-sequence by Lemma 1,3, Since f(Hi) Gi’ {Gi}

-14-
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is a k-sequence by Lemma 1,4 and hence |{ Gi} is also a

k-sequence, Thus { @%} is a weak mcc-structure, Since Y

has now an mcc-structure by Lemma 1,7, That completes the proof,
By Nagami[1%7, Theorem 2] Baire's category theorem is true

for each open image of a Cech complete space,‘Hence by Theorem

3.3 we get at once the following,

3.9. THEOREM, Any mcc-space cannot be the countable sum

of nowhere dense subsets,

Recall that a sequence {G%} of open coverings of a

space X is said to be a development if for each point x € X,

{ G@‘x)} forms a neighborhood base of x, where G%(x) is
the star of x with respect to C%. A space(i.e. a regular
space in this paper) with a development is said to be a Moore
space, A development {6%} is said to be complete, if ViGCQi
and § Vi} has the finite intersection property then ﬂ'v;= D,
A space with a complete development is said to be a complete

Moore space,

3.10, PROPOSITION, A complete Moore space X is an

mcm-space,
Proof, Let { G%} be a complete development of X, Let

{ @%} be a closure-refining structure of X such that @%
< @%.fbr each i, Then { @%} is an mcm-structure, That
completes the proof,

By this argumént it is also true that each Moore space

is an mm~space, The author had not known whether each Moore
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space is completely ’regular(cf. [16, p.262]).‘ Professors
Hodel and Younglove kindly informed that there exists a Moore
space which is not completely regular by Jones[l0], Armentrout
[ 3] and Younglove[30] also give such a counter-example with

some additional conditions desired.

3.11, THEOREM, For an mcc-space X the following two

conditions are equivalent,

(1) X is an mcm-space,

(2) X is the image of a metric space (Y,d) under an open

mapping f such that (f__l(x),d) is complete for each x € X,

Proof, Theorem 3,5 implies the implication (1) —> (2).

(2) > (1): Let (@, = {U(e,): o€ A} ; ®'.}1 be

J
a closure-refining mcc-structure of X, Let {@1 = {V(Bi):
BiE Bi} ; ‘[flj} be a closure-refining structure of Y with

'mesh ®i< 1/1i. Set
W(ai’Bi)RU(ai) n f(V(Bl)),

Ci = { (ai,ﬁi) € Ai x Bi: W(ai’ﬁi) ?5 Q }s
ot (egaBy) = (o) s (8D
@, = {w(v;): riec; t.
Then {_@i; c’*ij} is a weak mcc-structure of X, To see it

is an mcm-structure pick an element (Yi) € inv lim{Ci; cij§ ,
where v, = (éi, S_i). Pic1_< two points x and x' from A W(Yi),
Since n V(Ei) is not empty and hence is a singleton 1y} .
Since £ '(x)n V(§,) # # and £ (x") V(g;) # @ for any i,

then y € f—l(x) and y € f—l(x') at the same time, which
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implies x = x', Thus { @1} is a weak mcm~structure and X is
an mcm-space by Lemma 1,7, That completes the proof,
The following is a theorem due to Pasynkov[I8], We

present a proof using our notions for the reader's convenience.

v
3,12, THEOREM, A paracompact mcc-space X is Cech complete,

= . . 1

Proof, Let { @i —{U(oci). o, € Ai} ;P j} be a saturated
closure-refining mcc-structure of X, By the paracompactness of
X there exists an inverse subsystem {Bi} of{Ai} satisfying
the following three conditions,

(1) U(B;) # B> By€ By,

(2) @i = U(Bi): BiE Bii is a locally finite covering
of X,

(3) For each i and each Bi+16 Biy1> U(Bi+l) intersects
at most a finite number of elements of @i‘

Let @ be a non-empty collection of closed sets of X
with the finite intersection property such that for each i
there exists an element F of @ refining @i' Set

C.= { Bs€ B.: U(Bi) contains an element of (® }.
Then Ci #Z $ and {Ci} forms an inverse subsystem of B. 1.

To see Ci is finite let 5i+1 be an arbitrary element of
C; 41+ Then U(Bi+l) n U(Bi) # @ for any BiG C;» which implies
that Ci is finite by (3), Pick an element (Yi) from inv 1lim Ci'
Set K = n U(Yi). Then K is compact and non-empty, Since
{U(Yi)} is a k-sequence, KN F # @ for any F € ®. Thus

o,
n {F: Fe @® } # @ and X is Cech complete by Lemma 3,1.

