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Abstracf: A new process for accelerating the convergence
of the.relaxation method by making use of numerical integ-
rations together with numerical differentiations 1s proposed.
Yhile the conventional S.O.B,(successive over relaxation)
requires about 0.36°*N°D sweeps to solve Polsson's equation
in a square to the accurscy of D decimals by dividing it
into NxN meshes, the new process requires only 1.07(D+0.6)
(10g10N+O.1) sweeps. Although the computation needed per
Eweep in the new process becomes several tlues wmore than
that in S.0.R., the total amount of couwputation decreases

considerably for large N.
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§1 Introduction and Heuristic HKewmarks

The convergence rate of the relaxation method, which is
widely used for the numerical solution of elliptic partial
differential equations such as Polsson's equation, has been
considerably improved by the development of S.0.R.(successive

1)

over relaxation) schemes.

1) D.J. Evans: "Estimation of the line over-relaxation
factor and convergence rates of an alternating direction
line over-relaxation technique", The Computer Journal,

Vol.7, pp.318-321 (1964)

number
Nevertheless, there still exist a greatAof computational

problems in which the solution of Poisson's equations or

the simllar form bottle necks in the computational procedure.
Further acceleration of the relaxation procedure is highly
desirable, therefore, for many problems. In the following
treatmeht, for the sake of simplicity and clarity, we shall

focus our attention to the relaxation solution of the Polsson's

equation



5 g(x,y)=L(x,y) in & unit square, O<x<l, O<y<l and subjected
to the condition $=0 at the boundary.

In the relaxation method the square 1s divided into NxN
meshes of slze h=]/N,'and the Polsson's equation is approii—

pated by the finite difference equation

A*ﬂ-‘-(ﬂi.}l’ J+¢1_1, J+¢1,J+i+¢1, 3—-1'“‘61, j )/h2=/°1'3. ees(1)
The relaxation process starts from an initial function ﬂf?a
and the result ﬂ{?J of the s'th sweep 1s computed according to
g, = a{5h ag(arpleEtlop 2
where 1 and )} are made to run ffom 1l to N-1 during a single
sweep, the superscript (s,s-1 means to use the'new value
¢§?J for evaluating (1) if i1t has already been computed and
Al' Az, A3 ... are series of numbers called the successive
relaxation factors.

In the classical relaxation method, the same constant

hz/# 18 used for the relaxation factors throughout the entire

relaxation process. In this classical case, the error can be
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expected to decrease only by a:factor. of exp(-Ef’l/Nz) per
sweep in the average, where Ef;l;Is.the'mlnlmum'elgenvalue

of the elgenvalue problen

Ag +vsf’1¢ =0 L,..(3)

and £ = 0 on the boundary square, and specially E§,1=2n2
in the present case. Hence, 1n case‘the error in the initial
funqt}on ﬂ(o is required to be suppressed by a.factor<of»10-D
or by a factor of D decimal figures, the total number S of
sweeps needed 1s gilven by

S = logg10-D.N?/ES | =0.117-D-N%.  ...(%)

In the S.0.R., the S.0.R. facﬁors Ag's are made to
change in such a way as to lncrease the rate of convergence.
A suitable choice of the S.0.R. factors 1s known to glve a
convergence factor of exp(mjﬁEl’l/N) per sweep. Hence, the
number S of sweeps needed to suppress the error by a factor

of D declimals is given by

S = 1logg10-D+N/J/ZEq 1 = 0.3665:D°N, ~ ...(5)



which 18 much less than that in the classical method. The
amount of computation needed to solve Poisson's equation as
well as similar problems has thus been reduced considerably
py the development of the 5.0.B. method.

The nature of tre convergence rate of the relaxation
processes can be understood intultively by tracing the diffu-
sion of errors. Let us suppose that the initial function
ﬂé?d has a delta function like error at (1',}3'), namely,
argl® _p, =2 Ly (6)

1,3 1,) a3 ik oo
By traclng;numerlcallyror analytically, the behaviour of the
errors in the successive lterants, which are the values of
A*ﬂi?y-thj, the relaxation process will be found to be
nothing but a diffusion process of the errors towards the
boundary where they are absorbed and disappeared by virtue
of the boundary comdition. In the classical case, the errors
are made to diffuse by one mesh unit h=1/NV per sweep. Since

the mean distance of diffusion increases only as the square
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réot of the time in diffusion processes, about N2 sweeps
will be needed to make a considerable portlon of the error
to diffuss through N meshes so that they may be absorbed at
the boundary. This argument clearly indicates the reason
why N° apears 1n the convergence rate formula (4) in the
classical case.

In the optimum S.0.B., the errors are made to diffuse
by /N mesh units per sweep in the average, which results in
the apearance of N instead of N° in the rate fdrmula (5).
The situation is thus greatly improved in the S.O.B..
Nevertheless, about N sweeps are still needed to make a
conslderable portion of the errors diffuse to the boundary.
If, therefore, a process which enforces the errors to be
diffused to the boundary in fewer sweeps could be deviced,
further acceleration of the relaxation method would be
possilble,

