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1. Introduction

The theoryvof linear controlled stochastic processes has been
developéd in the previous paper [1]. Linear controls are conslder-
ed as a set of linear transformations of stochastic process wh;ch
is given in advance, successively observed and desired to have some
properties. In practice, we may_decide the types of linear controls
on the bases of the value of each obsevation.

In this paper, the theory of martingale transforms which was
developed in [2] by Bfuckholder, are generalized and applied to
show the almost everywhere convergence of linear controlled stochas-
tic process which 1is obtained from martingale or submartingale
process.

It showld be emphasized that our aim of controls is to get

the original stochastic process to take some given properties.

2. Martingale Transforms

Let X=(x1, X, s -«+) be random variables on probability space
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(2, F, P). X is said to be martingale process if following condi-
tions are satisfied.
1. There exist a sequence of o-field such that

FoCF1C »-o c:anc. e CF and X, is measurable with respect

to F, n=1, 2, +--.
2. E{)xn}}QGO, n=1l, 2, «--,
}=x

3. E{anxl, e, X n=2, 3,....

n-1 n-1"°

If the last condition is replaced by

E{xnlxl, ere, X o} >X n=2, 3, *--,

n-1° ="n-1?

then X 1s called submartingale process.
In Burkholder [2], martingale transfdrm is defingd as fbllows.
For any martingale process X and sequence of random variables
(vy, V2, **+) in which v, is measurable with respect to Fo_1»
n=1l, 2, «--, we put

dlfxl: do=X2-Xj, *°*°*, . dn=xn"xn_1:

n
and Y =] v, 4.
N2y k'k

This the martingale transform from X to Y=(y,, ¥, +++).
'Ip general, Y need not be martingale process but if E{Iyn|}<00,‘
n=1l, 2, ..., then Y becomes martingale process. Transforms of
submartingales may be defined similarly. Following theorem for
convergence of thoids.
Theorem 2.1. (Burkholder)

If X i8 L, bounded martingale process then Y converges almost
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everywhere on the set {w; s%p|vn(w)|<00}.
This result implies the corresponding result for submartingale
process.

Now we extends above martingale transforms to the case in
which double sequences of random variables V=(Vij) are applied
instead of (vy, va, <+-).

Let V=(vi ) be matrix of random variables Vij’ j=1l, 2, *°°*, i,

J

i=1, 2, -+, where v,,=1, 1=1, 2, ***, and viy=0, i

In the following we assume that Vij are bounded and measurable
with respect to Fi, J=1, 2,+°%,1, i=1, 2, <--.

In this case, martingale transforms from X to Y is defined as
m .
(2.1) Ym=k£1mGdk.

We obtain the following,

Theorem 2.2.

Let X be L, bounded martingale. We assume that

(2.2) E{mGlvij’ 7:=1’2"00’ m—l, j:‘..l,g’-oo,i}=vm-l ,k’

k=1, 2,++¢, m=1,

and
(2.3) E{(mG-vm_l,k)g Ivij, £=1,2,---,m1g, J=1,2,++-,7}
- 0(-——§I§4, k=1, 2,++,m-1
m

where § ©s any positive number.

Then Y converges almost everywhere.
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To brove this theorem, we need two lemmas.

Lemma 1.

Let X be L, bounded martingale. If V satisfies the conditions

of Theorem 2.2, then Y converges almost everywhere.

Proof.