That completes the proof,
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4, Monotonic non-complete spaces,

By Propositions 2.2, 2.3 and 2,6 we get at once the

following,

4,1, THEOREM, (mp) = OCPP—l(mp). (mm)

OCP(mm),

4,2, THEOREM, An open compact mapping f:X —> Y of an

mp-space X is compact-covering,

_ . el
Proof, Let { @ﬁi = U(ai). aié Ai 1 @ j} be a saturated

closure-refining mp-structure of X, Then f{ f(@li); ?ij } is a
saturated structure of Y, Let K be a non-empty compact set of
Y and Bi a finite subset of Ai satisfying the following four
conditions,

(1) (g& = { f(U(ai)): aiE Bi} covers K,

(2) Ua,)n K # @, o€ B,

(3) { B; } forms an inverse subsystem of {Ai} .

(4) ¢ i+l
from ®i+1 to @.

Let (Bi) be a generic element of inv 1im Bi‘ By (2) and

i+l

i,B is a closure~-refining transformation

(4), n f(U(Bi)) # @, Since f is compact and { @%_} is
closure-refining, then an U(ﬁi) # @, which implies that

{ U(Bi)} is a k-sequence, Set

P
L = Lg (v { U(ai): “.€ B, b).
Then L is compact by Lemma 2.5,

Let yv be an arbitrary point of K, Let (Yi) be an element
of inv lim Bi such that yv € n f(U(Yi)), Then ( » U(Yi))
N f—l(y) # @, which implies that f(L) > K, That completes
the proof,
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4,3, THEOREM, An mp-space 1is of countable type.

Proof, Assume that f in the above theorem is the identity
mapping of X to X, Since L has the countable character by
Lemma 2,5, X is of countable type, That completes,

A weak p-space defined in [16, Definition 8.,1] is an
mp-space as can easily be verified, Thus OCP(weak p-spaces)
is a subfamily of OCPP_l(mp), Hence Theorem 4,2 gives a simple
proof of [1&, Theorem 4,1] asserting that an OCP-mapping of

a (weak) p-space is compact-covering,

The following is proved to be true by a quite similar

argument to Arhangel'ski¥[31, Theorem 4.2].

4,4, THEOREM, Let X be a completely regular mp-space and

BX a (T2) compactification of X, Then the outer weight of X

in BX is equal to the network weight of X,

4,5, LEMMA(Burke-Stoltenberg[4 , Theorem 2,2])., A completely

regular space X is a strict p-space if and only if X has a

sequence { Czi} of open coverings of X such that for each

n

x € X, { n C%(x): n=1,2,°°° } is a k-sequence,
iz — =

4,6, THEOREM, A completely regular, @ -refinable, mp-

space X is a strict p-space,

= . . i
Proof, Let { @%.- {tMai). a.€ A Y P ;f} be a
closure~refining mp-structure of X, By an easy application of

induction we get a saturated closure-refining mp-structure
- . Loy 1
{®i - {V(Bl) Bie Bj_t ’ + J }
of X, a sequence

-]10~
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©.

1j= {VJ(Bi): BiE Bi } s 1=1,2,°%%, j=1,2,.,.,

of open coverings of X, a sequence
L . A_ 1= .es
Pl Bl—> i i=1,2, »
of transformations, and a sequence
Fij, i=1,25°°» j=1z2)"'7
of closed sets of X satisfying the following six conditions
for each i,
i+l _
(1) Pl\f’ i 7 ‘P
(2) p i is a closure-refining transformation from Cli
to Q%}

(3) V,(B;) @ V(By)» Bi€ By,

i+1
i Pi+1'

(]

Cc8

F.. =X
17

(4)

d
(5) C%jlpij 15‘p01nt—f1n}te for each j,
(6) V(B;) A Fy # 8, 3< i, k<1, implies C1 V()
: .
< vy ).
To show that {(j&} satisfies the condition in Lemma 4.5
let x be an arbitrary point of X, Define numbers n(1l), n(2),

e+ and m(1l), m(2),**+ by the following two conditions,
v
(7) n(l) =1, m(i) = Z D(j), i=l’2)"'.
J=

