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1. Introduction.

The unsteady boundary layer flows have not‘been studied
thoroughly as the steady boundary layer problems because it is
customary to use quasi-steady approach for unsteady boundary
laver problem in practice. When the unsteady effecté are large,
such an quasi-steady approximation will not be good and we should
study the unsteady boundary layer flow without the use of quasi-
steady'approach. In this paper, we first review some of the un-
steady boundary laver analysis and then report some recent re-
search work on unsteady boundary layer flow which have been car-
ried out at University of Maryland. We shall consider only the

starting of the boundary layer flow over a flat plate.

2. Brief history of unsteady boundary layer flow.

After Prandtll* introduced the concept of boundary layer in
1904, Blasius worked out many exact solutions of the boundary
laver equations.i The first exact solution of unsteady boundary
laver flow was given by Blasius in 1908 who considered the star-
ting of a semi-infinite flat plate with a constant acceleraticn
for an incompressible fluid.z Lord Rayleighs obtained the exact

* This number refers to the number of reference in section 6.
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solution of the impulsive motion of an infinite plate in 1911,
Even though Ravleigh's solution was not based on boundary laver

approximation, 1t contained the boundary laver solution if the

Revnolds number 1s high. In 1944, GoertIer4 extended Blasius

acceleration as a power of time t. It is

solution f~r i

the impulsive motion and the finite ac-

colevation motion represent two main classes of unsteady flow.

Most of the exact solutions of unsteady boundary layer flows are

cases. The impulsive motion for a semi-infinite plate has not

T A S . .
been solved vet. 1In 1955, Stewartson” discussed the mathematical
properties of the impulsive motion of a semi-infinite plate and

ingularities: one at =0 and the other at

wr

‘found two essential
t=x/Ut=1, Be ween £=0 and. £=1, the flow depends both on x,
the direction along the plate and v, he direction perpendecular
t0~the p1ate. For ¢>1, the flow is independent of x and is
Rayieigh's solution. Stewartson did not {ind the solutiom for

f<l: -Lam and Crocc06 used the iteration method to find the solu-
tion of impulsive motion of a semi-infinite plate for ¢<1 and
found that the solution diverges after 18 iteration.

The first unsteady boundary layer solution of a compressible
fluid was given by Illingworth7 in 1950, - He considered an infinite
plate and introduced the well known.approximation of ,, = const.
where o is the density of the fluid and  is-its coefficient of
viscosity; Moore8 was the first one to study the unsteady bound=-
ary layver over a semi-infinite plate of arbitrary free stream
velocity.  He used the approximation ou= const. and decoupled

the equation of motion from the energy squation.
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He was able to show that the quasi-steady approach is a first
approximation of the exact solution. He considered only the
cases of constant wall temperature or insulated wall.
Recently we look® into the data of ¢t and ou/Pr for the

\ . Co s .10 . )
equilibrium dissociating air given by Conen and find that they

are linear with respect to enthalpy h, i.e.,

Q’;,i = al - b?h l B (l)

where Pr 1is the Prandtl number and a,, a,, b, and b2

For equilibrium dissociating air of the temperature

are
constants.

) ]
range of 80°F to 880°F and a pressure range from 0.01 to

100 atmospheres, the following values of these coefficients are

found:

-0 2 -5 p /
a;= 20.00x 1077 slug‘/sec-ft4' a,= 27.5~10 ° siu Z’Sﬂc—f‘c'1

p . g /5¢
(3)
-1 2 o -11 -0
b1= 1.07 =10 1 slug -Sec/ft6; b,= 1.30x 10 1 slugz-seg/rto
. ; R 2 2
where the units of enthalpy h is in  ft%/sec”.

We solve the unsteady boundary laver equations with these
realistic values of transport coefficients given in Egs.(l} to
(3) and compare them with the simplified results of opu = const.
3. Fundamental equations and initial and boundary conditions.