The slowness of the convergence of the conventional
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relaxation schemes may be ascribed to the local nature of

the difference operator A* of (1) used in the successive

correction scheme (2). Since the operator A* is the finite

difference analogue of the Laplacian differential operator 4,

1t

of

be

is

in

of

of

deals only with nearest nelghbouring sites, The correctlons
errors in the relaxation process (2), therefore, can only
local in its nature, while the diffusion of errors, which
the heart of the relaxation schemes, are essentially global
its nature. This situation may be 1lmproved by making use
global operators such as the finite difference analogue

integration operators. For example, consider the integ-

ration of the following differential equation

df/dx + af = J(x-x'), e (7)

starting from x=0 and 4f/dx=0,

The result 4s.given by

f(x)=0 for'x<x' and' f(x)=exp{+taf{x~x')))for xdxls' ... (8)
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Equation (8)
sited
indlcates that the effect of a delta function,at the locality
x' propagates: to the +x direction to all x greater than x',
Similarly, by starting the integration of (7) from x=1 and
proceeding to the ~x direction, the effect can be made to
propagate : in the -x direction. The situation will be
essentially the same even if the integration of (7)
18 replaced by 1ts finite difference analogue.
Guided by heuristics as described above, a new relax-
ation process of the following form was deviced:
pE = BT 4 Lag (A%(ET- Py, L)
in which L(AB) 18 no longer a constant as in the conven-
tional relaxation scheme (2) but consists of the combination |
of the finlte difference analogues of integration operatiomns
of the type (§). ﬂTAs) also includes a series of parsmeters

As which are closely related to the integration parameter a

of (7), The new relaxation process of the type (9)
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will be called S.I.D.R.(Successive Integro-leférential
Relaxation) hereinafter. The number of sweeps needed 1in
the S.I.D.R. will be shown to be proportional to log N

inetead of N in the $.0.B., Thus, a coneiderable
reduction in the amount of computation will be achileved

especlally in case of large N.
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§2 The S.I.D.B. Algorithm

Before describing the finite difference algorithn for
the S.I.D.BR., analytical formulas corresponding to the case
of infinitesimal h and infinite N will be given, because
they are simpler and more tractable than the finite difference
formulas.

We now consider an iteration scheme of the following form
58 (x,7)=85"1(x, y)+L(a,) @51 (x,5)-Plx, 7)),  ...(10)
in which L(A )'s are linear operators including positive
parameters A, A,, A3 .e. to be called S.I.D.B. factors,
The linear operator L(A) with a positive parameter A 1s déftnéd
to be the result of the following operations which map W,(x,y)
into W6(x,y):
Let a bg defined by
a=/A; ... (11)
Regarding y as a parameter independent of x, 1integrate
(- +a)W (x,y) (x,57)  ...(12)

dx
from x=0 and wl(o,y)=o in +x direction until x=1 to obtain



Wy (x, ¥
Integrate(——f-x+a)wz()¢,Y)=WO(X.Y) ceee(13)
from x=1 and Wz(1,y)=-W3(1,y) in -x direction until x=0;
wa(x’y)zwl(x,y)+w2(x,y)-wz(o,y)sinh(a(1~x))/slnh(a); oo (1l)
d
Integrate (— +a)wu(x.y)=w3(x,y) ...(15)
ay
=0
from y=0 and wu(x,ob\in +y direction until y=1;
d
Integrate(- — +a)W5(X,y)=W3(x,y) ...(16)

dy
from y=0 and w5(x.1)=—wu(x,1) in -y directlion untll y=0;

wé(x,y)=L(A)W0(x,y)

=-1-(wu(x,y)+w (x,y)-¥_(x,0)sinh(a(1-y))/sinn(a)). ...(17)
2 5 5

Let sz(x,y) denote the deviation of the s'th approximate
function ¢(8(x,y) from the true splution @(x,y). Namely,
P2, )28 e, 1) -B(x, 7). . (18)

In terms of deviation ¥(x,y), (18) can be rewritten as
P )= o yenta ) a¥ 5Lz, ). LLL(19)
We shall make use of the following eigenfunction expansion

sz(x,y)zzm'ncéfn m,n(x,y),, ...(20)
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where ﬂ?m n(x,y) are the eigenfunctions of the eigenvalue
’
problem
(A+E2 )?V (x,y)=0 and V. _(x,y)=0 at the boundary (21)
m,n m,n 7’ m,n*"? *
Specially for our present case of a unit 8 |uare, the olgen-

vectors and the elgenvalues Ei n 8 are given by:
?

@%,n(x,y)=sin(mnx)sin(nny), ... (22)
2 2.2 22 22 -
Ep,n=E *E, =0 n“+n“n“ and E =ur, (23)

where m and n are positive integers,
From the construction of L(A), the eigenfunctions
qﬁ n(x,y) of the Lapalaclan are simultaneously the eigen-
¥

functions of L(A) and the elgenvalue Qm of L(A) 1s given by
n

’

Qm’n=2A/((E§+A)(E§+A)). ... (24)

Hence, the eigenfunction expansion coefficients q(s of the
@,n

s'th deviation V‘Sarereadlly obtalned in terms of the eigen-

function expansion coefficients c(om,n of the initial deviation

y(o as

(E2-A, ) (E2-a,)
c(ls -c(0 2 m tont ...(25)

B,n ‘m,n t=1 (E§+At)(E§+At)



Now proceeding to the finite difference case, L*(A),
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which 1s the finite difference analogue of the operator L(A)

used 1in (10) and which 1s to be used in the iteratio scheme

of the form (9), 1s defined to be the result of the i'»1lowing

erations mApping W into W R
OP o O,l’J 6;1,3

Let a* be defined by

a*=/ A+A2n2/b -An/2;  ...(26)

Corresponding to (12) integrate numerically the following
equation with a scale factor U

~w1;1_1,3)/h+a*w

=UW
M1,y 1;1-1,37 %051, 3

=(1-a*n)w +hUW . ...(27)

or Wiia,j 1;1-1, ) 1,

starting from wl 0 J=O successlively for 1=1,2,3... until
’

)
1=N;

— .
Integrate wz;i’a-(l a*h)w +huw t..(28)

23141 i1,

starting from "2;N,§='w1;N j succesgsively for i=N-1,N-2,..
’
until 1=0;