(8) x € F and x & F for n < n(i+l).

m(i)n(i+1)

Since m(i) < m(i+1l) and n(i+l) < m(i+l) by (7), and

m(i)n

x € F by (8), then by (6)

m(i)n(i+1)
(9) @ 541)) S @ 5yn(ae1) )

Moreover by (5) and (8)

 (10) @, (1)n(ie1) (%) is the sum of clements of a finite

subcollection of 62n(i)n(i+l)'
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Since { @i} is closure-refining, by (3), (9) and (10) we
get

(11) €1 @, 541y = €1 @ 5yn(541)0) € @ 5)-1 ()
Set )

(12) D5y = 4 B € B 5yr x €V . 0)(B)}.
Then by (10)

(13) Dm(i) is finite and non-empty,

By (3), (6) and (8), ") (D i.1)) €D ;). Hence
(14) iDm(i); %Hﬂi+1)m(i)le(i+l) } forms an inverse
system,

Pick an arbitrary element (Y. ,.,) from inv 1im D_, ..,
m(i) m(i)

Then by (3) and (6),
Hence by (1) and (2)

(15) {V(Ym(i)) } is a k-sequence,
In consideration of (11), (13), (14) and (15), we conclude
by Lemma 2,5 that

(16) {@i(x)} is a k-sequence,
Since the condition in Lemma 4,5 is now satisfied by (11)

and (16), X is a strict p-space, That completes the proof,

4,7, LEMMA(MiSéenko[15]). Let X be a set and ® a

collection of subsets of X with ord® < &', . Then the power

of the family of all finite minimal coverings of X by elements

of does not exceed 2\")\.
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4,8, THEOREM, Let X be a completely regular mp-space with

KA -Lindelof property and with a point x‘(‘/\ base @, Then
By
w(X) £ & 5
Proof, Since K; -Lindelof property is inherited to

cozero sets, applyihg an analogous argument in the proof of

Lemma 1,5, X admits an mp-structure {@l = {U(oci): ociE Ai }s

¢ lj } such that each U(Oti) is a cozero set of X and such that
< A

Pick an o €A.. Let @(oci) be the family of all finite
minimal coverings of U(Oti) by elements of @ lU(Oti). Then by
Lemma 4,7

| A

(2) |@ ()]s X5,

Set

@= u{@(ai): aie Ai, i=1,2,- }
Then by (1) and (2) we get

3) @] £ K,.

To show that @ is a base of X, let x be an arbitrary
point of X and U an arbitrary open neighborhood of x, Let
(Oti) be an element of inv lim Ai with x € N U(oti). Set
K =n U(ai), Since K is compact, there exists a finite
subcollection (B' = $ Bl,"‘,Bn} of (B such that x € B,cU

and such that

(4) @'[K is minimal,

”
Set V = v B.,
L= 1

exists an m with U((xm) < V, Since @'[U(Otm) < @(Otm) by (2),

Since -{U(Oti)} is converging to K, there
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then B, n U(a ) € @(cxm). Since x € B, N U(a_)e U, @ is

1
a base of X. Thus by (3), w(X) < 3\'\)\ . That completes the

proof,

4,9, COROLLARY.

If X is an mm-space with K/\ -Lindelodf property, w(X) = ‘\’\A .

Proof, For this case { (EE} in the preceding proof can
be assumed to be an mm-structure, Since LJ(:E is a base of X
whose power is at most £<A » we get the desired inequality,
That completes the proof.

Recall that a base of a space X is of countable
order if {Ui} c > x € AU, and Uy 2 U,3 ***> then {U;}]

is a local base at x,

4,10, THEOREM, A space X has a base of countable order
if and only if X is an mm-space,
Proof, Since it is evident that the condition is necessary,

let us prove the condition is sufficient, Let §@l = U(oci):

a.€ A} fpl.} be an mm-structure of X, Assume that each A,
i i 3 i
i+
is well ordered in such a way that, for each i, if 9:1 li(ai+l)
< <Pi+1 (e'..,)) in A then o, < at, in A, By an easy
i i+l i’ i+l i+l i+l

application of induction, we get, for each i, a subset Bi
of Ai satisfying the following four conditions,
(1) § U(ag): a € Bi} covers X,

