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ON THE CLOSURE OF TRANSLATIONS IN Lp(Rk)

Masakiti Kinukawa

O. Introduction

We shall discuss some aspect of "closure of translations
theoren® (Cf. Re‘.,'f;erences listed at the end of this paper.)

Throughout this paper, we denote a conjugate exponent
of p ( 1{p<{oe) by q, that is, 1 {p<oo, L (a0 /P + 1/q
=1, Let us define a sub-class wg of Lq(Rk) by

wd - ver.d 00 . _ ® 90319 4
iy = .{?(x,eL RIALT R UPHy = s;p{ SRkuHx[ )4 9ix-3)] <g@<}}
where B= (k-1)/p . Note that if k22 and 1{p(2 then

W}%C LE(RK) . For &k > O, let us denote 9&}:)@:@(—6’[;{[) by

: e s N . ~
?g(x} and its Fourier transform ( in L '*Rk> ) by %,(t) .

A
We denote the zeros of the Fourier transform f(t) of f(x) e
tr) vy a(@) .
§l. Key Theorems.
Theorem 1, Suppose f(x)é€ Lp(Rk)nLl(Rk), P(x) € i;u’l% s
N

and f%@= O, then we have lim ?s,(t) = 0 on the complement

1
N § 0+
of Z(f) . Especially, the above limit exists uniformly ‘on any

A
closed interval contained in ‘the complement of Z{(f).
The theorem for the case k=1 was proved by H.Pollard (1],
and there is no essential difference between the proof for the

case k=1 and for the case k22. We shall repeat the argunent
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due to Pollard for the sake of completeness.

vet us put
U(g,t,5) = J’R @ (x)exp(- §lx+y)exp(it-x) dx .
k

A
Take any closed interval I contained in the complement of Z(f).
Then we have a real number a »O0 such that
A N
ine|fe)| > 2 f [£(7)] ay .
tel 7] 2 a
The assumption f*-?=0 implies

(1.1) L{ £(y- ¥ Jexp(it- (y-3) UL§ ,t,y) dy = O.

1

A
Make the difference between U(§ ,%, ?)fat) and (1.1).
‘then we have

U(E ,t,3)5(E) - O

gR £(y-% Jexp(it- (y- §) [U(é‘ b6y § ) ~ UC &;t,y)jﬁy
. |

i}

flsf?ilﬁa ' jzrf-ma Ttz s

An elementary calculation shows that

[v(6,t,3) - 0(s,5,7)]

. 1-1
gty &R | - 31

(1.2) - we Py -y,
where we have denoted constants by M's. 38y (1.2), we easily
see that

' —

L)) g gt71/® f |71 1£()]ay
{712 ‘



and we have
|3,] € 2 sup|u(e,t, 1) j [£() ] a7,
H ¥] »a
where we have fixed b»O0 . Now we are ready to conclude

the following inequality;
sup |U(& ,5,%) {(%(t)( -2 f £(y)| ay
o [006,5, )] sisa O

< M" 6' l—l/p

9

which shows the conclusion of ‘theorem 1.

Theorem 2. suppose f(x)eLp(R?)nLl(Rk) 5 ?(X) €

Pal
12(R.) and 1lim $(t) = 0 on the complement of 72(}).

= €~ 0+
Then we have f# ?: O.

~Q \
L (&Lk, A

For the proof of Theorem 2, we use a tecnigue developed

by 4.Beurling [2] . Put l?: f%#9 , then \['(%)eLeiR‘,) .

3y the Parseval relabtion and the Schwarz inequality, we have

I

PN A A 2
1£(8) @elv) - Y ()| at

S

()

[!]

It

M XR dxl JR (y) ?(X—y){expéugi;{_}fl)_exp<_6vb:£)}dy{2
k X

mli£ly L? [£(y)lay [Ri?(x—y)lel xp(-Fl=-7])
‘k 1

< - exp(-§|x| )‘2 dx .
Hence, by the Lebesgue theorem, s'l_i)rg*l(ﬁ') = 0.
' A AA
since lim | ¥- .= 0, we cet Linlly - £¢_|l 5 = 0, that is
§ 0+ ¥-tely- 0 g0t ¥ Foll 2 7 ’
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| ‘?A< ) A( 1 ? ( ‘{’ * 0
t) = £(t)1lim t) = 0. 30 we have = f = 0.
5’-)01'?" f