W W W jrflas ), L(29)

vy 4 =W +W -
34,3 7151, 254, nv 01,3 250,
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(1-a*n )N—i-(l—a*h)inN (30)
f(a*,1)= P ese
where a (] __a‘y‘h )N (1 a‘“’h )‘N

After integrating (27), (28) and (29) for j=1,2,3...N-1, 1integrate
Wiy, g=(1-2"h)Wy,y g+hUWg., ...(31)

starting from Wu.1 O=0 successively for 3J=1,2,3... until }=N;
’ ’ ’

. - —n¥ Y UW o s 2
Integrate dg,, y=(1-amlW ™31, e

starting from w5;1,N='wb;1,N succassively
for j=N-1,N-2... until j}=0;

*
___(qu L, gt 5 L -huv 1.J-w5;1,of(a '), ...(33)

wwhere V 18 a correctlon factor given by

Ve 1 RETS

(1+Ah2/4).U”

The following formulas corresponding to formulas (18) to (23)
will be selfexplanatory.
. wi(s —gls _
Deviation: Wi 3 ﬂi p g, (..(35)
The equations satisfied by the deviations:

W W(S 1+L*(AS)A*¢§531. ...(36)

Elgenvector expansion: W§83=Zm'n ;(:@ﬁ n;1, ] eea(37)
30



4.3

. ) w2
Eigenvalue problem: (A +Em,n)!y ...(38)

=0
m,n;i,J

and \Qm,n;1,3=o at the boundary.

Eigenvectors: W =gin(mmi/N)sin(ni)/N). ...(39)

m;n;lyj
Eigenvalues: E;2n=Eg2+E;2=uN2(Blnz(mn/ZN)+sln2(nn/2N))
and  EX2=4N%sin®(mn/2N9,  ...(40)

where m and n are positlve integers less than N,

The elgenvectors ﬂ[ of the finlte difference

m,n;1,)
Laplaclan A" are simultaneously the eigenvectors of L¥*(A)
and the elgenvalues Qg , of L*(A ) are given by
Qf =28 /((EX%+a )(EXZ+a )),  ...(81)
which has exactly the same form as (24).

In exactly the same way as in (25), the elgenvector
expansion coefficients c*(s of the s'th deviation W 1,3

1s readily obtained in terms of the elgenvector coefficlents

c*Sg of the initial deviation VAO as

14

o* (80 ( = (E*Z'At)(E#i“t)

C e (82)
‘w0, 0 w2 ) (5% )

It will be immediately noticed from (42) that the S.I.D.R.
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converges in case all 5.1.D,R, factors As's are fixed to a
single positive constant A, since the absc'ute magnitude of
the function (z-A)/(z+A) 15 less than unity in case 2z and
A are both positive., Better sohemes for faster convergence
wlll be treated in the section 3.

We shall now estlmate‘the amount of computation in each
sweep of the S5.I.D.R, algorithm and compare it with that of
the S.0.R.. Since the amount of computation greatly depends
upon the hardware and software of the computef to be used,
only a very rough estimate will be meaniﬁgful as a machine
independent measure. In view of the single step operation
of the S.0.R. of (9), the part of computation time in a slngle
sweep which 18 proportional to the meshes N2 in the S.0.R.
wW1ll be something like
T=N?(6tg +2t +t +6t,),  ...(43)
where ¢t 1s the time to set a number from the memory in the

a

multiplicand register or to add it into or substract it from
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the accumulator, tm is the multiplication time, ts is
the time to store a number into the memory and "ty 18 the
time to set the address of a new array element in the index
register. In S,I.D.R,, the time needed for the evaluation
of Laplacian and substraction of /° will be almost the same
as (43) except the number of multiplications, one per mesh
point instead of two. In view of formulas (27) to (34), the
best cholce of the scale factor U 1s U=N=1/h, which reduces
about 6N2 multicatlions per sweep. The stepwise numerical
integrations (27), (28), (31) and k32) will require
th(ta+tm+ts+2t1) of time per sweep. (29) will require
N2(3ta+tm+ts+2t1) of time provided that the function
f(a,i) of (30) is tabulated as an array. (33) combimed with
the addition in (9) together will require N2(5ta+2tm+ts+2t1)
of time. Therefore, the total tlme per sweep will be given by
T'=N2(18t +8t 47t _+18t,). ... (L4)

Let Ry denote the ratio of the two times T'/T evaluated
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by taking the multiplication time only into account and R
denote the ratiavevaluated by using a somewhat more realistlc
assumption:

ty=tg=t; and tm=Uta. ... (5)

From (43) and (44), these ratios become BM=8/2=U and
R=75/21=3.57. If it had not been for the optimum cholce

of the scale factor U, the ratios would have been

RM=(8+8)/2=8 and R(75+32)/21=5.09.



§3 Optimization of the Convergence of the S.I.D.R.

By convergence of S.I.D.R. we shall require that after
S iterations all of the elgenvector expansion coefficlents
c;fi of the 3'th deviation be suppressed by a factor of D
declmals or by a factor k in comparison with the 1nitial
coefficients c¢*(0, Namely,

*#(S *(o % )
‘cm,ﬂ < lcm’g[ k  ...(h5)
and for all m and n.
We define a function Fs(z) by
8=3 z—AS
F_(z)=T (——=), eeo(ls7)
S 8=1" z+A ‘
5
where Ag's are the S.I.D.R. factors. In view of (42),
the requirement (46) can be rewritten as
2 2 -
(Fg(z)) =Fg(z)<k  ...(48)
within the interval O<kB=By<z<By,  ...(49)
in which B, and Bg are lower and upper bounds of E;Z's

of (40) and k is defined to be the ratio of the two

bounds: k=Bo/Bssl. In the present case of a unit square,
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the best cholces for the bounds and k are

By=E}?, Bg=ErZ, and k=EX2, /E¥2=tan® (n/2N)>r%/N%.  ...(50)
The optimization of convergence of the S.I.D.R., therefore,
reduces to the problem of finding a set of S.I.D.R. factors,
for given k and k, which minimizes the total number of sweeps
under the requirements (48) and (49).