(2) Ueg) — v {U(x';)s o'y < ay } # 0, o € By

(3) ¢ (ByLy) < By

-23=-
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- 3
107 %M

1

(4) v { U(a'i): al!', < o« }

i v i U(oc'i+

i+l

< min(®™ 7

) T (eg) b g€ By

Set
© = {U(o ) o € B, i=1,2,0 - 1.
To show that QD is a base of countable order let {Ui} be a
sequence of elements of C)» such that n Ui contains a point
= . ..
x and such that Ui:$ Ui+1 for each i, Let Bi be the minimal
element of Bi such that U(Bi) contains some member of {Ul,
Uyseee }. Then by (2), (3) and (4), (Bi) is an element of
. . i . .
inv lim {Bi; P .jIBi} . Since n U(Bi) contains x, { U(Bi)}

is a local base at x, Hence Ui} is a local base at x.

That completes the proof,

5, Complete mappings,

5,1, DEFINITION, Consider the following condition for
a mapping f:X — Y defined on an mp-space X,

There exists an mp-structure {_@%.} of X such that,
for each y € Y, the restriction of {QQL} to f_l(y) is an

mcc-structure of fnl(y)

°Lgpnotonically complete or, simply,]

If it is the case, then f is said to béycComplete(with
respect to } @%V;).

By virtue of Lemma 1,5 and the remark following 2,4, if
f is complete with respect to { Ui} s then £ is complete
with respect to a saturated closure-refining mp-structure
{6%_} of:X.
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Here is another note which can easily be seen: When X is
especially metrizable, £ is complete if and only if there
exists a metric d of X agreeing the topology of X such that
(f—l(y),d) is complete is the usual sense for each y € Y,

It can also easily be seen that when X is an mm-space,

f is complete if and only if there exists an mm-structure of

X with respect to which f is complete,

5.2, THEOREM, Let £:X —> Y be an open complete mapping

of an mp-/mm-space X, Then f is compact-covering and Y is

an mp~/mm—sgaée.

Proof, The first half of the theorem is proved quite
analogously to Theorem 4,2, Since a closure-refining mp-/mm-
structure of X with respect to which f is complete is mapped
by f to an mp-/mm-structure of Y, Y has to be an mp-/mm-space,

That completes the proof,

5,3, THEOREM, A space X is an mp-/mm-space if and only

open complete mapping f.

Proof, The sufficiency was proved in the above theorem,
Necessity, Let (G@ = {U(a,): a.€ A3 @:i.} be a
‘ ¢ i i i is? 3
saturated closure-refining mp-/mm-structure of X, As was done

in Theorem 3,3 set

M inv lim Ai,

Y

L((e))€ M x X: x € nU(ey) }s
and let f and g be the restrictions of the corresponding
projections from Y to X and M, Then f is open and f(Y) = X,
Set g(Y) = T, g is perfect and T is dense in M, Let d be the
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Baire's metric on T, Then for each x € X,
(1) (gf_‘l(x),d) is complete,
Let TL'i:M — Ai be the projection, Set

(2) Wlag) = T, 7 (ag) X Uag), a€ Ay

Then it is easy to see that W(oti) nY # @ for any Otié Ai' Set

@1 = {V(oci) =W(oci) nY: o€ Ai}'
To see that {@i; soij} is an mp-structure of Y let
(Oti) be an element of inv 1lim Ai such that A V(Oti) £ D,
Then a W(Oci) # @ and hence by (2), N U(Oci) Z @, Set K
=N U(Oci). Let x be an arbitrary point ofAK_ Since((oti),x)

€Y, {(ai)} x K &Y, Since {(Oti)} > K is compact and

n V(e,) .{(ai)} > K, then {V(Oci)} is a k-sequence,

By (1) and (2), we know that f is complete with respect to
{(® 1.

