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1. Introduction and symbolic conventions

In spite of the systematic establishment of linear control theory and
the numerous contributions made to it by many scientists, the phenomena of
actual control systems have yielded a wide variety of mathematical problems
which can not be solved. It is, for instance, pretty certain to say that
many control engineers were mystified by the fact that a control system,
well designed by linear control theory, fluctuafes with.constant amplitude
and frequency around its balancing level. This phenomenon, which can not be
solved by linear control theory, has been called the limit cycle,jand<itwis“

ue fo nonlinear transfer characteristics existing within the feedback con-
trol circuit. Consequently, we are forced to take into account an extended
region of the input mggnitude. Our analytical field bf vision must be ex-
tended to various-:kinds of nonlinear characteristics which are always ex-
hibited in control systems, whether intentionally placed there or not. Thus,
control theory and its practice were placed on a new situation in which the
characteristics of dynamical systems to be controlled were nonlinear and
these undergo drastic changes in the stochastic sense, according to time and
environment.

In addition to the situation mentioned above, as the uses of automatic
control have multiplied in industrial processes, in manufacturing, in the
steering and operation of modern weapons and in setting the flight of arti-
ficigl satellites, the demands placed on control systems have also severely

taxed the designers and forced them to analyse the dynamic behavior of in-



54

créasingly complex systems, more precisely, to improve the control perform-
ance. In compliance with recent trends mentioned here, a modern approach to
design and synthesis of control systems was formulated, based on the basic
notion of state representation of existing systems. The advent of high-speed
digital computers revolutionized the basic concept of design of control sys-
tems. The design philosophy made a change to the determination of an ex-
tremum of a functional from the classical approaches whose ability is limited
to solve the problems of finding optimal parameters which are adjustable in a
configuration of control éystems. The digital computer in the control system
usually performs the functions of monitoring, data processing and optimal

control, as illustrated in Fig.l.
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Fig.l. TIllustration of a configuration of control systems

Thus, analytical methods of designing optimal control for a dynamical system
characterized by uncertainties and a large amount of fluctuations require a
new conéept of stochastic theory in the non-stationary sense. The general
problem to be solved is the control of a noisy nonlinear dynamical system in '
some optimal fashion, given only partial and noisy observations of the sys-—
tem‘state and, possibly, only an incomplete knowledge of the system. Fel!
dbaum has shown in his works [1] that the optimal control law under these
conditions is a functional on all available data by a direct application of
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the method of dynamic programming [2], and that computing algorithms of the
optimal control are available in real time. »

In recent years, however, a more elegant and precise technique is in the
process of making a widespread development showing an abstract beauty com-
bined the theory of dynamic programming optimization with that of Markovian
stochastics. It has already been verified in the Markovian framework that,
if the dynamical characteristics of a system to be controlled are idealized
to be linear, then a separative discussion of stochastic optimization can be
developed from the version of state estimation, and then the configuration

shown in Fig.l is reduced to that in Fig.2. [3], [L]
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System input-;I T—-—Performance criterion

Fig.2. themétic configuration of the optimal linear

control system under noisy observations

Is the configuration in Fig.2 kept in an invariance fashion of the stochastic
optimization for nonlinear stochastic systems? The answer is "No", and, more
concretely, the correct version of this answer is in a black vail. Unfortu-
nately, in spite of the fact that- there exists a large amount of accumulated
knowledge concerning the solution of nonlinear differential equations of
some special types, we should point out that our knowledge of nonlinear sto-
chastic systems behavior is extremely limited as compared with the situation
in the field of linear counterparts. Thué, the establishment of possible
methods of approximation for nonlinear stochastic prcocesses is strongly be-

ing required to solve various problems in both gqualitative and quantitative
-3 -
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aspects. Intuitively, a possible way of approximations is the development
of quasi-linearization technique, keeping in touch with the context of linear
control theory. From this point of view, let us observe once again the con-
figuration of optimal linear control systems. This indicates that, under
noisy observations, the state estimation procedure should be performed be-
fore genersgting the optimal control. In other words, our first effort should
be devoted to the physical realization of optimal nonlinear estimators with
which this short note is mainly concerned. |