Not the optimum but a reasonably good convergence can be
obtained by the following very simple method which may be
called the octave method. Starting fron A1=B0, we place one
A per octave until the b'th one A, exceeds Bg. Namely,
A1=By, Ap=2Bo, ... Ay=2"By>Bg=Bo/k.  ...(51) |
Defining f(z) by
fp(z)= TT((z-A0)/(z+A.)) ... ((z-A)/(z+A)),  ...(52)
and using the fact that (z-A)/(z+A) <1/3 for A/2<z<2A,

i.e., for 2z within an octave from A, we readily obtain

|fb(z)l5(1/3)2 within the interval B,<z<Bg, since there

are two A's within an octave from any z 1in the interval (49).
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Using the set of A's of (51) repeatedly for p times, we obtain
F2(2)=(r(2))%P<(1/3)%,  ...(53)
Using bglogz(l/k)+1, k>re/UN7, 1o‘D=;ﬁ,<k(‘)1/3)"P and S=pb,
we obtain i
Sg(Z/((loglOZ)j(log1081)))~D(log10N—log10(n/2))
=3.b8'D(10g10N-0.196), ... (54)
which clearly indicates a logarithmic dependende of S on N,

The function Fy(z) of the optimum convergence 1s similar
to Tchebycheff's polynomials in many aspects, If the problem
were to find a polynomial f(z) of degree S behaving like 2>
for sufficiéntly large z and having the smallest absolute
magnitude in the interval —15z51; £f(z) would be given, 1in
terms of the well known Tchebycheff's ﬁolyﬁomial
Tg(x)=cos(S+arccos(x)), by
f(z)=2's'rs(z). ...(55)

Using two parameters u and v, (55) can be rewritten in

the following parametric form:
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z=cos(u), ...(56)
v=Su, ...(57)
and f(z)=2"5cos(v) ...(58)

In the present Optlmization problem, however, the ciass
of functions to be considered is not the class of polynomials
but 1s the class of rational functions having the form of (47).
A problem, essentially the same in 1ts nature as the present
one, arose and has been solved in a closed form by electrical
engineers in connection with the design of the best wave

fllters.Z)

2) See for example, W. Cauer: "Theorie der Linearer Wechsel-
stromschaltungen”, Becker u. Erler, Leipzig (1941) and 1its
English translation, "Synthesls of Linear Communication

Networks", Mcgrow Hill, New York (1958).

In the design of filters, a certain class of rational
functions of the frequency is required to be minimized and/or
maximized in the given frequency tnterval or intervals and

the optlmum solution 1s given in terms of elliptic functionms.
The solution to the present problem can also be given in a

closed form in terms of elliptic functionms.
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We shall tentatively rephrase the problem as the problem
of the realization of the best rejection rate k for the given
k and integer S and prove the following result:

The Main Besult

The best 5,1.D.R. factors for the rephrased problem are
given by
Ag=Bpsn(K+1K'(2s-1)/25,k) for s=1,2,...S, ...(59)
where i denotes /-1 (not the integer used in t} previous
section), s8n 1is the Jacobian elliptic function of module k,
and K, K' are the values of the following complete elliptic
integrals of the first kind
K=K(k)=,fg/2(1-k2s1n29 f41/2)d0 ...(60)
and K'=K(/1-k%). ...(61)

Fs(z), defined to be of the form (47) wrt' A's of (59),
behaves like Flgfl, which shows a special case f S=3.

In the interval B <z<Bg, F3(z) changes its s at the

o_

three zero points z=A1,A2,A3 and the absoclute magnitude
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takes on a maximum value of / k¥ for four times at

z=B B

o By B2 and B

3
In the general case, Fq(z) changes 1ts sign at the S
zero points z=A1,A2...AS‘and takes on a maximum value of
V/EE for S+1 times within the interval BogngS at
z=Bg=Bysn(K+1K's/S,k) for s=0,1,...5. ...(62)
The behaviour of FS(z) for positive z 18 similar to that of
the Tchebycheff's polynomial (55). For negative values of
2z, on the other hand, Fs(z) behaves quite differeqtly from
any polynomial. In the 1nterva1 ‘BsSZS‘Bo: Fs(z) has poles

at z=-A and its absolute magnitude takes on minimum values

8’
of J1/kx at z=-B_,. The properties for negative z are
regdily obtalned from’the following identity satisfied by any
function of the form (47):

FS(Z)FS(—Z)=1. ... (63)

Proceeding to the proof of the main result and the "mini-max"

property of Fs(z) Just stated, we introduce a parameter u, v
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and a function F*S(z) by
z=Bysn(u,k), ...(64)

v=—2i—§'—u+i§-L— (2s-1)K,...(65)
FE(z)=G(u)= H(v)w/ ¥k sn(v,k), ...(66)

where K, K' are the values of the following complete elliptic

integrals K=K(k), K'=K(/1-k%) ...(67)
K'K'

satisfying =43, ...(68)

KK

k 1s to be computed from (68) and the best computational
procedure 18 to use the parameter g=q(k) of the theta
functions. Namely, using

exp(-nK'/K)=q=q(x) ...(69)

and exp(-nK'/K)=q=q(k), ...(70)