We begin with the calculation of E{Y

l Yl,ou-,Y }"
which is reduced to

m+1 m

m+1
CIRD N AVEUSHE S SURRIN IR SPRERIS S
k=1
m
=E{ (X, -%X,) | Xl""’Xm}+E{k£1Vm+1,k(xk'xk-1> | X heeeX, )
m
m
Z Vin, ke Xk Xk ) =i

Using this relation, we obtain

E{(Yi-yi_l)(yj-yj_l)}é E{EQY =Y, | ¥q,---, Y, _ 1}(Y -Y, )

.= 0, i>j.
Hence, 1f we put Yy =0 then

n
E{¥2} = E{(kzl(Yk—Yk_l))z}

n
=1 E{(Yk k10?1

k=1

- 1 B{( z T 2

E v, v .,

k=1 izl k-1,1 X }



m

k-1

k

= E{(kzldk)z}

e

1

1
+
k

o3

2

In order to show E{Y;

pression, say I;, I, and-I

{(d + Z (V

k=

Vi1 l)d )2 }
k-1
ZZE{zd lzl(v i1 Viem 1, 14y }

K— .
E{(.zl(vki—vk—l 124507,
i=

} bounded, each term of the last ex-

3 respectively, is evaluated.

From the assumption of lemma 1,

= E{X2}<
I, = E{X2}< M.

where M is a constant.

For the second therm,
n k-1
1T, <27 1
k=2 1i=1
n k-1
<27
k=2 i 1
< 2v2M
k=2

we have

| By (Ve Vi1

L
(E{dﬁ} B (V0% )2

I 2 2,712

From the assumption on V, this is less than

MY ¥ o(k 2
k=2 i=1
which is bounded.

Now we consider Igj.

+%))

n k-1 k-1

I3 <
k=2 i=1 }J
n k-1

)

k=2 1i,j=1

fia

1| B ) ey Teon 838,11

=, ki-vk-l,i

) E;ﬁE{(Vki-Vk—l,i)zdi | diseees dy b

1



. 1
- 242 cos 7

n k-1 .
< 3 O(k—(u+5))E{|didj}}
k=2 1,j=1"

n
< oM ] ok (279
k=2

which is again bounded.

Therefore we conclude that
sup E{Y2} < oo,
n n
Hence Y 'converges almost everywhere.

Lemma 2.

Let X be uniformly bounded submartingale. If V satisfies

the conditins of Theorem 3.1, then Y converges almost everywhere.

Proof(

Since X is uniformly bounded, we may assume X20 by adding

certain constant to each term of X.

So that,
(2.4) E{x,_,d }= B{X _ E{d | X;,---,X_ _ }} 20,
where
E{dn | xl,---,xn_l} = E{X X _, | Xi,ee00X )
= E{Xn [ LSURERIS 1} - X, 2 0.
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From (2.4) we obtain,

E{x2 }= E{(xn_l+dn}2} > B{x?_ }+ B{d’}.

So that,

B{x2} - E{x_} » E{d?}

and

n
2
E{X_} 2 k£1E{di} , nxl.

Now we define new martingale process ﬁ. and its martingale
transforms ?, using ah which is given by

~ 3
dy=d, , d, =4 - E{a_ | Xl"">xn-1}'

Then it follows that

is a martingale process and
N n oS
Y = Y V_.d
n K=1 nk k
is martingale transforms of '?.

Since

E{d } = B{(a -E{a | Xi,-+-.X _D?}

= E{d;} - E[(E{dn | Xl""’Xn-l})ﬂ

we have
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e
It follows that X is I, ‘bounded and Y converges almost
everywhere (Lemma. 1.)

On the other hand we get

2= 18 = 1 a0k SR
X = 74 = d -E{d, | X,,--,X
nCoys Koy, KOk P Tk
Ta,- 1 & }
= Td - JE{d | X ,ee,X
T SN T 2ttty
n
=X, - kZZE{dk | XaseeenX, _}-

e .
Therefore convergence of X and X 1implies convergence of

L

l Xl,.."Xk_l}'

Since V 1s bounded, convergence of
\ Xl""sxk_j}
l Xl:"':Xk_l—}'

el
Now Y is expressed as follows.