Throughout this short note, we use the same symbols for the true sto-
chastic proceéses and for the quasi-linear stochastic processes which are
the approximations to the true one by the method described later. The symbol,
Yt’ denotes the sméllest og-algebra of w sets with respect to which random |
variables y(t) with 1Xt are measurable, where w is the generic point of the
probsbility space Q. The conditional expectation of a random variable con-
ditioned by‘v Y, is simply expressed by "M such that ;c(t[r) = E{x(t)}YT}
where T ;‘t. Vector and matrix notations follow the usugl manner. If M is
a matrix, then M' denotes its transpose, and then }M] denotes the determinant
of the matrix M. For the convenience of “the present description, the princi-
pal symbols used here are listed below:
t: time variable, particularly the present time .
to: the initial fime at which observations start
x(t) and y(t): n-dimensional vector stochastic processes representing the
system states and the observations respectively
w(t) and v(t): d,- and d,-dimensional Brownian motion processes respectively

&

Q(t) and R(t): n x dl and n x 4, matrices whose components depend on t

2
flt, x(t)] and g[t, x(t)]: n-dimensional vector valued nonlinear functions
respectively

x(t]t): optimal estimate of x(t) coﬁditioned by Y, .i.e.,

x(t]t) & Elx(t)]¥,}

P(t|t): error covariance matrix in optimal estimate of x(t) conditioned by
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Y., i.e., P(t|t) & cov.‘{x(t)lYt}

.t’

2. Mathematical models

A broad class of dynamical systems encountered in control engineering
is characterized by a multiplicity of inputs and corresponding outputs.
Guided by a well-known concept of state space representation, the dynamics
of an important class of dynamical systems can be described by a nonlinear
vector differential equation,

(2.1) Bt ) = et x(t, w)] - cledult) + Qledv(t, u)

where C(t) is an n x n matrix whose components depend on t, u(t) is an n-
dimensional control vector, and where y(t, w) denotes an n~dimensional
Gaussian white random disturbance.

The development of the present discussion requires that, until further
notice, we set the‘control u(t) equai to zeré in Egq. (é.l). Wﬁen u(t) = 0,
the same symbol x(t) is used, disregardiﬁg the necessity of changing it and

omitting the symbol w, i.e.,

(2.2) = f[t, x(t)] + Qt)v(t)

It should further be noted in Eq. (2.2) that, when y(t) = 0, the variable
x(t) becomes deterministic.

To make Eq. (2.2) more precise in the Markovian framework, we shall
write

(2.3) ax(t) = £[t, x(t)]lat + Q(t)aw(t)

where the dl—dimensional Brownian motion process, w(t), has been introduced

here along the relation between a Brownian motion process and a white noise
or a sufficiently wide (but finite) band Gaussian random process y(t),

(for more detail see [5], [6])
t
(2.4) w(t) = [“y(s)as
We suppose that observations are made at the output of the nonlinear system
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with =2dditive Gaussian disturbance. The observation process y(t) is the n-

dimensional vector random process determined by
(2.5) dy(t) = n[t, x(t)]at + R(t)av(z)
where we assume that the system noise w(t) and the observation noise v(t)

are mutually independent.

3. Fundamental hypotheses and problem statement

For the purpose of security in the mathematical development, the follow-
ing assumptions are made with respect to Egs. (2.3) and (2.5):

H-1: The components of the functions f[+,+] and h[+,-] are Baire functions

O;;;? and -o<f<o, where x(t, w)=g

H-2: The functions f[+,-] and hi+,*] satisfy a uniform Lip;chitz conditicns

with respect to the pair (t, £) for t

in the variable § and are bounded respectively by

(3.1) Pete, ) g x (1 + grg)t/2
and
(3.2) In(t, )] = K '(1+ 5'5)1/2

where Kl and Kl' are real positivg constants and are independent of

both t and &£ respectively

T
w

x(to) is a random variable independent of the w(t)-process

il
o

..

All parameter matrices are measurable and bounded on the finite time
interval [to, T]

H-5: {R(t)R(t) '} exists and this is bounded on [to, 7]

T?e problem is to find the minimal variance estimate of the state x(t),

provided that the process y(s) for t_ <s<t is acquired as the observation

0

process, where y(to) = 0.

