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“ON AN C2PT %;ZATION PROBLEM FOR DISCRETE-TIME
CONTROL SYSTEMS

by Suguru Arimoto
Tokyo University

1. INTRODUCTION

In optimization problems of multi—;tage procésses or
discrete~time control processes, some types of necessary
conditions for optimality were pProposed in several vapers,
like the maximum principle for cont 1naous—t*me control:
processes, In the earliess papep'[i] s Chiang propoéed &
nécesséry condltlon for‘optimality and cqlled,it‘"tue Ql”ltlzru
naximum principle.” Similéf reéuits vere also obtained by
Kéfz [2] . Butkovsky [3]k, in addition to a countér—eiample
to Katz's theorem, offered the local maximum prineciple which
1up11es that the Hamiltonian attains the maximum value in a
4nelghoorhoo& of the optimal control. HoweVer, the local
maximum principle for discrete-time processes does’nof hold
in general as shown by a counter—examplé‘which will be given
in the last section of this paper. .

‘Recently, the two 1mp0rtant papers by Halkin [4] Jordan”
and Polak [5] were publlsned Halkin showed ceoneurlc asnehts
of neceusary conditions for optlmallty, and Jordan and Polak |

established the local maximum or statloﬂarv pr1nc1nle.

In the present paper we shall consider more general
’optimization‘problems for multi-stage processes than those in
the above cited references,

- The problem stated in Section 2 is a discrete version of



Berkoviitz's problem [6] formulated for continuocus-time conirol
systems. It is also regarded as a generalization of nonlinear
vottleneck—tyve programming pfoblems in multi¥stage producticn
orocesses first discussed by Bellman 7). 1In section 4 a
ﬁe@essary condition for optimality will be proved.

Sections 5 and 6 treat a special,case of the problem.

o -

In Section 5 a éufficient condition for local optimality will
be given in‘Theorem 2. In Section 6,a global maximumn principle
will.be proposed in Theorem 3 under an additional condition
which is aralogous to that given by Pillipov [8] for the proof
of the existence of an optimal control for continuouséti‘e
systems. |

In our previous work [9] we proposed the analogous theorem

tc Theorem 3 given in Section 6, but, in the proof, we falsely

‘used the local maximum principle which does not hold in general.



55

2. PROBLEN STATILLNT
Let us consider a multi-stage process whose statc at thc

t-th stage (t =0, 1, ... ) or time t is described by an n-vecior

whnere u, is an r-vector called o decision and ft is ﬁn
n-vector valued function which has continuous first derivatives
with respect to all arguments of Xy and Uy . Given an inltial
state x_ and a sequence u= {ut st 0,1, ..., N;lg-\ of
decisions, there exists a unique solution of (2.1) denoted by

X, = xt(x u).

t = o’
The problem to be considered is
Problem 1. Given an initial state xd, find a sequence of

decisions- Ugs Uy eee 5 Uy q which minimizes

N-1
J(N; x_, u)= z Oz (xg, u)y uy) - (2.2)

t=0

~

subject to the process equation (2.1) and the inequality side

constraints
(i) ) ,
3 (xt(xo, u), u_t) >0, i=1, 2, ve. , I (2.3)

for +t+=0, 1, ... , N=1 where é%) has continuous first



i
C»

derivatives with res?ect o all arguments.

Throughout this paper we assume that there exist at least
one secuence of decisions and the corresponding sequence of
states Kt(xo’ u) along which (2.1) and (2.3) are satisfied.

We shall call such a secuence of decisions to be admissible.
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TINTE TRET T AV MOATTITY T AT
. PRELININARY FORINULATIONS

Let v, be an m-vector and define

Bei1= By + Xy uy) + vitadxg, u),

wnere .the prime denotes the itranspose and gixyt,, ut) is the

; . (i i
m-vector whose components are composed of -gt>(xt, u,.) in
5 .
- ¥ ® - - - 5 . 3 . N
(2.3). Let u = {u, be a fixeda admissible sequence of
£ ,

* *
decisions and denote the corresponding state by x. :xtixo, u )

b , :
and the solution of (3.1) by @ = fg(}:o' u ). Then, after

a lengthy but easy calculation, we obitain

- ® * - * *
azt(xtr u.t) * B.L_t(x_t, u_c) w
= g ( X,=- X ) + : ( V.= WU, )
*® t % ® " G
oy guy ;
k % ' * o
- 3 - : . . 3
+ h.( Xy= Xy ») + le (ug= ug ) ‘§3-2;\
and
; - * *
(6t+1.' @ml <P B )
' - % * -)eh’
- a\»d.._(x-ty uT/) -+ v-tfgt(xtv u-;;)) *x N
e
%
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- vy :*(x _, U )] .