A~ n ~ n
Yn B k£1vnkdk - k21vnk(dk_E{dk | X1, "Xk—l})
n n
= kzlvnkdk - kzlvnk?{d* IRSTRARR Y
n
=Y - Z VnkE{dk | xl,---,xk_l}.
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In this last equation, convergence of T and

1VnkE{dk } Xl,---,X'k_l},

e 3

k

implies the convergence of Y which was to be proved.

Proof of Theorem 2.2.

Any martingale process is expressed as the difference of two
non-negative martingale processes, by a result due to Krickeberg,

(4], Then we may assume X>0 without any los§ of generality.

Let ¢>0 . Then ﬁ; = —min(Xn,c),. n>1, defines a uniformly
bounded submartingale ¥ . Let ¥ be the transform of X under
{—Vnk}. By lemma 2, ?‘ conveges -almost everywhere.

Since Y = 7% if sgp]Xn(w)| < ¢c, Y converges almost every-
where on the set {w;sgp]Xn(w)I <c}. Now X is L; bounded
martingale process and P{sup|X (w)| < c} = 1.

Therefore Y convergeg almost everywhere and proof of Théorem

2.2 1s complete.

3. Convergence of linear controlled stochastic processes.

Let X=(x;, Xp,**+) be a discrete parameter stochastic
process. We generalize the definition of linear controlled
stochastic process Y=(y;, ya2,°+-) &iven in [1]. Let A=(£;,&,,°*)

be target stochastic process. We put A =(g1,E5,°%5 &, 0, 0,°¢°),

n’
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T
Let cn=(cn1,cn2,'-°, C e 0, 0,°"*) be n-th stage control

vector where cni,‘i=l, *++, n are random Variables dependent on

the values Xj, ¥i1s " Yn-1,n-1"

We put Cn= I+ (0, 0,°+-0 Cn’ Cn’ '-°)T where I 1is unite

g

infinite matrix and 0 1is infinite zero vector. Now we define
sequence of stochastic processes Yn=(yn1,yn2,-'?) as follows.
We take Y;=X. If the value of Yim is observed then

Y ., =(Y - ) c®+A. And S0 on. Finally we put

Y =(yl1,Y22,"‘)-‘

Before proceéding'to the main theorem, we state the theorem
given in [1], where we were concerned only with the real matrix
IC and real vector A. The theorem giveé the general form of
linear controlled stochastic process in non-random case and
enables us to calculate Vij’ i>j from cij’ i>j 1in rancaom
case.

Theorem 3.1.

The linear controlled stochastic process Y=(yi,ys,"**) ,

obtained from original stochastic process X, is given by

m
Ynir = Fmer ¥ L em, S s

where e k=1,2,+++,m satisfy the following equations,

m
= . [s] e .
em,m—l k=%-1 k,m=1 m,mcm—l,m-l
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e = e - e - e

my,m=2 k=%*2 k,m=2 m,mk___n%_2 k,m=2 “mym-1 m-2,m-2
m m-=1

e = e ,- e e - .. =g e .

m,1 kzl k,1 m,mkz1 k,1 my2 1,1

If, as stated in the biginning of this section, the elements of
C are random variables and A 1is a stocﬁastic process, then

our main theorem is obtained.

Theorem 3.2.

Let stochastic process X-A be L) bounded martingale.

If the elements vij’ Jzty, i=1,2,+++, of matrix V are

given by
Umtl, k 1 -~ lmym-1 """ Cmyk+1 T Cm,k?
Vit mey = k=1,2y++0,m, m=1,2,+-",
3

and satisfy (2.2) and (2.3).
Then stochastic process Y-A converges almost everywhere,
where Y 1s linear controlled stochastic process obtained from

X.

Proof.

Stochastic process Y-A 1is reduced to
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. m

m+1-gm+1)“k£lem,kcxk-gk)

Y =(x

m+175m+1
m;l : '

(3.1) m+1

=k£1"m+1 e 1O =l ey )

where we have put x3=£3=0. Then, applying Theorem 2.2 to

(3.1), our result of the theorem is immediatly obtainedlj
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