L. Differential equation of the optimal filter

- It is not difficult to show that the minimal variance estimate of a

random variable given a reiated quantity is simply the conditional expec-
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tation so that

(4.1) x(t]t) = Bx()]¥,) = f x(0ptx(e) ¥ Jax(v)

and the problem is to find an equation for the conditional probability
density function p{x(t)th}, where, in (4.1), the symbol E_means the n-

dimensional Euclidean space.

Invoking Bayes' formula and the related calculus, it follows that

E{expd |x}p(x)

(k.2) p{x(t)]Yt} e peyy:
where
(L.3) a6 = %h'(RR')-lhdt + n'R tay

where p(x) 1s the probability demsity function of the x(t)-process. The

version of dp is given by [7]n{9]

(h.4) ap = T3[plat + (n-n)*(RR')"L(ay - hat)
where
(k.5) h o= ﬂ(t[t) = F{nlt, x(t)]IYt}

and L* denotes the formal adjoint of the diffusion operator [10]
n n

s 9 1
(4.6) L= Z £t 3 Z
. i i

In (4.6) the suffix i indicates the i-th component of a vector and [-)i ;
denotes the (i, j) element of the matrix [-].
Substituting (4.4) into the expression of the version of dx(t]t)

derived from (L4.1), the filter dynamics is obtained as

-1(

(%.7) ax(]t) = £[t, =(t)]at + (Fa-n x)(RR") " (ay-nat)

The result reveals that an exact realization of optimal nonlinear filters
requires infinite dimensional filters which are practically impossible to

realize except for a very special case. [11]
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5. Quasi-linear stochastic differentials and an approximation to nonlinear

filtering Equations

Up to the present time, several trials have been made on the physical
‘realization of optimal nonlinear filters in an approximate form of finite
dimensional filters. [12]+[16] 1In this section, the author will introduce
the reader to a method of stochastic linearization which is shown to play a
useful role in the study of state estimation and which is hopefully of an
extensive use to the version of optimal control problems.

With the hypotheses listed in section 3, a precise interpretation of

Eq. (2.3) is given by Ito [17], who writes it as an integral equation,

(5.1) x(t) = x(s,) + [{ tls, x(s)]as + [} a(s)aw(s)
, 0 0

We expand the functioﬁ flt, x(t)] in Eq. (5.1) into
(5.2) £lt, %(6)] = a(t) + B(&){x(t) - x(t[t)} + e(t)

where e(t) denotes the coliéétion of n-dimensional vector error terms and
a(t), B(t) are n~dimensional vector and n x n matrix‘respectively. We
determine a(t) and B(t) in such a way that the conditional expectation of
the squared norm of e(t), E{"e(t)”erYt},'becomes minimal. The necessary and

sufficient conditions to minimize E{"e(t)"szt} are given by

(5.3) o ale) = By, x(®)1]Y,) = s, x(6)]

(5.4) B(t) = B({elt,x(t)] - £lt,x(t)IHx(t) - x(t]£)}'[¥,1p(e] &)™
where |

(5.5) P(t|t) = cov. [x(t)]Yt]

. .
The scalar expressions of (5.3) and (5.4) are respectively as follows:

(5.6) a; (t) = E(r,[t, x(t)]]Y,} = %i(t, x(t)]
n " : R
(5.7) §=lbiv(t)ET{xv(t) - xv(tlt)}{xj(t) - xj(t[t)}[Yt}

= Blr,[e, x(6)] - 2,08, x(6)1)0x, (6) - x,(t]8)]]Y,)

-8 -
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where ai(t) denotes the i-th component of a(t) and bij(t) the (i,j)-element
of B(t), xj(t]t) = E{xj(t)lYt} and where i, j=1, 2,..., n.
The same notion is applicable to the function h[t, x(t)]. We expahd

h{t, x{t)] into
(5.8) B3 x(6)] = by (8) + B (6){x(t) - x(t[6)} + e (t)

The vector function hl(t) and the matrix Hg(t) should be determined so as to

minimize E{ﬂeh(t)H2]Y£} and these are given by

(5.9)  ny(t) = Elult, x(+)]]¥,} = nlt, x(t)]