(68) can be rewritten in the following form
in(a)-1n(@=brs. ...(71)

Formulas (64), (65) and (66) are similar in theif formé
to (56), (57) and (58). The maiﬁ d&fferénce consisfs in

the apearance of elliptic functions instead of circular
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functions. (64) means that the function H(v) is to be 1:
regarded as a function G(u) of u by virtue of (65) and

also as a function Fg(z) of z by virtue of (64). In
respect to (65), z 1s made to vary from -co to +co along
the real axis by varying u along the edge of a retangle in
- the complex u plane of which the four vertlces are at
-K+1K', -K, 4K and +K+1K'., At the same time v varies

along the edge of another rectangle in the v plane of which
the four vertices are at K+1K', —(2841)K+1K',’—(28-1)K and K,
Table 1 shows the 6orrespondence of the values of z, u, v
and H(v) for S=3. It will be immediately noticed trat the
values of F§(z)=H(v) at the special points z=00, b, tBg's
and 3:AB'8 agree with the values of F3(Z) shown 1in Fig.1.
Now, let FS(z) of (47) with (59) be regarded as a function
f(u) of u. Namely,

f(u)fFS(z(u)). ees(72)

f(u) 1s obviously a doubly periodic function with UK and
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21K' being the two periods. Since sn(u,k) is an elliptic
function of order two, it har two zeros and tw~ poles within

\ A
a period-rectangle of which the four vertices are at
u=2K+1K', -2K+1K', 2K-1K' and -2K+iK'. ... (73)
In regard to the period rectangle (?j), the order of f(u) 1is
at most 2S because both the numerator and the denominator of
(47) are polynomials of degree S. Conversly, since f(u) has
poles at u=-K-1(2s-1)K'/2S and zeros at u=kf1(23—1)K'/2S
within the period-rectangle (73), the order of f(u) 1is at
least 2S, Hence, f(u) is necessarily of order 2S and there
are no extra poles nor extra zeros besides those just mentioned.
Next, consider Fg(z)=G(u) of (66) as a function of u. 4K and
21K' are also the two periods of G(u) by virtue of (65) and
(68). 1In regard to‘the period—reétangle of (73), G(u) 1s an
elliptic function of order 2S and ail of\the zeros and poles

are positioned exactly in the same plece as those of f(u) by

its construction. Hence, the ratic f(u)/G(u) is an elliptic
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function regular throughout its period-rectangle which implies

that the ratlio of the two is a‘constant. The value of the

constant 1s readlly seen to be unity by evaluating special

values of the both functions, say for u=1iK' or z=§o, Hence,

the two funétlonstS(z) of (47) with constants of (59) and

Fg(zj of (66) are ldentical. ‘Na@ely,

F§(z)=Fg(z) for all z. ....(74)‘

The "mini-max" property of FS(z) stated in connection with (62)

is now an immediate consequence of the followlngtwell known

property of the elliptic function used in (66). Naﬁely, for

real v sn(v,k) takes on a maximum value of 1 at v=(4n+1)K

and a minimum value of -1 at v;(hn~1)ﬁ, where n denotes integers.
We now prové that the cholce of S.I.D.ﬁ. factors given

by (59) is the best. Supbose there exists another set éf

positive numbers Kl’ A, ...Ay giving a functién ?S(Z)‘

of the form (47) and resulting into a better suppression of

the elgenvector expansion coefficients, which means
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for all z in the interval B<z<Bg.  ...(76)

The difference between the two functions can be written in

the following form:
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Fg(z)-F5(z)=N(2)/D(z), ...(97)
in which the denominator D(z) is a polynomial of degree
2S and the numerator N(z), ~» polynemial of degree 25-1
or less since the difference (77) should tend to zero
when z increases to infinity. Since the difference (77)
is contlnuous in the interval (7€) and changes its sign
at least once in each of the intervals (Bg, Bs?i)

and (62)
because of (75%, the numerator of (97) has at,least S
distinct zeros in the interval (76). For negative values
of z we make use of the identity (63) and rewrite (77) as _
Fs(-2)-Fg(-2)=N(-2)/D(-z)=(Fy(z)-Fs(z )/(Fy(z)F5(2)), ...(78)
which indicates that N(z) has also S distinct zeros in
tﬁe interval -Bg<z<-Bgp. Having 2S5 or more dlstinct zeros
and being a polynomial of degree 25-1 or less, N(z) must
be identically zero but this is obviously a contradiction.
The existence of'Fé(z) 1s thus denled and the main result

18 proved.

The exact relation among k, k and S 18 given by (§/f).
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Actually, k and k will be very small numbers in most cases
of prac¢tical interest. In suc) cases the following approx! -
mation to the function q(k) can be used:
a(k)=k?/16.  ...(79)
Using (79), (71) can be rewritten as
1n(k/4)-1n(E/8)=r®S.  ...(80)
In most cases the values of k and k will be specified at
the beginning as
k=r2/BN?  ...(81)
and E=10"0, ...(82)
In such cases, we first compute S by using (81) and (82)
in (80) or in (71) 1if necessary. The S thus computed 1is
generally not an integer. We, therefore, take the smallest
integer not less than the S just computed an§ redefine it as
the integer s. Using tﬁis integer S in (59), we compute the
numbers As's to start the S.I.D.B. process. The convergence

after S sweeps will be slightly better than the value specl-

fied at the beginning. Using the values of (81) and (82),
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(80) can be rewritten in the following form
2,2
S=(2(10ggx10)"/n )(D+log104)(log10N+log10(ﬂ/h))
=1.074(D+0.602) (1og, (N+0.105). ... (83)
Comparing (83) with (54) of the octave method, the number of

