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A two point connection pro

single linear ordinary differential eguation

by Mituhiko KCHNC

(R.I.M.S. Kyoto University:

1. Introduction.

In this lecture, we should like to
two point connection problem for an n-th ¢rder singie linear
ordinary differential equation with an irregular singular point

of rank 2. A two point connection problem is tc ssek "'the solu-

tions in the large" of given ordinary differentisl equations.
Until now, there are several investigations on tnis preolem. G.D.
Birkhoff initiated this study, and then, H.W.Xnozlcch, H.L.Turrittin

-and K.Okubo developed it to a certaln extent. Scx
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a system of ordinary differential equations with an irregular

single ordinary

W

singular point of rank 1 and the other studied
differential equation of which the coefficients of convergent
solutions satisfy the two term recurrence formula.

Now, we shall explain the above last line. One method to
seek'"the solutions in the large" is to analyze the convergent
solutions in the neighbourhood of a regular or regular singular
point for the purpose of deriving the asymptotic behavior of them
near an irregular singular point. Ordinarily, the convergent
power series solutions can be represented by the product of a
multivalued function (fractional power) and an entire function,
in the case when the given ordinary differential equation has a

regular singular point at origin, an irregular singular point



at infinity and no other singular point elsewhere in the whole
compiex plane.

S Itids clearbthat the entire function will mainly contribute
_to the asymptotic behavior of convergent solution near infinity.
.. Hence, wé had better to investigate the asymptotic behavior of
”the eﬁtire function near infinity which depends on the coeffi-
‘cients of power series of the entire function. The coefficients
of convergent power seriés solutions of ordinary differential
equations satisfy ﬁhe recurrence formula. We reduce the recurrence
formula to the same difference equation by the change of integer
to complex variable. '

And then, if we could analyze the behavior of solutions of
!,the difference equation, we will be able to get the behavior of
the coefficients of large powers and the asymptotic behavior of
tﬁe entire function, or the convergent solution near infinity.

Now, if the coefficients happen to satisfy the two term
recufrence formula, the cdefficients, in general, can be represent-
ed byrthe generalized Gamma funétion which have been studied in
detail by E.M.Wright and others. |

So, the two péint cbnnection problem for linear ordinary
differential equations with an irreguiar singular point of rank 1
has been almost completely solved because the coefficients of
néoﬁvergent soiution5~of that equations also satisfy the two term
 vrecury¢nce fbrmula.

fhe two point connéction problem for linear ordinary differen-
.tial_equationS‘with an ifregular singular point of higher rank has -
. thryetlsfudied and it éeems to be a very difficult problem, since 1

the solutions of the reduced difference equation can not so easily

{



analyvzed as Gamma function.

Recently, K.Okubo showed results for a syster . ..dinary
differential equations with an irregular singular point of rank
2 without,complete proof in the book '"Proceeding of United States-
Japan Seminor on Differential and Functional Equations'.

Here, we shall explain some results derived for an n-th order
single linear ordinary differential equation with an irregular
singular point of rank 2. |

The difference between a single ordinary differential equa-
tion and a system of ordinary differential equations has not yet
clarified as described in the paper "Solvable Related Equations

Pertaining to Turning Point Problem'" by H.L.Turrittin.

2. Properties of convergent solutions and asymptotic solutions.
An n-th order single linear differential equation with a

regular singular point at origin has the following form,

n d™x B = ‘ n-4 dn—ﬁx
Cl) S JLZ;I R

where az(t] (¢=1,2,...,n) are holomorphic at origin.
On the other hand, an n-th order single linear ordinary
differential equation with an irregular singular point of rank 2

at infinity can be written down as follows,

g dM 4.
aetv

- b (1) t
at? =1 ¢

(2)

’ where bz(t) (2=1,2,...,n) are holomorphic at infinity.
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Therefor, if we consider an n-th order single linear
ordinary differential equation which has a regular singular
point at origin, an irregular singular point of vank 2 at infinity

and no other singular point elsewhere, we have from (1) and (2), -

(3) a, (1) =t (1) (2=1,2,...,n)

from which the coefficient aﬂgt} must be a polynomial of degree
at most 2%

And, if we write

!