When { @1} is especially an mm-structure, g is a
homeomorphism and the completeness of f with respect to
{@1} implies the completeness of f with respect to the

natural metric induced by d, That completes the proof,

5.4, THEOREM, Let be given a sequence {Xi} of mp-spaces

and a sequence {fi:Xi% Yi} of complete mappings. Then
T £ T[Xi—? ITYi is complete,
Proof, Let fi be complete with respect to a closure-

refining mp~structure {@ij: j=1,2,'°-} of Xi' Set

[ =]
@ =TT @.. » T x.,
=t It 4 Tt J
Then 1T f;, is complete with respect to {@1} accompanied by

the naturally defined refine-transformations, That completes

—-26-
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the proof.,

5.5, LEMMA, Let f:X —> Y be a closed, complete mapping

with respect to a (saturated) closure-refining mp-structure

{G%f: {U(ai): o, € A; }s ?ja } of X. Assume that Y admits a

.

J

closure-refining mcc-structure {GZf:-{V(Bi): B;€ By } s ¢t

Set

W(e,4Bs) = U(a;) n £ T(V(B,)),

c, = { (ai,ﬁi) € A, xB;: W(ai,Bi) 0},
. = f w(v;): Y;€Ci ),
.o-ij(&izﬁi) = (‘fij(ai); *ij(ﬁi))’ (ai’Bi) € c,.

1

Then iﬁai; o j} is a (saturated) closure-refining mcc-

structure of X,

Proof . {@%} is obviously a (saturated) closure-refining
structure of X, To prove that it is an mcc-structure, let
(Yi) be an arbitrary element of inv lim {Ci; a-ij} » where
Yy = (945B;). Set K =n V().

Assume that for each point y € K, there.exists an i(y)
with vy € f(U(ai(y))). Since f is closed and {@%_} is closure-
refining, { K - f(C1 U(ai)): i=1,2,*+* } is an open covering
of K, Since K is compact, K — £(C1 U(am)) = K for some m,
Since { V(Bi)} is converging to K, there exists an n with
£(C1 U(e_)) n V(B_) = @. Then U(a_) N f—l(V(Bn)) =g,
which implies that W(Yk) = U(ak) n f_l(V(ﬁk)) = @ for k
Z max § m,n }, This contradiction implies that there exists

a point z € K such that z € f(U(ai)) for each i, Since

-7~



29
f—l(z) n U(ai) # @ for any i and f is complete, (. N U(ai))
A £1(z) # ¢ and hence A W(T,) # @. Thus { W(T,)} is a

k-sequence, That completes the proof,

5.6, THEOREM, The composition of closed, complete

mappings is still closed and complete,

Proof, It suffices to prove the theorem for the composition
of two such mappings f:X —> Y and g:Y —> Z, Let { Q%_3/'{631}
Be a closure-refining mp-structure of X/Y with respect to
which f/g is respectively complete, Pick an arbitrary point

z € Z. Then {,@E} fg_l(z) is an mcc-structure, Since f f_lg—l(z)

is complete with respect to -{@%.}lf_lg_l(z), we can apply
Lemma 5,5 and the composition gf is complete, The closedness

of gf is obvious, That completes the proof,

6, Examples,

v -
6.1, EXAMPLE, A first-countable, Cech complete space

which is not an mcm-space,

Set X = I x D, where I is thé unit closed interval and
D is the set of two points {0,1} . Introduce the interval
topology with respect to the lexicographic order of I x D
into X, As is well known X is a first-countable, compact
space which is not metrizable, Thus X is clearly éech complete,
Assume that X is an mcm~-space, Then by Theorem 3,5
there exists a complete metric space Y and an open mapping
f:Y —> X, Since f is compact-covering by Theorem 3,7, there
exists a compact set L of Y with £(L) = X, Then X is metrizable

as the perfect image of a metric space, This contradiction
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shows that X is not an mcm-space,

6.2, EXAMPLE, An mcc-space which is neither an mcm-space

v .
nor a Cech complete space,

Let w or @, be respectively the first infinite or the
first uncountable ordinal, Let [O,w] or [O, wl] be respectively
the space of all ordinals § W or § a}l, with the interval
topology, Consider the Tychonoff plank: .