sweeps 1s observed to be reduced by a factor of 3 by the

optimization of the convergence.
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(83) indicates that the number of sweeps in the S.I.D.R.
depends logarithmically on N, while the number of sweeps in
the S.O.R., given by formula (5), depends linearly ém:'N.
Therefore, for s.ificlently large N, the computntlon time
needed in the S.I.D.R. will be much less than that needed
in the S.0.R.. 1In maklng\a comparison of the computation
times, the ratio of the tlmés per sweep Ry or R, treated

at the end of section 2, must be.taken into account,

Using D=10 and Ry=4, we find from (83) and (5) that the
overall computation time in the S.I.D.K. becomes less than
that in the S.0.R. when N 1is greater than 17. 1If R=3,37 is
used instead of BM=4, the same holds when N 1s greater than
13. In case 6f D=10 and N=1000, the respective numbers of
sweeps needed in the S.I.D.R. and S.0.R. are 36 and 3665,
Thus, the time needed in the S.0.R. becomes 25.5 or 30.0
times more than that in the S.I.D.R., depending upon the
assumptions BM=U or R=3.57.

We now consider the effects of round off errors.
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(s

Let e~ be the elgenvector expamsion co=[{icients (c.f. (39))
, _

of the round off errors which take place in the s'th iteration,

(

8
be the upper bound of the absolute magnitudes of en,n !

8
€M

and the function FS 5(z) be defined as
9

z-A z-As
Py glz)=(—2 ) (—2). L. (84)
’ z+Ag+1 z+Ag

The elgenvector expansion coefflclents fm,n of the cffect

of the round off errors in the final result are given by

fm,n=zse.fx?n Fo s(ER2)F, g(BX2). . .(BS)

A crude upper bound to fm can be obtalned by making use

2
of the fact that the absolute magnitude of FB,SSZ) never
exceeds unlty for positive z. Namely,

< Sey. ...(86)

While the convergence of the S.I.D.R. is independent
of the sequentlal order of using the S.,I.D.R., factors, the
effect of round off errors does strongly depend upon it.

For example, consider the case in which the S.I.D.R. factors

are used in the ascending order and let the expansion coeffi-

clents of the round off errors for the lowest elgenvector
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be glven rather systematically by e{?lzem. In suchf;ase
(1?6) glves a reasonably good es!'mate of fl,l , Bince the
absolute magnitudes of most of th Fs,5(ET?)'s are actuilly
very close to unity. Now contider the casekof D=10 and
N=1000 of which the number of sweeps has already been shown

- that

to be S=36. (363 1nd1catesAthe maximum jorst case error of
36eM for this case. The situation can be lmproved, however,
by sultably reshuffling the sequential order of *“he S.I.D.R.
factors. From the main result (59) giving the rules to compute
the S.I.D.R. factors, it 1s readily seen that F36(z) includes
F,,(z) 28 a factor. Namely,

Fyg(z)=F1,(z) Qu(z), ...(87)
where Q;,(z) is the quotient including 24 of Ag's.
Similarly, F;,(z) includes F,(z) as a factor. Name y,
Fi2(z)=F,(z)Qg(z). ...(88)
Using N=1000 and 5=12 in (83) we obtain D=3.0 which implies

(Flz(z))2".5'1'('*10'1):10’3 for z in the interval (76). ceo(89)

Similarly, for F,(z) we obtain
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(Fy(2))%<107°-8%=0.25.  ...(90)

We now use the 24 Ag's in Q, (z) first. At the end of the
24th iteration, the effect of round off errors can accumulate
up to Zbem in terms of eigenvector expansion coefficlents

in the worst case. Thils effect, however, 1s suppressed by

a factor of 1072 because of (89)) during the last 12 iterations,

Hence, the effect of.the round off errors in the first 24
iterations 1is negliglbly small in the final result. Next,
we use the 8 A 's 1in 2g(z) of (88:) from the 25th to the 32nd
iterations. The maximum errors can accumulate up to BeM
during these iterations but they are suppressed by a factor
of 0.25 as indicated by (B0) during the last 4 iterations.
Hence, the effect of these 8 iterations in the final resdlt
| off
is atmost 0.25x8em=2em. The effect of roundserrors in the
last 4 iterations can accumulate up to ueM in the final

result. The worst effect: of round off errors to be expected

in the final result, therefore, does not exceed 6eM in its

v one
elgenvector expansion coefficients, which 1is onle31xth
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of that to be expected in the cases of using the As's in &
purdy ascending or descending order,. From the considerations
made above, we can safely conclude that round off eriors do

not cause any serious troubles in the S,I.D.R..
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§4 Concluding Remarks

{. The S.I.D.R. algorithm, with slight modifications of
some constants, can be used with the 9 point formula instead
of the 5 point formula used in (1) to approximate the Laplaclaﬁ
operator more closely. Invcase of the 9 poiht formula, an extra
computation time of Nz(hta+tm+ht1) per sweep will have to be
added to both (43) and (44).

Thence, the time retios, S.I.D.R. vs., S.0.B., will become
Ry=(8+1)/(2+1)=3 and RB=(75+12)/(21+12)=2.6k.

2. The S.I.D.B. algorithm can be generalized in a straight-
forward way for the solution of Poisson's equations in rectangles
subjected to inhomogenious boundary conditions.

3. An intultive explanation to the apearance of the loga-
ritkmic term in the convergence rate formula (83) fér the S.I.‘
D.R. may be given consldering the relaxation process as a diffu-
sion process in the following way.