Theorem 3. We suppose ?(x)ewgan(Rk) or 9(x)éLq(Rl)f\
. A
o0
L (Ry). Let F be a closed sub-set of _ . If 1lim t) =0
(R) . Lin §.(6)

on the complement of ¥, then the above limit exists uniformly
on any closed interval contained in the complement of F.
Under the assumption" 9éLq(Rl ),\LO'O(R]_)" ,Theoren 3 was bgbx}'ed
n
in[3]. We give a proof under the assumption 9&%@’%,\L2(Rk) R
i

(k 21) ', take any closed interval I which is contained

in the complement of F. Find a function £(x)eé LP(RX{)ALJ'(R}{)

~
such that I supp(f) CF. By the asumption, we have
S . A 2
. . _ .
el-i"gf Pe(t) = O on the complement of Z(f) . Since ?&x)eL (Rk),
applying Theorem 2, we have f*? = 0. Now we can apeal to

A
Theorem 1. and we have lim ? (t) = O uniformly on +t & I.
€0t '0

§2. Closure problems (1).
We shall introduce several notions for the discussion of
"closure of translations problem".

A linear subfamily W of LY pay introduce such the weakest
topology into Lp(;«tk) that it makes only elements of W
continuous liné:'r functionals on Lp(Rk). We call such a
tovpology mentioned above by "w-tovology". We denote the
closure of the linezar manifold spanned dy the translates of
(e Lp'\Rk) by T[f;‘v;] , where the closure is considered

under - W-topology.



L closed sub-set F of B_ 1is said to be a (U;W)-set

if the relations

"N
1ir t) = 0 t € CF ewa iy,
d&ﬂﬁ) on t€CF, @ eWwC L (R,

imply that @(x) = 0, a.e..

Using the notions introduced above, we can interprete

Theorems 1 and 2 iﬁ@he following forms.

Theorem 4. Let f£(x) € Lp(Rk},\Ll(Rk) .

(U;Wd)-set, then T[r;wl] = 1LP(R.).
»¥e ? x

P 1
Theorem 5. Let f(x)eL* (RK)AL (Rk).

If
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R A -
(5 LRI A LR ] = IP(R), then 2(£) is a (U;L3(R)A

LE(Rk) Y-set.

Theorem 6f Let f£(x)€L (R )AL (Ry).

N - LP
(g v AL (R) ] = LP(R,)

if and only if 2(}) is a (U; WY A L5(R) )-set.

k

§5. Closure problems (2).

According to R.E.Bdwards [4] , we shall introduce

notion of thin-set. A closed sub-set F

be (p;w)-thin if the relations

A |
supp($ ) C F, P ewC LR )AL (R

Then

of Rk

a

is said to

. A
imply that ?(x) = 0, a.e. , where supp(?) means the
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fheorsm 7. A closed sub-set FCR. is (3 AT (;{k) )=
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k=1, we can exclude the word " L°(R, ) ©

for The case
from the above sbtatement ( cf. Idwards [4] ), That is, the

notion (U jq(l‘{l})\ ,o° ’511) 3 is equivalent to the notion

T &y \ [6.3) ks N
(p; L3R AL (B D

, , - - s . 2

For the zroof of Theorem 7, suppose = is (’P;E:%,\L (R, ).
- 3 . ; ; A 3o (Fr.:Q 2 R ;
In order to show that I 1is (U;f;,\z AL (ﬁ},))’ it is ernough

A o
s 7=y Fagn! Ty -~ &
lim ‘fe’\‘L) = O on t€CF, ¢ e«,,, L (E,)
. A - - s . .
imply supp(9 J& F. For this purpos, take any closed interval
I C CF. Consider any function \[' /8 ( the 3chwartz space)
- ~ - . ,
such that supp(lfl) & I. Since lim SD 50 in )g (

€50t
ivuti on svace, vhe dual space of ,8 ), we have

C.
(5) V() dt = lim f (5 )(/(t> it .
G'->o+ J% ?‘ + €20+ 71T ?".

semperatve

(3,¥>-

A
By Theorem 3, lin ? (t) = 0, unifornly on t €I. Therefore,
. 6301 F A

we have ?,\y > = C, which shows that supp(9 )& 7.

. U Q-

Conversely, we sucpose that F is (U;n.‘,\f“(fl,_) ).
- X T 2,
n order to show thet £ is (U3l ALT(R.) ) we have
rjel

S
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"
3 T (=Y PR
mply 1im (G, O on t €CH.
6%01$;
. . ‘ 00 . )
Let Sp(?) be the spectrum of ?gxfe (R,_}, that is,
o

exists f(x) € “l’? ) sucih that % = 0

. e P 1. - -
Ue may suprose that I(K'E-up(3k>,\L (R,.) . dow arply “Theorem 1,

[
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A

then we have lim §}<to> =0 , w
€0+

In the second part of the above arsument, we did not use

-2 5
L“-property of T . In fact , we have proved

Theorem 8. If T is (U}H&), then P is . (P;ﬁ%),

vid

§4w Uniqueness theorem for the Poisson summabililty of

trizonometric integrals.

e may interprete Theorem T in the following form:

Theorem 9. Let Q(x) ev ,,/\LQ(P,,) and F be (p;?;;,_% ,\Lg(R}()).