X =[0o,w] ~ [O’wlj - (@ swl)o
The following construction is well known, Set

A

{&3"‘ [O’wl]”‘(w:wl)’

B [0, w] x {wly - “d’wl)”
For each positive integer i consider a copy Xi of X with
edges Ai and Bi'corresponding respectively to A and B,

Let fi:X —> Xi be the identity mapping. Consider the
topological sum U Xi of Xi's, In v Xi’ for each n, identify
A2n—l with A2n’ and Bén with 82n+l° By this identification
V) Xi is deformed to Y, Let f: W Xi—— Y be the natural
projection, By this f, Y enjoys the quotient topology,., Set

g. = ffi’ Let Z be the disjoint sum of Y and a singleton p,

Wnsp) = Z - £(, Y %),

The topology of Z is defined in such a way that each open set
of Y is open in Z and { W(n,p): n=1,2,*+* } is an open
neighborhood base of p, Then Z is a space(i,e, a regular
space) which is not completely regular{cf., e.g., Willard

v .
[17, 18G, p.134]), Hence Z is not Cech complete, Since Z is
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not first-countable, Z is not an mcm-space,

Let us prove that Z is an mcc-space, Set

U(a) [Ozw} x [O:’O‘]’ a = (w,a) € A,

V(b) € B,

[0sn] = [0, w7, b = (n, w,)
Set further

W(a,2i-1) = g, 1 (U(a)) v 9, (U(a)), a € A, i=1,2,%++,

W(b,1) = g, (V(b)), b € B,

W(b,21i) = g,;(V(b)) v gy, (V(b))5 b € B, i=1,2,",
Then for each n we have an open covering

C% = { Whnsp)} v § Wa,2i—1): a € A, i=1,2,°++}

U {W(b,l): b € B} v{Wb,2i): b € B, i=1,2,*++ }

of Z, Set |

C_={(n»p)} v{(a52i-1)5(b>1),(b,21): a€A,b€B,i=1,2,+},

Then we can write

@ = {w(m: rec .

Set

Do4yqp = 4 Y €C 1t WY)e Win,p)}.
Define 9n+1n:Cn+1~$'Cn by:

¢ "1 [(C_,; — D) = identity,

¢ " (¥) = (n.p), ¥ €D,

n+

Then it can easily be seen that § 611; P 1n } forms an

mcc-structure of Z,

6.3, EXAMPLE, An mcm-space which is not complete metric,

See Wicke-Worrell[24, p.260].

6.4, EXAMPLE, An mp-space which is neither a p-space
nor an mcc-space,
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Consider the spéce X in Example 6.1, Let £f:X —> I be the
projection and J a subset of I which is not G@- Set Y = £ “(J).
Then Y is a paracompact p-space. Let Z be the space given in

Example 6,2, The product T = Y X Z is the desired space,

6.5, EXAMPLE, A paracompact space of countable type

which is not an mp-space,.

Michael line[IZ} is the desired, It is to be noted
that a space is of countable type if and only if it is the
image of a p-space under an open compact-covering mapping

v
(cf. Coban['11]).

The following is a diagram of implications among the
classes of monotonic spaces, The converse of each implication

is not true by the above examples and by well known ones,

complete ——> mcm-space:

metric l

metric > mm-space ———» oOpen compact-covering
1 i image of metric spaces

|

p-space ————t+> mp-space ———3> oOpen compact-covering
image of p-spaces
J’ T v T

(space of countable type)

Eech ——3 mMCC-Space
complete
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7. Acknowledgement,

The four kinds of monotonic spaces and complete mappings
defined in this paper, which are intrinsic modifications of
those in [5], which are intrinsic modifications of those in
[5], have the preceding equivalents by Wicke and Worrell as

indicated in the following table,

mCC-Spacessssssssesios Ab-spacet21],‘conditlon.ﬁ{[ZS]
Mp-Spaces*ssssscesocos ﬁb-s‘pace[Zl]

mcm-space*es********>+smonotonically complete space with

a base of countable order[19]

mm-space**°*********+espace with a base of countable

order[23], space with a A -base|24]

complete mappinge**+***uniformly A -complete mapping[21],
uniformly monotonically complete

mapping|24]

Some theorems in this paper were already proved-
essentially or proved partly by Wicke and Worrell as

exhibited in the following,

Theorem 2,7+*e*esessssseecee| 23 Theorem l]

Theorems 2,8, 2,9 and 2,10+s¢s++++|26]

Theorem 3,4e+++e++esseseecs|25 Theorem 4]

Theorem 3,6**+++*+[19, Theorem 4] and [29, Theorems 4, 5]
Proposition 3.104"----"°L24, Remark 7, p.256]

Theorem 4,1+++sesssreeeses[2], Theorem 4,4]