(= (v\.t_u.x. /

- . - s s s X o .0
wihere h._, kt are n-vector valued iuncitions and ht’ K, are

ct O

H

sczlar functions sucn that

RN X:’l = ol [x- xi]),

lkt(ut— u:)i = of tuz— uti )7

> (3.4)
| h3(x, - X: | = of |2 x| s :
\kg(ut 'u:)! = of §¢:— aZ} Ve

. : ’ 0
Here the symbol \xi implies the norm of the vector x, i.e.,

!x\ = max Ifdw
o
and thé symbol gh(x)\ = of 1z\ ) implies that for an
arbitrarily givenA £f>0 there exists a}positive number f
such that {h(x)! £lx} for every x satisfying Ixl< f .
Next we introduce the foilpwing notations :

o~
£

3 “‘:“J‘:/’ + t *-t(lc-ty u )) (305)

* . 7@!
w

. % *
Hilxy, pey ug) = - KL (=g

IR #* % ,
btixtv p‘t’ U"E> = Ht - Vtvgt(xty u"& ’ \3-6)
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% .
whnere 'pt' is an n-vector celermined. by

Y Lok R AR -
Pg1 = QIpixgs Pey ug)/ 9%y (3.7)
together with the Eoundary condition
% P
Py = 0 . , {3.8)
Finally we define
¥* x x 1 2 ¥*
= - - - . 3 hY
aglu, w) = By - By - pe (- %) (3.9)
Then it follows from (3.2) and (3.3) that
* ®.
dt+l(u’ u ) - dt(u, u )
- *®.. * *
_ ’aft(xtr pt’ u‘t)' - *o
'&ut ‘
b 1%+ 10 - ¥ (n ) 16)
+ % + t pt ( £ + k"B . (3.
Note that
*
do(u, u ) =0,
(3.11)

»dN(u, Q) = (GN - (6N .



4o jRany ubbARY CONDIT IO“

YL‘et

Ut(x\—; {@, g_ (%, u) 20, =1, e W}}

convex--subset-of R -

N o % .* :
nd 2, Let u = gut}

‘be an optimal admissible sequence of decisions which mirimizes

“Theorem 1. Assume -Conditions 1

' m

(2.2).  Then for every t=0, 1, ... , N-1 it holds ihat

i) there exists an m-vector Vi which satisfies

: e e : \
vi gy (g, up) =0 121y eee y m, (4.1)




* * % .
T"
2*‘1.3( Xt.’ p-t’ u‘b)

*
’aut

4ii) ( ut-—u:)éo |  (_4.}4)
 for all utéUt(x:) .

Proof. At first we assume that the part i) holds for

. every t. Assume that for t=s+l, ... , N-1 the conclusions
ii) and iii) hold but for t=s do not. Then, by Lemma 1 stﬁaﬁte‘;&
laﬁer;, 'i:h'ere".’ e}&ists a decision i—isé US(:(:) such that |

a'HS(X:r p:9 u;) ’ - * ! ‘ )
' o (u «-us)ﬂj?I}Ou {4e5)
aus ‘

S

" Let A be a small positive number and
- - 1 ) %®
us(7h = Aug + ( f?\ Ug .
. Then we have u.$(7g) & Us(xsv) by Condition 1 and

DH(x, ph,uh)
3 . ( us(l?l_) - U =A§ >0
u
S .

by using (4.5). Consider now the following process :

'z, (0 = £ (x (), u () t=s, s+l, s, N1,
S (4.6)
N
Xs(l’ - Xsr .