(4) a,(t) = > a t’ (2=1,2,...,n)
0
we have the most general n-th order single linear ordinary
differential equation with above property as follows,

a4y
n-g2

24

n’ 1
(5) T S a tT)
=1 L,

r=0 dt

Now, by the theory of brdinary differential equations,
the convergent solutions in the neighbourhood of a regular

singular point have the form
p - X
(6) x.(t) = t3I 2> G.(m) t" (j=1,2,...,n)
J , m=0 J ’
where 05 are roots of the characteristic equation
n
(7) p(o-1) "** (p-n+l) = >~ a, o o(p-1). .- (p-n+l+1)

=1

and pj—ok # integer'(j%k) are assumed because the convergent




solutions involving no logarithmic polynomials are considered

in this lecture.

We use the following abbreviatior
lel, = eolp-1) .-+ (p-n+1),  [p]y=1

and the characteristic equation (7), for example, can be written by

At first, we shall investigate the coefficients G.(mj of

convergent solutions. Now we denote the differential operator
t%E by D and then we have

P
(8) P & - pp-1) -+¢ (Deprl) = [D]

m+g

If we apply the differential operatof {8) to G%(m)t T,

we have

dp ) m+p. . m+op.
9 P & c.mt ! = gG. +o0.].t I .
(9) i ka) J(m) [m oj}p

Hence, if we substitute the convergent solution x.(t)
, J

into the differential equation (5), we obtain

[ m+e.
J
(10) mZ=0 Gy (m) [m+0. ] ¢

m+o .
°5

n © s
22 (1) 27 Gym)Imeo ]yt

m-r+0.
J

n o
- T 5
= gil E az’rt E Gj(m~r)[m-r+pj]n_2t

r=0 m=r



© n 22 m+pj
= Z (Z aﬁ,r Gj (m-r) [m'r"’oj]n_g)t

where we put G.(-r) = 0 for r=1,2,...2n.
Equating the coetfficients of like power of t in the both

side of (10), we have the following 2n-th order recurrence

formulas
S
lc.*m]_ G.;(m) = a [p.+m-r]__ . G.(m-1),
J =1 r=0 Lt n-% J
{11 S
C.i-ry) =0 (r=1,2,...,2n).
Specifically, if we put mio, we have the characteristic

A
zs follows,.
2

n
T2.1.G.(0) = a G.(-t)[-r+p.
(251,65 (0) ;ga o 4,r GO el

I

]
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a . G. (0

and we can put G.{0)=1 from the assumption 057Pk # integer.
Next, we shall consider the formal solutions in the neigh-

bourhoocd of an irregular singular point with the following form

xFrey ~ expc’.%k 2+akt)tyk > w(s)tTS (k=1,2,...,0)
= s=0

-~
[
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where the constants /, are roots of the characteristic equation

n

n
3 A" o= 2T a0



and the constants Gys My are determined later.
. . .- k R
In order to investigate the coefficients h s) of formal

solutions, we introduce new notation

b sy
oL

_ p. K A 9 ‘ - -
t P é—%— = expffgt‘+akt)t K >’ hg{s)t s,

it

(14) xﬁ(t)

dt s=0
Since
‘ -1k p-1.k
k -1d . <pr1 dP7'x , -2 _-p+1 4P x
xs(t) = t7H St S Xy (p-1tT et =X
P dt atP~1 atP1
-1d _k L.-2 k
=t —a—‘txp"l(t) + (P‘l)t xp_l(t) Y
we have
‘e 2 Mg 2k -s
(15) exp( == t° + g t) t © > hi(s)t
2 k S P
A2 My 2k -s
= expCE*t + ukt)t [kk 22% hD_l(s)t
s=0 =
e a7 BE (sc1)t7Se 37 (uieprl-sihK - (s-2)t75)
0‘1( 1 Uk P p_lk )

Equating the coefficients of like power in the both side

of (15), ﬁe obtain the first recurrence formulas
k _ k k- ko
(16)  h(s)=ayhy ) () +ayhy g (s-1)+ (yrprloshy ) (s-2)

(k=1,2,...,n)

where for the moment we assume h§(5)=0 for s< 0.

