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On the Frinciples of Invariance in the llon-Staticnary -

Radiation Field

Masamichi Matsumoto

Faculty of Engineering, Gifu University

1. Introduction.

In the theory of radiative transfer,. the principles of inva-
riance play an important role. Chandrasekhar's vrinciples of in-
variance can be applied to the stationaryv radiation field in a
homogeneous atmosphere [1]. Ueno [2,3] extented  the principles
for the stationary radiation field in an inhomogeneous atmosphere

-and- the non-stationary radiation. field "in a finite nhomogeneous
atmosphere.

In the present paper, we shall extend the principles for the
non-stationary and three-dimensional radiation field in an inhom-
ogeneous atmosphere. The principles can be applied to the prob-
lem-of diffuse reflection and transmission of a pulised search-
light ‘beam by a finite atmosphere. To simplify the discussion,
we shall assume the scattering is isotropic. In the thecry of
non-stationary ;gdiative transfer, we should take account of the
following two time scales: the duration of temporal capture an
the mean free time.  Starting  with the equation of transfer in-
volving these two time-scales, we shall derive +the principles of

invariance-

2. The Equation of Transfer
In an isotropically scattering medium, the intensity of ra-
diation at time t at point R in direction O satisfies the

equation of transfer in the form

bt

Qe + Q,(E) ] I(tr_R_lﬁ) = Z_n(tl_l:’:)I (

11}

In the above expression, ¢, &, @ and

|

where D =2 .
u du
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are, respectively, the velocity of light, the volume attenuation
coefficient, the directional unit vector and the position vector.
z 1is the source function given by

t
Z(t,R) = o(R) [4 T(t',Ryexp[-(t-t')/t,lde'/t, , (2)

where .0 1is the volume scattering coefficient, tl is the dura-

tion -of temporal capture and J -  is the mean intensity such that
J(t,R) = (1/4m) [, I(t,R,2)dgQ. - (13)

The integral with subscript 4m is taken over the: all directions.

In a system of Cartesian or cylindrical coordinates, the z-—
axis is chosen to normal to a finite plane-parallel atmosphere
whose optical properties wvary -with z . In the system of coordi-
nates, the pcosition vector and the directional unit vector can be

expressed in the form

R = (r,z), and 0 = (w,H),
where the two-dimensional vectors. r and w are, respectively,
the orthogonal projections of the vectors R and § on the  xy-
plane, cos—l; is the co-latitude of the unit vector O (-1 < u
< 1) and §2j = f}l—uz). Since the optical properties vary along
the 2z-axis, we can write £{R) = L(z), o(R) = 0(z2). For & and

g ., we reguire. the following conditionss:

0 < &, < 2(z2), 0 <o0(z2) <o

1 and 0 < 0,/%; < 1. (4)

b

We shall use I_(t,g,g) to denote the intensity directed to-
wards the ‘upper surface 2z = o and I+(t,§,g} for éhat direc-
ted towards the lower surface 2z = R , where 2z 2 g and 0
< p < 1. Then Eq. (1) can be writtén’

+

5 T uD, 1 I"(t,R,Q) = £(t,R), (5)

_lD + E.v

<7,

where VZ is the two-dimensional nabla operator.

Let radiation of intensities (t,r,2) and I,(t,r,2)(0 s

o



£ ) (0 < u<1) fall on the upper and lower surfaces, respective-

ly. Then the initial and boundary conditions for Eq. {5} are

F(6)

I+(t,r,0t,_@_) = Io(trrl?"_)l
(7))
I (t,r,8,Q) = I,(t,r,2.
Now, we consider the following transform:
f(s,p,2,2) = [, dt [f(t,r,z,Q)exp(-st+ip-ridr, (8)

where the r-integral is taken over the entire xy-plane. We assume

that I(t,R,2) is bounded with respect to ¢t and satisfies

[l1(t,x,z,2) lar .

o+
Then the transform of I converges. uniformly for Re s > 0 an-
0 < |p| <= . with the aid of Eg. (6), the transform of Eg.

gives
[ tup, + {2(z) + c/s - i@jg}ifi(s,g,zrgf = y(s,z)J(s,p,2),

(%)
where:
. g -1
¥i(s,z) = o(z) (Ll + stl) - (10)

and .
J(s,p,2z) = (1/4m) I4Tf(s,g,z,g)dgw (11)

Eq. (7) is transformed into

T‘-"(SIErOLrQ) = _I.O (SIEJE) ’

o~
(S
e

]

