Sp(2) (=16) to H-space (=)117

京大 理 今西英器

Lie 群でない、有限次元 H-space として、S?, RP(7) が知られている。最近 Hilton-Roitberg は新しい例を見出したので、それについて報告したい。この例は、从下に見られる様に、代数的には強んと区別のつかない。Lie 群と H-space の間隙を示すものとして興味深く思われる。

 $(E_{\alpha}, P_{\alpha}, S^{n+1})$ を $\lambda \in \pi_n(S^3)$ を characteristic class $\chi + 3$. S^{n+1} 上の principal $S^3 (= Sp(1))$ - bundle, $\omega \in \pi_b(S^3) (\cong Z_{12}) \in Blakers$ -Massey の字像、 $\chi + 3\chi$. $\dot{E}_{\omega} = Sp(2)$ であるが. Hilton-Roitberg の結果は.

" Enw ≠ Ew , Enw は H-space" と言うのである。ここで ユ は ホモト co - 同値を表わす。 これは、次の定理 1.2.の系として出る。

定理1. $x, \beta \in Tin(S^3)$, $E_x \simeq E_S \iff x = \pm B$ 但 l. 11>3.

定理 2.
$$E_{xB}$$
 を induced bundle $\varepsilon + 3$. $B = k \times \frac{k(\ell-1)}{2} \omega \circ S^3 \times = 0$ (S It suspension) $t > k$. E_{xB} $t + trivial$, i.e. $E_{xB} = E_x \times S^3$

$$\begin{array}{ccc}
E_{\alpha\beta} & \longrightarrow E_{\beta} \\
\downarrow & & \downarrow P_{\beta} \\
E_{\alpha} & \xrightarrow{P_{\alpha}} & S^{n+1}
\end{array}$$

定理1の証明.

← は明らか、 ⇒ を証明する。

 $f: E_{\star} \longrightarrow E_{\delta}$ を homotopy equivalence とする。 Exのfiltre S_{\star}^{2} に対し、 $f \simeq f$ で $f(S_{\star}^{2}) \subset S_{\star}^{2} (= E_{\delta} \ \sigma \ \delta \ \delta \ filtre)$ となる f' がこれる。 二つの対、 $(E_{\star}, S_{\star}^{3})$, $(E_{\delta}, S_{\star}^{3})$ の homotopy exact seq. を 私で結べば、 ⇒ は 容易 に 証明 さ れる。

定理2の証明、

 $f_8: S^{n+1} \longrightarrow B_{S^3}$ 至 E_B の classifying map とする。 B_{S^3} は四元数射影空間 $HP(\infty)$ であり、 セル構造な、 $S^4 \cup e^{12} \cdots$, $U_4 \in Tin(S^4)$ は Hopf-map となっている。証明すべき事は、 $f_8 \circ P_A \simeq 0: E_A \longrightarrow B_{S^3}$ である。

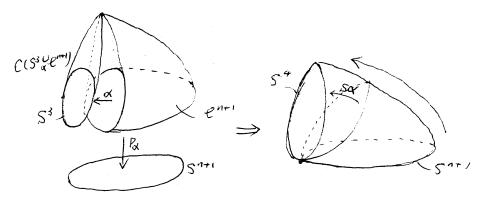
Ran mapping cone = Pan Thom complex について、没がなりたつ。

$$C_{Ra} = S^{n+1} \mathcal{C} \left(S^{3} \mathcal{L}^{n+1} \mathcal{L}^{n+4} \right) \simeq S^{4} \mathcal{C} \mathcal{L}^{n+5}$$

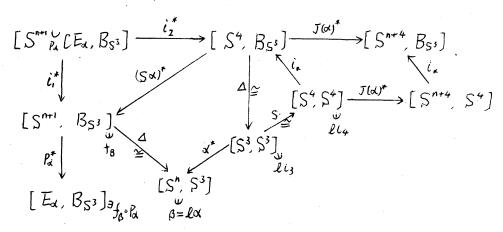
$$\uparrow i, \qquad \uparrow i_{2}$$

$$S^{n+1} \xrightarrow{S \times} S^{4}$$

これは次の図(高次元セルは晩した)より明らかである。



従って次の図式は可換となる。



ここで、上の行と、左の列は exact, Δ is universal exact, Δ is universal exact, Δ is universal exact. exact exact, Δ is universal exact. exact ex

$$J(A) = J(I_3 \circ A) = V_4 \circ S^* X$$

$$J(X)^* l_{4} = l_{4} \circ \nu_{4} \circ S^* X$$

$$= (l_{4} + l_{-1})/_{2} [l_{4}, l_{4}] \circ H(\nu_{4})) \circ S^* X$$

$$= (\hat{\mathcal{L}} \mathcal{V}_4 + \ell(\ell-1)/2 (2\mathcal{V}_4 - S\omega)) \circ S^4 X$$

$$= (\ell^2 \mathcal{V}_4 - \ell(\ell-1)/2 (S\omega) \circ S^4 X$$

ところが、 B_{S^3} のセル構造より、 $i_*(V_4) = C$ 。従って、 $\ell(\ell-1)/2$ $\omega \cdot S^3 x = 0$ なら、 $\ell_* \cdot T(x)^* \cdot \ell(4=0)$ (証終)

球面のホモトピー群の知られている結果によれば、メののder に比して、 $w \cdot S^3 \times$ のorder はかなり低くなっている。従って、定理ユで更た $\chi = \ell B$, $\frac{k(k-1)}{2} w \cdot S^3 B = 0$, $\ell + \pm 1$ となる $\chi, \beta \in Tm(S^3)$ はかなり たくせん存在する。すると、 $E\chi \beta = E_{GX}$ (= $\ell + \ell B$) なんなけん。)であるから、manifold E_{χ}, E_{ℓ} で $E_{\chi} \neq E_{\beta}$ であって $E_{\chi} \times S^3 = E_{\ell} \times S^3$ となる例が作れる。 Hilton-Raitberg の例もこの場合であり、 $\chi = \omega$, $\beta = 7\chi$ (従って $\chi = 7\beta$) としたものである。この時 $\omega \cdot S^3 \omega \in Tq(S^3) \cong Z_3$ であるから、上の場合にあてはまり、

$$E_{7W} \times S^3 = E_W \times S^3 = S_P(2) \times S^3$$

- この右四は H-space であるから Enut H-space となる。
 - 。Enu の性質 (associativeか?)
 - っこの様な constructionは一般化できるか?
 - 。 algebraic にこの様な Space が見出せるか? 等が問題として発っている。