Now we substitute xi(t) into the differential equation



30 0
e odlx ;%7 (SF L pTT2m(ne) a " x
e =1 =0 YT aen*t
and we derive
S n 24 =k +r-20
P e S_ S+T
s= =1 r=0 s=
n 22 o
k -5
=57 57 a S>7  hY_ (s+r-20)t
¢=1 r=0 L,r s=r-22 n-%

Again equating the coefficients of like power in the both

Hy

ide o

0

[

{(17), the second recurrence formulas are derived as follows,

(S8}

% K
a, o By, (s+T-20) (k=1,2,...,n)

L k =
{18 hn{5)= Z
=1 r=0

&

Here, we shall try to represent hg(s) by hk(s)=hg(s)
from the first recurrence formulas (16).

T a little complicated calculations, we can represent

s
AT

(¢1

n
W
tn

follows,

o 3
= s P oy _ _ 3
(19> 1i sj= N ( )Aﬁ Qrr a% 2r H(p,q,r:s)} hg(s-q)
e g=0 i\ r=0 \q—r/
where [ ] denotes Gauss' symbol and
P ' P! X
( ) = — for g £ p

q q! (p-q)°

= 0 for g > p




With respect to the coefficient H(p,q,r:s) in the brachet,
it seems not to have an explicit formula in general. We can
only say that H(p,q,r:s) 1is a sum of 1 degree polynomial of
(Uk+1'5'j)' For example,

H (p,q,0:s) =1

H (p,q,1:s) = ¢ (W *l-s+j)

q

e

j=q-1

where Cq is a constant independent of s .
But, with respect to the coefficients of the terms needed

later, we can fortunately give them explicit forms and, in fact,

we have

k _ P .k p-1 k. _
(20) hp(s) = Kk ha(s) + pAk 0y ho(s 1)

- 2 -1 P . k
+{AB£%~11 Ai 2 a§‘+ki %;i(uk+l_5+3)} hy(s-2) +
. k
cae T poak[uk-s+2p-l]_p_1 h0(5-2p+1)

# [uk-s+2p]p hg(8~2p)

The proof is done by induction. For p=1, it is evident from

the first recurrence formulas
k k k ' k
hl(s) = Ak ho(s) * oo ho(s-l) + (uk+2-s) ho(s—Z) .
If we suppose that the formulas (20) are true for p and

substitute these formulas into the first recurrence formulas

for p+l1 , we have
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kg = |, P nkK | p-1 k
Aps1 (8] Ty Ay Bgls) + phy Ty g (s-1)

[N
~~
v
'
[S)
—
+
)

X
(S—Z}+...+pak[uk—s+2p+l]p_1h0(s—2p—l)
¢ [py-s+2p+2]. h¥(s-2p-2)
My p p 0 P

\ . B
Ak hg(S) + (pkicxk“'}miak) ho(s'l)

P B

" p(p-1).p-1 2 12, . k ;
*1 e I YL N E%ﬁ(uk+1-s+3)+x§(uk+p+2-s)}ho(s-zl

e oy L s 12 pay e p2o9) [y s #2011, g i (5-2p-1)

* (urpr2-) [y -s+2p+2] hy (s-2p-2)
=R nges) ¢ (IR oy h(s-1)

[ +1
. (p+l .p-1 2 i: . - k
] 4£~;lg-a§ op * Ki 2 (uk+l-s+3)} ho(s-2)
. J’_" .

v (pr1) ap Ly sele2p] h(s-2p-1)

k, B
+ [uk—s+2p+2]p+1 hOLS—Zp 2)




Invariant identity

(o2

ot

Now we shall investigate an invariant identity or tne linesar
ordinary differential equations with an irregular singular point
of rank 2 which is described in general form in Ince's book. The

invariant identity will play an important role later in the prcof

of independence of solutions of the recurrence formulas for G.(m).