T (s,p,8,2) = I;(s,p, Q).
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The formal solution of Eg. (9) subject to (12) is

T+(errztg) = —I_O (SrE,rg_’)n’(Oﬂfer)
+ LY, 2,0 (T (s,p,2) M0, (13)
_I—-(srgrz-'g_) = fl(S»r_Erg)ﬂr(ZrSrQ_a)
+ L7 (z,8,0){T(s,p,z2") /1 , (14)
where
n(a,8,9) = expl-{(t,~t ) + (s/c - iw-p) (8-a)}/u]
= 1/n(B,0,0) (15)
and
lz . i
= f, 2(zhdz . o (16)

In Eqs. (13) and (14), 17 and L7 are

Il

8 e
L (o, 8,2 {£(z")} = [_v(s,z'yn(z' 8,2 F(z")az", (17)
and R
[ x(s,2")Inla,z',2)E(z")dz" . (18)

L™ (a,8,2) {£(z")}

From Egs. (15) (17) and (18), for ao < u

A

B, we have

n(a;ng) = nlo,u,)n(u,B,0), - (19)

L7 (a,8,2) = L (a,u,2) + n(e,u, L (1,8,0), (20)
and EEE
A , + '
=t (u, 8,9 + n, 91t (0,u,9. (21)

L¥ (a,8,9)

Substituting Egs. (13). and,(l4) into Egq. (l11), we obtain the

integral equation for J as follows:



(1-1L)(,t,z2){J(s,p,2"}} = B(s,p;2),

where the linear operator L is defined by

. g
L(a,8,2){f(s,p.2")} = (l/4ﬁ)faY(S,2')K(z.z')f(s,

with
K(z,z') = [n(z,z',2)dQ/u if z' >z ,

I

[n(z',2z,2)dQ/v if z > 2" ,

1 - is the identity operator and B is

&
s

¢ . A \
(1/4m) j, Ty(s,p,2nla,z,2)d8

B(s,p,z)

R
+ (1/4am [ I,(s,p,2)nlz,2,2)d8.

(22)

prz'idz’,

(23)

(24)

{25)

THEOREM 1. If B is bounded on the following set Ds

n
2
[

A

D= {(s,p,2)| Res >0, 0 < lpl < =, a‘i z

then Eq. {22) has one and only one solution.

&

PROOF. Let (D) be a set of funciions bounded on D.

Then @{D) is a Banach space with the norm
[{£l| = sup [£(s,p,2)] {s,p,z) € D.

Hence ‘L is regarded as a linear operator on (D)

“From Eg. (23) it follows,that
. g 7 |
Jlnel] < t]f[5(1/4w)jaiy(s,zt>!!K(z,zf;;dz*.

By Egs. (10) and (15), we have

d -—l .
ly(s,2)| < c(z)-ll+stll. < afz) 20y

~and . :
In(z,2',2) ] < expl-(4+ Re s/c)|z-z"[/ul.

u

(26)

(27)

(28)
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Hence from (24) we havé
7 IK(z,éfil < ZWEI[ (21+ Re s/éi!z—z'l], » (29)
whére
Eh(ﬁ¥ = f::tfnexp(-ﬁu)dé; | C o (30)
Ffomf(ZTf and (29) it follows that

g
(1/4w)j&iy(s,z*)]~1K(z',z;[dz'_

< 0,8, + Re s/c) 12 -~ E,{(%; + Re s/c) (z=a)}.

- B,{ (2, + Re s/c) (B-z)}I£2.
< (07/2) [1 - Ey{2) (B-a)/2}T
<

1 - E, (8, (B-a)/2] = A <1, - (31)

where (4) is used. Therefore from (26} we obtain
[lue]] < A|{£f}], and hence ||L|| <1 .

Then Eq. (22) has one and only one solution for B & 3(D). Thisﬁ

completes the proof. ) ) '
Now we consider decomposition formulae - for operator E;%

For an arbitrary u in' the interval {a,8], we have 'J

"L(x,8,z) = L(u,B,2)

+ (1/4m) fn(u,z, 2L (0,u,2)d0/n (@ < u <z < B),(32)
L(d,B,2) = L(a,u,z)
+ (1747 [n(z,u, 2L (u,8,2)d2/u (¢ <z < u < B).(33)

)}



These equations can be obtained by Egs. (20), (21  ~d (23).