Herz, wu, (X! is determined successively such that
A

-y
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20

vitex (A), u (A))=0 t=s+l, ... , ¥-1. (4.7)

“We note that, from Lemma 2 stated later, it is possible o

choose ué(lj such that; in addition to (4.7),
. ~ *
a (A € U (x (2)), lugn - i< en (4.8)

for t=s+l, ... , N-1, where c¢ is a positive constant

independent of X . Thus, if A 1s sufficiently small, we

have from (3.1), (3.8) to (3.11) that

N-1
. . * *, . * *
I(N=-s 5 x5, w)= 37 hlxg, up)
t=s

e R
= Z [O(t(’c:’ u:)"*-'vt"gt(}{z, u:)}
' =5 :
= @’N(x)' - dN(u«(z),' W)
N-1 .» |
=Z [dt(xt(l)’_ u‘t(x)) + .vt'gt(xt(z),, ut(l)ﬂ +: Q()L)

tes

= 3(N-s ; x_, u(Q)) + v 'a (xs, u (A)) + oA) .

Noting‘that

_10 -
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To prove this lemma by contradiction we assume that v > 0
for some Ik, Led

1 1
W0 = Aawt o+ (1- 20w,

N 3 P :
e (S LKy < v
T = (1= Ou(A) + 2 L. wt(A)
- iE K
v .o - = N ; v e
vihere § and 5 - are small positive numbers such that
. [ ol o WL - - - el e
§om(n =1)y . If A is talken small enough, then
! Lo h o2 e SR Y
AY l..*“'*»”’" L J = Hg
L/ ¢ A ’
*, &= \,m - P .
AN or = s
(A0 e U(x). Hence
e G .
3 e (53
FOA D L. Ve
-3 #k
21%(:‘(« "‘»l} s ”“k/A\ ) 4 0
e e = uwod R
a w Y VAN E
. ~N 1 —~ . —~ L P ) % 3
by using (4.2). The last inequality follows from the assumptiocnd

4

of the lemma. On the other hand, the left hand side of the
above eguation becomes positive by choosing S' sufficiently

“small. Thus the contradiction has been derived.
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Keeping in mind of Condition 2 and the property (4.10), and

applying the theory of implicit functions to egquation (4.13)
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5. SUFFICIENT CONDITION

In this section and the subsequent we consider the special
case of Problem 1 when Ut(x) is independent of x, namely,
Xy does not enter the constraint inequality (2.3). fence
we say that a sequence u = {ut} of decisions is admissible

if every U belongs’to the set U, which is a Su‘bset of RT.

t
Corollary. Assume that U’c is

—

& convex. set for gll +t.

* * v . .
Let u = {u_,,z be an optimal admissible sequence. of decisions

u

minimizing (2.2).  Then it holds for all t=0, 1, ... , N-1

that

g% * *
QH (%, e, uy)

3 u:

(ut—uj_:)éo

for all wu,¢ U,.
Now we introduce the following notions.

* *
Definition. If for an admissible sequence u = {\ut .} :

of decisions there is a positive number £ such that it holds
J(N; x_, u) < J(n; Xy, u) -~ (5.1)

for all admissiblc sequences u :{utg satisfying \ut— u:\g £
for =0, 1, ..., N-1, we say that the sequence u* is locally

9ptimal,

Definition. In addition to the local optimality, il the

- 15 .



¥* ol oy Ao
scuality symbol in (5.1) occurs only when u=u , Wwe 3y TAZv

*> . e
4 is locally strict-ontimal.

*
Theoren 2. Le =

* L - - - ~ - -
u o= Yud_ ce an admissible scouence oI
) =222

ct

iccisicne and assume that for all t+=0, 1, ... , N-1 it holds

= (ug-u ) <0 (5.2)

. - * - *
for any u, such that u,eU., u. ¥ ut and \U"‘c' Ao \ < ? ’
=or 2Ly L 2aGi: LSy 7 - u Sl -

where g’ is some positive constant. Then the sequence U
i loecollv sirict-ontimal,
Procft. e prove this theoren by contradiction. Assune

that there a

re infinite admissible sequences of decisions

.
u{l) = {u,_{i-c}zg , k=1, 2, ... , such that

D<\u(k), - u*\ = mix \ut(k) - u*\ < 1/% (5.3)

- ‘ # y
J(N; Xy uwlk)) J(N? X, u‘), (5.4)

e A Py
4L LernoeTe th

e corresponding states by xt(k)—_:xt(xo, ulk)).