If we assume that hg(s) =0 for s <0, it is clear from
the representation formulas (19) that for all p , hg{5}=0 are

satisfied whenever s <0
Here, we shall put s = 0 . From the second recurrence

formulas, we have under the above assumption,

n

k k
(@) Ry (0) = 27 3y gy By (0).

On the other hand, we obtain from the representation formulas,

k k
(22) hp(O) = xi hy(0).

Substituting (22) into (21), we have

n .k _ L n-g k
Kk hO(O) = gg% aQ,ZQAk ) hO(O)
Since Ak is a root of the characteristic equation for an
irregular singular point,

n-¢ _
,ar 0 =0

M=

(23) F(A) =A™ -
£=1

the last formula is satisfied for arbitrary hg(O) and we can

put hlé(O) - 1.



Next, we shall put s = 1. Again from the second recurrenc:

formulas, we obtain
24)  nKa) = 37 a W (0) + D7 a n® (1)
' n i 2,22-1 "n-8& = 2,29 "n-%
and from the representation formulas, we have

) Lk P Lk, -1 k
(z%) ho(1) = P ohg() + pA ay hg(0) .

Substituting (23) and (22) into (Z4), we have
n
. .I n-% k.,
Cry - gz% 3 ggMc ) hp(D)

. n-1 n n-2-1 hk a
(may ~ - E?} 2y 24 (n-2) Ay ) ay hy(0)

n
- n-% .k
= g;; 3y 29-1'k  Do(0)-

Since the coefficient of hg(l) is the characteristic equation

and h%(o) is not zerd, the constant o is determined by

-2
oy = xi / O E'( A ) .

M

(26) a _
£ 0,201

Here, if we integrate the function

I ' n-4
>7 a 1A / F(Xx)
£ %ra22-1

along the sufficiently large circle with its center at origin



in the complex A- plane,

we have the following relations from the calculation of residues,
‘ﬁ%
(27) G, = a
ey k 11

Lastly, in order to determine the constant By s wWe shall put

s = 2 . Again from the recurrence and representation formulas,
‘we have
k % k 2 k
(28  h,(2) = 523 ag,20 Ppog (2 * 22 &y ey by (D

2P a2y« P o @) ¢ oHp) BS0)

k
(29 hy(2) P

where

- - - P
H(p) = RLBTL) \P-2 2, b1 ;:; (Hy*t1-2+3)
J:

Substituting (29), (253) and (22) into (28), we have

n n
= - : _ n-%
(30)- H(n) = g;l Ay 20 H(n-2) +;§1 a2,22~l(n 2) Ay oy

3 ay gy T
& ,20-2 Tk

because the coefficients of hg(Z) and hg(l) are equal to zero
from the relations determining the constants Agr Q-

Now, the constant M can be determined by the relation

- 13 -
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(31) E'(A) uy

-1),.n-1,.n-2 2, & n-2) (n-2-1),.n-4-1. .n-2-2 2
D G T 2 o, D (D) (Lt
n n
-g-1 n-g
+ g a (n-2) A% a, + . a o A .
=1 2,Z$~1 k k =1 £,29~-2 "k

By the similar calculations of residues described above, the sum
~ L .. n-1

of the constants p, will be equal to the coefficient of )

in the right hand side of (31).

Hence we have
) n
- _n(n-1) _
(32) ﬁ;% B = > tay g -

On the other hand, from the characteristic equation for a

regular singular point

N

[C- ]H = aQI’O [D ]D‘Q,: (p—pl)(p“pz) .o (O’On) =0 >

L=1

we have one more relation as follows,

(33) gz& ox = 21 ¢ +.EL%;11 i

=]

After all; from (32) and (33), we obtain an important "invariant
identity"
n

n
(39 27 o= 2wy + n(n-1)
k=1 k=1
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