(5.20)  Hy(t) = E{[nlt, x(£)] - nlt, x(¢)11[x(t) - x(616) 1] 1) pep )t

Based on the assumption that, for te{t., T], the conditional probability

0

density function'p{x(t)[Yt} is gaussien with the mean value x(t|t) and

ovariance matrix P(t[t), both a(t) and B(t) can be obtained in the form

(5.11) a(t) = alt, x(t]t), P(t]t))
and-
(5.12a) B(t) = B(t, ;(t}t), P(t]t))
da, (t)
(5.12b) bij(t) =
. 2, (t]t)

Similarly, (5.9) and (5.10) become

(5.13) h () = n, (¢, ;(tft), P(t]t))
and
(5.14a) Hy(t) = Ey(t, x(tt), B(s]t))
3, (t)
(5.1kD) By, (t) = ————
J ax, (£]4)

A striking fact is that the random variables a(t) and B(t) are not inde-
pendent but depend mutually on the state estimate x(t[t) and the error co-
variance matrix P(t|t). From this point of view, in reality, more precise

symbols, a(t, x(t|t), P(t|t)) and B(t, x(t|t), P(t|t)), should be introduced.

-9 -
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However, for the economy of description, we merely denote these by a(t) and
B(t) without indicating the dependence on both ;(t}t) ana P(t|t). Both hl(t);
and Hz(t) also follow this symbolic convention. We may thus define here the |
following n-dimensional quasi-linear stochastic differential of Ito type foér
Eq. (5.1?,

(5.15) dx(t) = B(t)x(t)dt + {alt) - B(t);(tlt)}dt + Q(t)dw(t)

and for the observation process

(5¢16) dy(t) = Hy(t)x(t)at + {hl(t) - Hz(t);(t[t)}dt + R(t)av(t)

However, respective diffusion terms in Egs. (5.15) and (5.16) still remain
unknown. We shall thus proceed to solve the problem including the compu-
tation of the state estimate ;(tlt) and the error covariance matrix P(t‘t).
Let o(t, to) be the fundamental matrix associated with the homogeneous |
differential equation,

ax(t)

Frami B(t)x(t)

(5.17) .
The solution 6f Eq. (5.15) can formally be written as

(5.18) Cox(e) = elt, v )x(ty) +efz 8(t, s){als) - B(S);(sls)}dé
R 0 4
| + [3 olt, s)als)aw(s)
0

From Eq. (5.18), it is a simple exercise to show that

(5.19) ag(t) = B(t)g(t)at + Q(t)aw(t)
where |
(5.20) g(t) = alt, v )x(t ) + fzoé(t, s)a(s)aw(s)

and

(5.21) E(tg) = x(t,) o

On the other hand, it follows from Eq. (5.16) that

~

(s)x(s]s)las

EOHZ(s)x(s)ds + fz {hl(S) - B

0 2

(5.22) ' y(t)

+ IEOR(s)dW(s)

- 10 -
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Starting from Eq. (5.22), a new stochastic process n(t) can easily be defined

by its stochastic differential
(5.23) an(t) = Hy(t)n(t)at + R(t)dv(t)

Let Ht be the o-algebra of w sets generated by the random variable n(s) for

t,<s<t. Then the y(t)-process is H -measurable and thus

£(t]t)

e

(5.24) E{E(t)|Yt} = E{E(t)]Ht}
Now we consider that the g(t)—process is the fictitious state variables
determined by Eq. (5.19) and that Eq. (5.23) denotes the observations which

are made on the n(t)—process. This situation implies that the current esti-

mate é(tlt) is given by [18]
(5.25) ag(t]t) = B(&)E(t])ar + (6], (6) {B(t)B(6) ")

x {an - B y(8)E(t[t)at}
where »

(5.26) Pg(t|t§r= cov. [£(t)|H,]

Substituting Eq. (5.23) into (5.25) and bearing Eq. (5.18) in mind, we have

«

(5.27) d%(t}t) = %[f, x(t)]at + P(t!t)HQ(t)'{R(t)R(t)'}"l(dy-ﬁdt)
and . t » '
(5.28) - x(t,lt,) = Elx(t))

where (5.3) and (5.9) have been used. By combining (5.24) with (5.26), the

version of dP(t]t)/dt becomes

(5.29) £ = B(&)R(8]t) + P(s[6)B()" + a(t)a(t)
- P(t]t)Hg(t)'{R(t)R(t)'}'lHe(t)P(tit)

with

(5.30) P(td]to) = cov. [x(to)]