-2

. * *
arwﬁ{‘xt! pt u-&-) FOR
e {ufk) —u. )= - e (k) <oO.
'}u. o 17
“r

2
fak
o

]



ollows from the assumptions (5.2)

Hy

bu (k) - ) | <Mye (k)  ly/k

where Ml and Mz are positive constants independent of t and k.

Hence, by the same proceeding as in the proof of Theorem 1, we

obtain
H-1
~ * k4 b '
J(N: X, u ) =3 x, wlk)) - Z e, (Xk)
t=0 .
N-1
P1e Y
+ 0 Z C_t(zi) .
t=z0

Thus we . have
. *®
J(N; Xo ulk)) > J(N; Xy U )

if k¥ is sufficiently large. This contradicts (5.4).
Remark. shoul e noted th e conclusione in Theorem
R 1 It should b oted that th lu Theore

¥*
1l and Corollary are valid even if u 1is locally optimal.
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o. GLOBAL AXTIIUN PRINCIPLE

ile require. the following property.

Concdition 3.

For all x, any given ul, uw® € U., and any

positive number 0 &L A <1, there exists at least a decision

u’ & U, such that
1 =~ 2y v 3
Kft(xy u) + (l‘X)It(Xy ) ) —f-t<"(7 U™/,
1 \ 2 3
7\O(t(xy u ) + (l")\/o(:c(x’ 1 ) ?fd-t(xt U. )

for every +t=0, 1, ... , N-1l.
Now we prove the global maximun principle.

¥* o *
Theorem 3. Assume Condition 3. Let u = u*} be an
& L&

———

ontimal zdmissible secuence of decisions.

Then it holds for

——

all +=0, i, ... , N-1 that

* * * * *
Hi(xy, pys up) > Holxy, Dy, uyg) (6.2)

for all u, [~ U,.

Proof. Let u= (\utzl e an arbitrarily fixed admissible
seguence of decisions and A "'{7\‘&} be a sequence sucn that

0 g?&t$l for +t+=0,1, ... , N-1. Let

Xp1 = Agfilxgy upd + (- A (xy, u:) (6.3)

-18/-
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and denote the state vector for given X aend R~:§kl*§ by
A We now congider the new optimization

. . - x " P .
problen of choosing an optimal secuence A = = {jﬂt % such

that it minimizes

RES
wr . N ! \ 7 A0
J(i"ﬁ 'XOy 7“\)" E O(_:(At(k)f ;)(t) e ("‘—l.)
tT=0
subject to O < A, <1, Of course, it follows immediately from
. ? . U .
tre meaning of this problem that
. T{ ™7 T #® S T
min J{N; xoyjk) L I Xg» U Y . (6.7
A
On the other hand, we have from Condition 3 shat
i *, 3 BN
min J(M; x , A) = J(N: x A =2 J(N; X, u ). (6.6

at A=A, Then there exists another admissible secuence
- £ e D ) .
w= { UL satisfying
¥ # * * %* . > —
thtt\xt<7‘\)y utj + (l”xt)f;(x4<7k)7 ut)zzt(xt(k \/y U-.t/ P
(6.7,
* ¥ * ¥ / *
- - % . \ —— \
(6.9,
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' JG O’
account of (6.8}, we find
- * - - boend
S %y, AT PN %, T
Conseguently,
* ¥*
J(M; x, A) =30 x_, w ) .
ve take A suck that AL =0 for %=0,
we take A sSuchn waa L= IO T=U; 4y eeoe
“

zoply C

e}

rollary +to the above mentioned problen.

T

, N-1

Then

o)}
.

O
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7 COUNTLER-ZXANPLE

‘subject

o

the problem of mininmizing J(2; Xy )

To

1 ‘
J(2 , u) = Z [23{_&2 - utzj )
t=0
x. =0, \utk £T.

9

*

uw. =0, u =1 or -1.

(o]
+

Along these decisions, the Hamiltonian becomes

- * * 2

;_ﬁd(xo’ Por ’o): b

This implies that Ho'doe s not a% a*n the oAl maximun 5

L * i
‘the optimal aems" on u, = 0.
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