Theorem 4 ,6+*++=ccsssesess| 22, Theorem 7,4]

Theorem 4,10°'-°'-'-""°'[19, Theorem 5]
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Theorem 5.3""""""'-'[21, Theorem 4.6]

Theorem 5,0***++*>sssesess| 24, Theorem 7]

Hitherto we have assumed that all spaces are regular,
This assumption played a role to avoid needless complexity,
It is easy to verify that the regularity can be weakened to
Tl-axiom in the theorems fér»mcm-spaces and mm-spaces,
Finally it should be noted that the proof of Theorem 3,3 is
based on the beautiful idea of Wicke[20],

The author acknoWledges many valuable and kind comments

on this paper given by Professors H, R, Bennett, J, Chaber,

E, Michael, A, Okuyama, H, H, Wicke and J, M, Worrell, Jr,,.
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8, Appendix,

Wicke[21] considered the conditions A, and B_. For the

reader's convenience let us define their monotonic equivalents,

A mapping is said to be quasi-perfect if it is closed and
every point-inverse is countably compact. A space is said to
be an M-space(by K, Morita, Products of normal spaces with
metric spaces, Math, Annalen 154(1964)365-382, Theorem 6,1)
if it is the preimage of a metric space under a quasi-perfect

mapping, A space is said to be a complete M-space(by Wicke

[21, Definition 3,2]) if it is the preimage of a complete

- metric space under a quasi-perfect mapping., A decreasing

sequence { Ui} of subsets of a space X is said to be a

g-sequence (by Michael[13, Definition 1,2]) if A Ui is a

<non—empty countably compact set and N Ui € U with U open

implies U € U for some m, { U, } is said to be a weak
m i?

g-sequence if the 1nequa11‘t1es Ui oo Fi # @ and Fig Fi+1

(i=1,2,+++) imply that { Fi} is a g-sequence,
8,1, DEFINITION, Consider the following two conditions
- . i
for a structure {@1 = {U(ai). a.€ ALY, @ j." of a space
X, where (ai) is a generic element of inv lim Ai'
(1) ¢ U(ai)} is a g-sequence,
o, i -8 . =
(2) § U( 1)} is a g-sequence or n U(al) @,
A structure satisfying (1)/(2) is said respectively an-
mcM~-/mM-structure, If a 'g-sequence' in this definition is

replaced with a 'weak g-sequence', we get a concept of a

weak mcM-/weak mM-structure. A space having an mcM-/mM-
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structure is said respectively to be a monotonically complete M-/

monotonic M-space(abbreviated by an mcM-/mM-space).

By this definition each §~refinable mcM-/mM-space is
an mcc-/mp-space,

Complete mappings defined in Definition 5,1 should be
weakened as was defined by Wicke[21, Definition 3.1] as

follows.

8.2, DEFINITION, A mapping f:X —» Y of a space X with

a structure gﬁ).} is said to be complete if for each point
1

y €Y, { @%Jf_l(Y)} is a weak mcM-structure of fﬁl(y).

8.3. THEOREM(Wicke[21, Theorem 4.2 and 4.3]), A space is

- an mcM-space if and only if it is the open image of a complete
M-space,

8.4, THEOREM(Wicke[21, Theorem 4.7]). The perfect image

of an mcM-/mM-space is respectively an mcM-/mM-space,

8.5, THEOREM(Wicke[21, Theorems 4.2 and 4,4]), A space
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1
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O
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under an open complete.mapping. The image of an mM-space

under an open complete mapping is still an mM-space,

8.6, THEOREM, A closed set of an mcM-/mM-space is an

mcM-/mM-space, A Gé set of an mcM-/mM-space is an mcM-/mM-

space. A locally mcM-/mM-space is an mcM-/mM-space,

8.7. THEOREM, A space with a weak mcM-/weak mM-structure

is an mcM-/mM-space,
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é;é; THEOREM, An mcM-space which is an mp-space at the

same time is an mcc-space.

These theorems are easily verified by analogous arguments
used in the proof of 1.7, 2.6, 2.75 2.9 2,10, 5.3, or are
almost evident,

Just after completing this manuscript the author noticed
that the theorems for monotonic complete spaces can be
generalized from a more general stand point of view, Such

a gneral theory will be given elsewhere,
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