The homogenious boundary condition (i.e., the function

should be zero)can be made to be satisfied by dividing thec

entire x,y plane into unit squares and by placing negative
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image processes in every neighbouring squares. Thence, the
term with f(a*,1) in (29) and (33) can be regarded as a
falthful representation of the influences of all of the images
throughout the x, y plane. The treatment of the boundary
condition in the S.I.D.R, being thus quite satisfac.ory, 1t
can hardly be the cause of the apearance of the lognrithmic
term in (73).

Conslder now an analytical analogue of S.I.D.K. (cf. (10))
Wwith /)=J(x-xo)J(y—yo) and starting from an initial function
of ¢(0=0. The solutlon to this problem is the Gfeen's func-
tion G(x,xq,y,¥79) satisfing AG=J(x-x,)J(y-y,) and the homo-
genious boundary condition. The result of the first iteration
(cf. (10)) becomes
§(1=-%—exp(-ﬁ1(x—xo+y-yo))+B(1(x,y), ...(91)
where B(l(x,y) is a function arising from the hypabolic sine
terms in (14), (17), and 1s smooth in the unit square. The
first term in (91) 1is continuous but not smooth at the locality

of (x,y)=(xo,yo). By tracing the behaviour of the succeeding
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iterants ¢(2, #(3... 1t will be seen that they all consist
of exponential terms similar to that in (91). Since the
Green's function G has a logarithmic singularity at (xo,yo),
an infinlite number of continuct; terms will be necessary to
represent the discontinuous Green's function. Even when the
logarithmic term 1s truncated at h=1/N 4in the finite diffe-
rence case, an increasing number of terms will stlll be need-
ed as N increases in order to make a reasonaﬁly good approxi—
mation. Formula (83) may thus be interpreted as that about
logqoN iterétions are needed to approximate the Green's func-
tloy to a single decimal figure. In terms of‘the diffusion
analogy as used in the introduction, about loglON sweeps are
needed to make a considerable portion (90%) of the errors to
be diffused to and get eliminated at the boundary. The possi-
bility of further speeding up the diffusion and elimination
of the errors 1s an interesting open question.

4., While newly computed values are used whenever possible

in the S.0.R. as the superscript (s,s-1 1in (2) implies, older
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values are used throughout the correction process (9) in the
S.T.D.R.. Calling the former progressive and the latter con-
servative, a conservative S,I.D.R. scheme was developed in
this paper in order to facllitate the development of the con-
vergence theory given in section 3. There exist two motivations
to develop pfogressive S.I.D.R. schemes, namely, saving in
storage spaces and speeding up of computations.

Conslder the following algorithn to be called quadrant
S.I.D.B.. Let the unit square be divided into four equal
Subsquares I,III, ITT and IV. Let subsquare I be the one at
Osx,ys—%. Let a function X(s(x) be assigned to the boundary

5
line y= 0<x<1 between the subsquares and Y (y), to the

(0

line x= 7, O<y<l and let the initial values X(O(x) and Y “(y)

1

X
1

>
be zero. In respect to subsquare I, the finite difference
analogues of the following computations are to be performed
in the s8'th 1teration:

wl(x,y)=4¢(’(x.y)-/°(x.y):

asa/xs;
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Integrate (—-g—-+a W, (x,y)=W.(x,y) from x= L
n g dx S 2 ’y 1 ,y 2 »

-1
(s (y) until x=0;

1
Wal—3,y)=Y
Integrate (—%; +as)w3(x,y)=w1(x,y) from x=0,

1.
wa(o,y)=-w2(o,y) until x=73;
wu(x,y)=w2(x,y)+w3(x,y) and Y(B(y)=W3(‘%3y) for 05y5-%1
4 1
Integrate (--a; +as)w5(x,y)=wu(x,y) from y=-7,

(s-1

WS(X,%0=X (x) until y=0;

4 _
Integrate (F7+a )W, (x,y)=VW,(x,y) from y=0,
dy “g’ "6 L

1
w6(x,0)=—w (x,0) until y=3;

5

B 1
x( (x)=w6(x;%0 ‘for 0<x< 53

(s (s-1 1
g % (x,y)=0 (x,y)+(We(x,y)+W (x,y))/2 for 0<x,y< %
Similar operations are to be performed on the remaining

. (s (s

subsquares. The functions X (x) and Y (y) serve to carry
the influences .of errors from one subsquare to the others.
Comparing the quadrant S.I.D.R. with the conservative S.I.D.R.
disclosed in sectlon 2, the subsraction of exponential terms.

in (14), (17), (29) and (33)are eliminated by suitably choosing

the initial value in each integration, which results into the
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saving of 2N2 multiplications per sweep. The quadrant
algoritrm may be sald to be conservative within each subsquare

2 extra

and brogressive in respect to the subsquares. While N
storage locations are needed to store the values 1in the con-
ser§at1ve S.I.D.R., Nz/u locations will be sufficient in the
quadrant algor;thm.

There ére many heuristic and intultive reasons to believe
that the quadrant S.I.D.R. would converge équally well as the
conservative S.I1I.D.R.. Unfortunately, however, the ¢lear-cut
'convergence theory of section 3 1s not applicablg to progres-
sive algorithms like the quadrant 5.I.D.R. becau§e the eigen-
functions of the iterative operations are no longer mndepepd-
ent of the values of the S.I.D.R. factors As's. The conver-
gence property of the quadrant algorithm thus gives rise to
another open question.