3. The S- and T-Functions

In:  the theory of radiative transfer, it is convenient to
distinguish between the diffuse radi;tion field which arises in
consequence of one or more scatteringkprocesses, and the reduced
incident radiation.field which penetrates to the level z without
any collision process. We shall put a subscript d to all:gquan-
tities referring to the diffuse radiation field. Then we have

AI-‘»(trBrg) = I;(ti,g,&)_
-+ Io[t‘(z—oc)‘/‘cu,z-(z—oc)g/u,QIeXP[—(TZ—Ta)/u] roo (34)
I7(£,R,Q) = I (t,R,Q)

+‘Il[t*(S"Z}/CDpEf(ﬁ‘Z)Q/u,gJexp[‘(TB‘TZ)/U]- (35)

From Egqs. (13) and (14) it follows that

. Ti(s,p.z.@) = L' (a,2,2) (T(s,p,2") b, (36)
and - ‘
Ié(srglzrg)” = L,“-V(Z‘rﬁ,&) {E(SIE;Z")}/U- (37}

‘In what follows, we consider the diffuse radiation field ailone..

We omitt the subscript d ..
Now we consider the diffuse reflection of a pencile of  ra-

diation of net flux 47 incident at time 0 at point r =20 on

the upper surface in direction QQ. In this case IO and Il are

T (t,r,2) = 4n8(£)8(x)8(2-2)), I, (t,r,2) = 0. (38)

We denote the J-function by'J(t,g,z,g,B,Qo)t “From Eqgs.({22),{25)
and (38) we'find that J satisfies the following equation:

(1-L) (o, 8,2) (T (2", o, 8,230 }= n(o,z,2.), . 39



32
where s and p are supressed. Now, we define the S- and T-
functions as follows.

S(t,x,,8,2,25) = I (t,r,,Q2), (40)
 T(t,r,9,8,2,8,) = I'(t,r,6,92). (41)

Then,. by Egs. (36) and (37),

§(a,8,2,2;) = L (x,8,2){T(z",0,8,2)} , (42)
vand‘ ' B :

T(w,8,2,2,) = L7 (2,8,2){T(z',0,8,29)1 . (49)

» THEOREM 2. Let J be the solution of Eq. (39). Then we
have the following functional equation:

J'(Z,OL,B,.QO) =1 (arur%)\] (zzur 6;9_0)

+

(1/4m) f Tz,u,8,20 T (u,2)42", (44)

where: o < w B .

A

Z

in

PROOF;‘,Using~Eqsi (32) in Eq. {39), from Eg. (19) we have
(1-L) (u,8,2) {T (2" ,0,8,25) } = n(a,u,20)n(u,2,25)
+ (1/4m [ n(u,z,8L (a,u,2") {T (2" ,a,8,2,) }d2".  (45)

It is éasy to show that the right hand side of Eq. (45} satisfies

the assumption of THEOREM 1, whence Eq. (45) has only one solu-

tion. Operating L(u,B,z) on. the right hand side of Eqg. (44},

we-obtain the right hand side of Eg. (45). Therefore the right
hand side of Eq. (44) is the solution of Eqg. (45). Hence, Eq.
(44) follows. This completes the proof.

4. The Principles of Invariance
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Operating p—lL_(u,B,@) onfihe‘béth sides of Eg. (44), and

making use of Egs. (36), (38) and"{40), we obtain

+ (1/471')[5 (ulSEQ_ISl' )-i

T (u,Q) = u-l_S(UrB:_,Slo)n(ct.uf

+

Q4)

(w,20an'. (46)

Taking the inverse transform and replacing u by 2z, we find

17 (t,r,z.0)

X

t

+

wé

wTsTt- (zma) Joug - (2-0)wg/u g 28,22
expf*(rz—ta)/uol

(1/4mp) [, dt'fdr'fs(t-t',r-r',z,8,2,2")

x IT(t',r".z,00)d0" . (47

Eq. (47} is a mathematical expression of one of the~prin~.

cipleé of invariance in the non-stationary radiation. field. In

order to-obtain the complete set of the principles, we must con-

sider the illumination of the lower surface simultaneously.

~The physical. interpretation
of Eg. (47) 1is stated as follows.
The intensity I (t,r,z,%) in
- the uppersard direction § at time

t at point P = (r,z) results from

the diffuse reflection of the re-
duced incident radiation 4wexpi-(-

1,77, ) /ugl at point 0 = [(z-a)w,/
pO,Z] at time (z-a)/cuob and. the
diffuse reflection of diffuse ra-
diation field I+(t‘,£‘,z,g’) in-
‘cident on the. surface  z_  at time
t'  at point R = (r',z) by the a-

tmosphereﬁbglow z ( See Fig. 1.

/
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