Eq. (5.27) with Eq. (5.29) describes the dynamic structure of a quasi-linear

filter for generating a current estimate x(t|t).
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6. Comparative discussions and their gquantitative aspects

Although the most familiar technique is the introduetion of Taylor serieg
expansion on a nonlinear function, the basic notion of the approximation des-
cribed here is the expansion of the nonlinear function and the determination
of the coefficients by means of the minimal square error criterion, includ-
ing the Gaussian assumption to the conditional probability density function.
This implies that the infinite dimensional filter is approximated by the two
dimensional filtef consisting of the first and second moments.

Besides the approximated structure of filter dynamics developed here,
a number of approximation has been proposed in the literature. The major
differences in the derivations lie in the estimation criteria and in the
spproximation procedure applied. With the help of [9], various structures
of filter dynamics are listed in Table 1, with the corresponding forms of
error covariance equations in Table 2? where the one dimensional casé ié COn-
sidered. To make comparative discussions more clear, two examples are shown
in this section.
[Example-1] We shall first consider the.one—dimensional case. The dyna-
mical system considered here is schematically shown by the block diagram in
Fig. 3.

From Fig. 3, the stochastic differential equation of the dynamical sys-

tem is given by

(6.1) ‘ dx = f(-x)dt + qdw

- 12 -
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Table 1: Approximations to scalar nonlinear filtering equations

System dynamics: dx = f(x)at + qodw
Observation channel: dy = h(x)dt + rodv
Filter dynamics: d; = m(;)dt + ro—gn(;)
References ‘ : m(x) ) n(x)
: longs Vo ° 1wl
(9] £(x) + 5" (x)p ph' (x)[y - h(x) - ph"(x)]at
- - 1 /2y - ' > 1w/l
[12] £(x) + 3£"(x)p ph'(x)[y - h(x) - Sph"(x)]dt
[13] £(x) eh'(x)[y - n(x)]at
[14] £(x) ph' (x)[y - hix)lat
[16] £(x) ~phy(t)[ay - nlx)at]

denotes the derivative with respect to x

Table 2: A list of error covariance equations

Error covariance equation: %E—= el(;) + q02 + ro_eez(;)
References el(;) B 82(;c>
[9] 2pe" (x) 570" (x)2 + 70" (x) [y-n(x)-Zpn" (x)]
[12] ' 2pf" (x) —p%n'(x)°
[13] 2pe (x) 70 ()% + 20%0" (%) [y-n(x)]
[1k4] 2pf'(;) —pzh'(§)2
[16] 2pb(t) —pghe(t)2

- 13 -
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with

(6.2) f(x) = sinx

where u = 0, and Kl = K2 = K3 = 1. The observation process is
(6.3) dy = xdt + rav

Application of (5.11) and (5.12) to the present case brings

-sinx exp(-0.5p)

o
—
t
i

(6.4)

-cosx exp(-0.5p)

(6.5) b(t)

The approximated filter dynamics and related error covariance are respectively

determined by

(6.6) d; = -sin; exp(-0.5p)dt + pr-z(dy - ;dt)
and
(6.7) ‘ %$-= -2pcosx exp(-0.5p) + q2 - p2r—2

As anocther possible method of approximation, we shall consider the method

of Paylor expansion developed by [9]. We expand the nonlinear function into

the following form,

(2)

ijk

\

(6.8) e () = £,(%) + e, GGy - 50+ g, Bl G ) g )

where fi expresseé the i-th component of the nonlinear vector function, T,
fp.(l) = 3f./dx, and £, (2)
ij i J ijk
It follows from (6.8) that

= 32fi/8xj8xk, and where i,j,k=1, 2,..., n.