51\ It will be the most interesting theme to avply the

S.I.D.R. to problems other than Polsson's equations in

squéres and rectangles, for example, Poisson's equations in
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arbitrarily shaped domains, axially symmetric and three
dimentional Poissson's equati~ns, Helmholtz's equations and
elgenvalue problems. Because the speeding up of diffusion
of errors 1s essential feature of the S.I.D.R., it should be
applicable, intuitively, to problems mentioned above, The
convergence theory developed in section 3, however, can not

be applied for the same reason as in the case of rerark 4.
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6. Whenever there exists an exact and finite algorithm
for the solution of a problem, iterative methods will generally
yleld to the exact algorithm in respect to the speed of compu-
tation when the required accuracy exceeds s certain yielding
points. Since the finite difference solution of Poisson's
equations is nothing but the solution of simultaneous 1inear
equations, there exists exact algorithms. The fastést exact
algorithm for the solution of Poisson's equations in squares
and rectangles, within the scope of the author's knowledge,

4

is the Fourier transform method as used by Hockney‘g) comblined

k)

with the FFT(Fast Fourier Transform)( developed by Cooley and

Tucker.&5)

3) R.W. Héckney, "A Fast Direst Solution of Polsson's
Equation Using Fourier Analysis", JACM, Vol. 12, pp.95-113
(1965). '

L) The author is indebted to Professor H. Takahasl, Director
of Coﬁbuter Centre of the Unlversity of Tokyo, for drawing
his attention to the FFT method.

5) J. W. Cooley and J. W. Tuckey, "An Algorithm for the Machilne
Calculatlon of Complex Fourler Series," Mathematics of

Computation, Wol. 19, pp. 297-301 (1965),
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The Fourier transform method for the solution f Poisson's
equation, A @=f in a unit siuare and @=0 at the >oundary,
conslsts of the finite difference *nalogues of the following

three processes,

P1. Take the Fourier (sine) transform of f(x,y) in
eilther dimention x or y, say in y, and'obtain'tne harmonic
(1.e. sin(nny)) components )Bn of p for n=1,2,..N-1,

P2, Solve the ordinary differential equatlons

2~

ag 2 2+ —
‘—-A- ¢ =
x2 RN Y

sapisfied by the harmonic components Bn of #. Using the
"marching method"(B, which 18 equivalent to the mapping of
Wo(x,y) into wj(x,y) of (12) and (14) with a=nn, this process
can be performed with about MNZ multiplications.

P3. Perform an inverse Fourier transform to obtain
g from E;'s.

FFT 18 to be used in processes Pl and P3. Assuming that
N 1s a power of two , ZNlogzN multiplications of complex

numbers are needed to perform the FFT on a one dimentional
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array of size N. A single multlplication of complex numbers
would g=snerally consist:of four multiplications of real numbers.
For the FPFT of a real valued array, however, two r~al mulﬁl—
plications per complex multiplication has been shown to be

suffiolent.6)’7)

6) H. Takahasi, "D6/TC/FFTR", A Library Program of the
Computer Centre, University of Tokyo. (1966)
7) C. D. Bergland, "A Fast Fourier Transform Algorithm for

Real Valued Series", CACM. Vol. 11, pp. 703-710 (1968)

Hence, ZXN(ZNlogzN)+MN2=(26.blog10N+h)N2 multiplications are

" needed in the FFT solution of the Poisson's equation. Comparing
this number with the 8N2 multiplications per sweep (of. (44))
and the»number of sweeps (83) of the S.I.D.R., we see that the
S.I.D,B. yields to the-FFT beyond the>ylelding point at about
three decimal figures of accuracy. The FFT method, therefore,
will be superior to the S.I.D.B. when more than thrze decimals
of accuracy is needed. The S.I.D.R. will become superlor when
less thaﬁ threg decimals of accuracy 1s sufficlient or when a

S
seried of similar problems is to be solved so that the result
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of the preceeding problem can be used as a close approximation
to the solutlion of the succeeding problen.

The FFT and the 5.I1.D.K. are thus complementary with each
other in the solution of Polsson's equation inisquares as well
as 1n rectangles., The most interesting question comnsists in
their applicabllity or adaptability to more general types of
problems. While a great difficulty is anticipated in using
the FFT method 1n other types of problems such as the solutlon
of Laplacian or Poisson's equations in arbitrarily shaped
domains, the S.I.D.R. seems to be applicable but the truth
remains open as discussed in the previous remarks.

7. The present stagé of the development of the S.I.D.R.
is incomplete in many respects, especlally in trkat the. range
and limitations of 1its applications‘nre not well known. In
order tec clarify these points, more sophisticated convergence
theories will have to be developed and empirical facts should
be compiled from computer experimentations. Nevertheless,

the present results, disclosed in section 2, 3 and on puré
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mathematical reasoning, would be sufficient as an existence

proof of a new kind of relaxation processes.
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Figure Caption
Fig. 1
Behaviour of the function F3(z)

Table Caption

Table 1 ‘
Correspondence of the values of u, v, z and H(v) for S=3.
(¢ means an infinitesimal positive number)
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Table 1

Correspondence of the Values of z, u, v and H(v) for S=3

(& means an infinlitesimal positive number.)

Z u v
- 00 -Z +1K' RK+1K/2+1€ 1
) -K+1K' K+1K' 1//?:'
-A4 -K+15K' /6 0+iK' oo
-B, -K+14K' /6 -K+iK' -1/./—{::
-Ay -K+13K' /6 -2K+1K" oo
-B4 -K+12K'/6 -3K+1K" 1//?
-Aq -K+1K'/6 -LK+1K" )
-B, X -SE+1K" -1//%
0 0 -5K+1K' /2 -1
B K -5k JE
AAq K+1K'/6 -UK 0
By K+12K'/6 -3K JE
A, K+13K'/6 -2k 0
B, K+14K'/6 -K —ﬁ
Ay K+15K'/6 0 0
By K+1K' K JE
oo g +1K' K+K'/2-1¢ 1
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