1f 1im f

6 0+ ?(X‘}e:{?(it'X)e::}\\"EIXl:‘ dx = 0

o
S N - . 4
on T €C¥, then ?(K = U, &.€e o (for the case =1, we can
exclude —he word “#p2¢o Y ax i )
RSN K{

e A

any discrete

_ed"cec the closure —rotlem To the srecira
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where Co(Rk) denotes the space of continuous functions on Rk
which tends to zero at infinity. Combined this fact and Theorem

9, we have the following uniqueness theorem:

Theorem 10. A discrete set is a set of uniqueness for the

Poisson summability of trigonometric integrals of Pe Wl% f'\co(Rk>/‘
2 q N
LE(R,) or @ € LRI AC,(Ry)-

From the fact that any discrete set is (p;LI(R)A C, (RD)-
thin, Bdwerds concluded that if feLP(R) AL'(R.) and if z(%)
is discrete then T[f;LQJ = Lp(Rk). This wag proved also by I.E.
Segal [6] .

§5. Simple proof of uniguness theorem for the Toisson summ-

ability of trigonometric integrals.

The proof of Theorem 7 suggests us a simple proof of unique-
ness theorem for the Poisson summability of trigonometric

intezgrals: The following simple result is a key for the problem.

A
mh Y Surn g o0 F i V=
Theorem 1l1. Suppose el ( k). If %£%+ cit, O for

all te Rk , and if the above 1limit exists uniformly on any

finite closed interval in R

. > then ? = 0, a.e. .

The proof of Theorem 11 is nothing but the repeat of the
A A
proof of Theorem 7. In fact, we have lixl? ==?, distributional-
€30+ 6 n
ly. The assumption of uniformity implies that lim ? = 0.
A €30t F
This means that @ = O, that is, ¢ = 0, a.e. .
As a consequence of Theorem 11, when we want to conclude
A
"9 =0, a.e. " from " lim f‘(t) =0, everywhere " , it is

§30+4
enough to show that the above limit exists uniformly on any
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closed interval in R, . Therefore, combine Theorem 3 and

Theorem 11, we have

3 o 2 1, > -
Theorem 12. Suppose ?ew}% nL (Rk) , k=1 . If

N
lim t) = 0, everywhere on R, then = 0, 8.4 &
6'-9 0 + ?6( 9 y k k] ? 9

ol
We have to remark that we do not drop the assumption " L™ ™
from the above theorem even for the case k¥ = 1. The situation

is as follows: ZFor the proof of Theorem 3% under the assumpiion

" P e Lq(Rl),\Loo(Rl) " , we need the uniqueness theorem.(Cfo
Proof of Theorem B in [1] and Proof of Lemma 2 in [53 .

However, when we prove Theorem 3 under the assumption

"Q e WEIWLE(RK), Kk 21 * , we do not need the uﬁiqueness

theorem.
When the case k = 1, we can generalize Theorem 12 in the

following way:

Theorem 13, Suppose Qe Lq(Rl dA L% (Rl} , and

(5.1) j;; §%(t}'2 at € C(I) { oo, for§>»0 and for any

finite interval I in Rl .

where C(I) is constant devending only on I.

~N
If %3%*?€(t) = 0, everywhere, then 9 =0, a.e. .

For the proof of Theorem 1%, we have to show that the limit
A
éi%fgs(t) = 0 exists uniformly on I. In order to establish
the above, we need a theorem corresponding to rheorem 3, and
hence we want to have a result of type of Theorem 2. For this

purpose, just repeat the argument in [2] , then we have

Ne]
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Theorem 14. Surppose [xll/gf(x) € Ll(Rl) y PE .%° (Rl)
A ”
and (5.1). If }%%fff(t) = 0 on the complement of Z(L), then
%9 = 0.

From Theorem 14 and Theorem 1 of the case k¥ = 1, we have the

following:

Theorem 15. Suppose ?E-Lq(Rl),\LOO(Rl} and (5.1). Let F
be a closed subset of Rl . If %§%+§€(t) = 0O on the complement
of ¥, then the above limit exists uniformly on any closed inter-

val contained in the complement of F.

From the above setting, we can conclude Theorem 13.
Remark that (5.1) holds if §& L°(R,). This follows from the
Parseval relation.
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