(6.9) B = e G ke Boe,,

where Py Sxpresses the (j, k) element of covariance matrix P. Bearing (6.9)

in mind, a somewhat tedious calculation leads to the results,

(6.10) dx = (-sinx + %'sinx pldt + pr_a(dy - xdt)
(6.11) %$-= -2pcosx - pgr_2 + q2

Comparison of numerical aspects of filter dynamics determined by Egs. (6.6)
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and (6.7) with those given by Egs. (6.10) and (6.11) is shown in Figs. L and 5.
[Example 2] Secondly, we shall consider the two-dimensional case. The dyna- o

mical system which is given by Fig. 6 is determined by

(6.12a) dxl = x2dt
(6.12b) dx2 = [—x2 + f(-xl)]dt + gdw
with x = xl*dx/dt = x, and with
x3
(6-1_2(3) f(x) =X - -8-
where u = 0 and Kl.= K27= K3 = 1. The observation process is
(6.13a) dy, = x,4t + r dv,
(6.l3ib) _ d.y2 = ngt + I‘gdv2 :
where ry=r,=r. In this case, it is a simple exercise to obtain from
(5.11) and (5.12) that
*2
(6.14) a(t) = Lo L3, §p :
2 1 81 851171
and
T 0 1
B(t) = R
. 32 3
-l g Y EPn -1

The approximated filter dynamics and the related error covariance are res-

pectively given by the following form,-

~

(6.16a) d;l = x,dt + pllr_e[(xl-;l)dt + rdvl] + plgr_2[(x2—;2)dt + rdve]é
(6.l6b; d;g = (—;2 - ;l + %;13 + %&lpll)dt B
+7p12r‘2[(xl - ;i)dt +-rdvl]
+ pypr L (x, : x,)at + rdv,]
(6.17a) | §§%£'='2P12 - P112r_2 - Plzzr_g

- 16-
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Fig. 6. Block diagram representation of the dynamical system

considered in Example 2

T

ic , - oy oy o1y 3yas.
ittt oA R A Wi
Filter Dynamics
Siraara diﬁizdhpﬂfz(dy‘—l'dt)’gzrq(dyz-)‘&d! )
Scheariz ake(-k,-% !&—x? Yat-3x, g dter, r2(dy, -k, dt) B2 (dy-kdt)
40315 %(0)=10 y(0)=0 y (0):0 %(0)=0  %,(0)=0

Fig. 7. State estimator dynamics
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dp,,

12 322 .3 v
(6.17b) 3 - Pttt E Xt EP) Yy - Py
-2 .
T Py1Piof T PioPop
dp N
22 _ 3:2,3 B
(6.17c) T 2[(-1 + 8 Xl + 8 Pll)P12 P22] +q
2 -2 2 -2
"P1p T T Pop

The results obtained by using Taylor series expansion are listed below:

" s .
(6.18a) dx, = x,dt + p ,f [(xl - xl)dt + rdvl]
_2 ~
+ PyoT [(x2 - xz)dt + rdv2]
<~ s 1.3 3-
(6.18b) dx2 = (-x2 -x tEgxT o+ 3 xlpll)dt
-2 ~
+ DT [(xl - xl)dt + rdvl]
+p ‘r-2[(x - x Yat + rdv.]
22 2~ % 2
dp
11 2 -2 2 -2
(6.19a) & P TPy T Pip T
dp
12 3r02 - -2
(6.190) To = PPl HFX) Py f Pyp - PPyt PioPos
dp
22 3~02 2 2 2 2 _p
(6.19¢) === 2[p12(—1 + 5 %) - pl ra - p S Tep

Comparison of filter dynamics determined by Egs. (6.16) and (6.17) with

those given by Egs. (6.18) and (6.19) is shown in Fig. T.
7. Conclusions

In"this short note, é special emphasis has been placed on the approxi-
mate method of state estimation for nonlinear dynamical systems with state-
independent noise, including comparative discussions on quantitative aspects
of approximated fashion of fiiter dynamics. Approximations to the optimal
control for nonlinear dynamical systems under noisy observations are develop-

ing by the application of stochastic linearization technique in Markov
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processes mentioned in this short note. PFurthermore, recently, various kinds
of extensive studies on stochastic control processes are being performed,
making the discussion more precise in Markovian frameworks. Particularly,
the following subjects are problems at hand:

(1) Stochastic linearization method for ﬁonlinear dynamical systems with
state-dependent noise

(2) Accuracy of the stochastic linearization method

(3) Contrbl performance deterioration due to the estimation error and its
compensation

(4) Stochastic controllability

(5) Use of another type of stochastic differential equation [5]
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Special note

The descriptions in Sections 5 and 6 are entirely new. A full account
including more detailed aspects of numerical results will be appeared later

as a. paper.
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