The fundamental equaticns of unsteady boundary layer flow
in coordinates fixed to the plates are as follows:

su . .du su 5U , ~3Uy , 3 , 3u N
A(EM & 12X & Sty = — P + :——ru.—"\ ("'.'
olsg * usy ! Vay) o (5% %) Y iy



sh . 8 shy _ - .oh , -3h 3 ,u dh, du,2
olsp *ugx Y Ve T eGE f us) toay sy Y iGy (5)

30 dpu 3pv .
trtix Ty 0 (6)
p = p(x,t) = RpT (7

where bar refers to the value of free stream. The other symbols
are standard notation with x in the direction of the plate.
The boundarv and initial conditions associated with Eqgs.(4) to

(7) are as‘follows:
(i) at y=0: u=v=0, h=h0(x,0,t)=given function of x and t
(ii) at y=«: u=u(x,t), h=h_=h(x,t)

(i1i) at t=0: u=v=0, h[x,0,0)=h0(x,0,0), (8)
h(x,y,0)=h(%,0) where y#0.

(iv) at x=0: u=0(0,t), h=h(0,t),

4, Transformations and method of solution.

We are going to solve Eqs. (4) to (7) with the initial and
boundary conditions- (8). The equations may besimplified byusing
the new varzibles - Y, X, t' ‘instead of vy, x, t such that

(v
Y= | (E)dy; Xo=xpo tho=t @
0 Pe" T ; ,

The final solutions of the unsteady boundary layer equations
depend on the forﬁ of the free streém Velocity u and free stream
enthalpy h. For arbitrary function of u and h, the amount of
numerical computation would be so large that the best high speed
computing machine available would be insufficient. Hence we shall

constant acceleration with wu=At', h=const.

971
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consider the case of
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but the wall enthalpy may be an arbitrary function of X and t'.
uUnder these conditions, all the unknowns will be functions of two

independent variables ¢ and n defined as follows:

g2 X, = Y(vot')‘l/z (10)

The dependent variables may be expressed in terms of a stream

function ¢ and enthalpy h and we shall use the expansions:

, = ) 1/2-‘7‘2’ n_oe. .

v o= gt Agzit' g,(551) (11)

h = i_bt’njn(i,n) , (12)
n‘_‘

Furthermore, we shall limit to the case of small time t', 1i.e.,

large ¢. The functions g and j may be written as follows:

g, = @ e, () | (13)
=T dN () (14)
| e nm

Numerical solutions of g o and for variocus- initial and

3nm

boundary conditions have been worked out for various cases in

reference 9.

5. Results.
The detailed results of our computation are given in refer-

ence 9. Here we discuss two cases which will show the effects

of the variation of peu and the accuracy of quasi-steady ap-

proximation in general.
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(1) Insulated semi-infinite flat plate whose initial tem-
perature equals to the free stream temperature.

The first order velocity terms ‘gia(n) is the Blasius
solution, i.e., the quasi-steady approximation. But the effect
of pu # constant shows in the higher order terms g%o etc.
which is in general not negligible. There is considerable dif-
ference in temperature profiles for the case with pPY # const.
from that with pu = constahi. Fig.i shows that the wall tem-
perature for our maré éccurate analysis is much lower than that

in case of assuming Reynolds analogy.
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Fig. 1 Comparison of enthalpy distributions with
constant and variable values of oy and Qu/pr

(Insulated plate)
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{ii) ‘The temperature of the plate is a linear function of
time t';

hy= 3.16 x10% 3.00x10%", n_= 3.16x 105

where the units of h is ftz/secz.

In the present case, we found that the quasi-steady approxi-
mation is reasonably good for velocity profile and shearing
stress but it is definitely not good for temperature profiles
and heat transfer rate. We compare one case of constant temper-
ature witﬁ variable wall temperature at an instant when their
wall temperatures are equal and find that the diffﬁfence of heat

transfer rate is over 10 times.
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