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Abstract 

A novel chaperonin-encapsulation system for NMR measurements has been designed. 

The single-ring variant SR398 with an ATPase deficient mutation of GroEL, also known 

as chaperonin, bound co-chaperonin GroES irreversibly, forming a stable cage to 

encapsulate a target protein. A small GroEL-binding tag made it possible to perform all 

steps of the encapsulation under near physiological conditions while retaining the native 

conformation of the target protein. About half of the SR398/GroES cages encapsulated 

target protein molecules. As binding only depends on the 12-residue tag sequence, this 

encapsulation method is applicable to a large number of proteins. Isolation of the target 

proteins in the molecular cage of chaperonin will allow the study of highly 

aggregation-prone proteins by solution NMR. 

 

 

 

Abbreviations: NMR, nuclear magnetic resonance; HSQC, heteronuclear single 

quantum coherence; SR398, single-ring mutant of GroEL with ATPase deficient 

mutation D398A; SBP, strongly binding peptide to GroEL 
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1. Introduction 

  Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful 

techniques for the analysis of the structure, dynamics and function of proteins in 

solution. It is also widely used to study protein-protein and protein-ligand interactions. 

Recent advances in isotope labeling, TROSY-based pulse sequences and sensitivity 

have made large proteins amenable to NMR studies even at low concentrations [1–3]. A 

frequent problem, however, is presented by the formation of nonspecific aggregates that 

lead to excessively broad NMR signals due to their high molecular weight or to 

chemical exchange between different states of aggregation. Many of these ill-behaved 

proteins are not amenable to NMR studies in solution. 

 To overcome intermolecular self-association, the protein molecules must be kept 

apart. A recent report by Lazar et al. showed that aggregate formation of fibrillogenic 

peptides can be prevented by encapsulating them in single bilayer vesicles [4]. Wand 

and co-workers used reverse micelles to sequester target proteins in organic solvents of 

low viscosity [5,6]. Although these systems can, in principle, keep self-associating 

protein molecules apart, the size of the aqueous cavities is quite adaptable, making it 

difficult to produce homogenous preparations of singly encapsulated molecules. 

Furthermore, proteins easily unfold during sample preparation in these lipid-based 

systems, which may be problematic for proteins that do not refold reversibly, and it is 

difficult to analyze the effects of added ligand compounds, because lipids are 

impermeable to most water-soluble compounds. A better system would be a 

semi-permeable shell or cage of defined size, which allows the translocation of small 

compounds across the wall while preventing unwanted protein-protein interaction.  

Here we show that the E. coli GroEL/GroES chaperone system, also known as 
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chaperonin, presents a suitable cage for trapping protein molecules as monomers or 

low-molecular weight oligomers where they are amenable to analysis by NMR 

spectroscopy. The combination of ATPase-deficient mutant of GroEL and small peptide 

sequence with high affinity for GroEL, made it possible to encapsulate a model 

substrate protein, ubiquitin, within the cavity of GroEL/GroES cage. Importantly, all the 

procedures were performed under near physiological conditions, indicating it is possible 

to encapsulate any target protein using the same method while avoiding denaturation of 

the target protein that is often irreversible. Our method would also be useful to examine 

the interaction of the target protein with its ligand because of the semipermeable 

character in GroEL/GroES cage. 

 

2. Materials and Methods 

2.1. Protein expression and purification 

 The expression vector for SR398 was constructed by introducing the D398A 

mutation in the expression plasmid for the single-ring mutant of GroEL (pEL-SR1, 

containing mutations R452G/E461A/S463A/V464A), which was obtained as a gift from 

Dr. K. Kuwajima [7,8]. The resulting plasmid, pEL-SR398, was transformed into the E. 

coli strain BL21(DE3)/pLysS (Novagen). Expression and purification of SR398 and 

co-chaperone GroES were carried out as described before with slight modification 

[9,10]. The entire purification was carried out at 4°C in 50 mM Tris-HCl (pH 7.8) 

containing 10% (w/v) glycerol, 5 mM mercaptoethanol, 25 mM NaCl and 1 mM EDTA 

(buffer TGMN). After lysis and removal of insoluble materials by centrifugation, 

ammonium sulfate was added to a concentration of 55% saturation. The precipitated 

protein was collected loaded onto Sephacryl S-300 ( 2.6  100 cm; GE Healthcare). 
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The fractions of proteins were pooled, and loaded separately onto a Q-Sepharose 

anion-exchange column ( 2.6  20 cm; GE Healthcare). The proteins were eluted with 

a linear gradient of 0–1 M NaCl in buffer TGMN. Purity of the protein was examined to 

be >90% by SDS-PAGE stained with Coomassie Brilliant Blue R-250. 

The expression plasmid for the substrate protein, ubq-SBP, was constructed from a 

pET vector encoding the human ubiquitin gene with a C-terminal His6-tag (pET-ubq, 

encoding the sequence 
1
M...G

76
-SHHHHHH

83
). SBP was added by C-terminal 

extension using PCR. The resulting plasmid, pET-ubqSBP, encoded ubiquitin with the 

sequence 
1
M...G

76
-SHHHHHH-CGGG-SWMTTPWGFLHP

99
. The pET-ubq and 

pET-ubq-SBP plasmids were transformed into BL21(DE3)/pLysS and expressed in LB 

or M9 media with 
15

NH4Cl containing 50 g/mL of ampicillin. The proteins were 

purified by affinity chromatography with HisTrap FF (GE Healthcare) using a linear 

gradient of 20–500 mM of imidazole in 300 mM NaCl and 50 mM Na-phosphate (pH 

7.5). 

 

2.2. Ternary complex formation 

 Encapsulation of ubq-SBP into the molecular cage of SR398/GroES was 

performed as follows. First, SR398 and ubq-SBP were dialyzed against buffer A (50 

mM Na-phosphate (pH 7.0), 200 mM NaCl, 50 mM KCl, 10 mM MgCl2, 5 mM 

-mercaptoethanol), then mixed and incubated for 5 min. GroES in buffer A and ATP 

were added to the mixture of SR398 and ubq-SBP, and incubated for 5 min. Final 

concentrations in the mixture were 15 M SR398, 30 M GroES, 150 M ubq-SBP, and 

2 mM ATP. The mixture was loaded onto Sephacryl-S300 (GE Healthcare, 9 x 125 mm) 

equilibrated with buffer A containing 2 mM ATP, and 200 L fractions were collected. 
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Each fraction was analyzed by tricine-SDS-PAGE [11] and proteins were detected by 

silver staining (Wako Pure Chemical Industries). The fractions containing ternary 

complex (fractions 14–17) were concentrated by ultrafiltration (Millipore, 10 kDa 

molecular weight cutoff (MWCO)) and analyzed quantitatively by reversed-phase 

HPLC using a column of Protein-R (Nacalai Tesque, 4.6 x 150 mm). 

 

2.3. NMR measurements 

 The ternary complex with 
15

N-labeled ubq-SBP was produced essentially as 

described above, using buffer A containing 2 mM ATP and 6% D2O. The protein 

mixture (19.8 M SR398, 39.6 M GroES, 198 M 
15

N-ubq-SBP) was treated with 

Ni-Sepharose 6 Fast Flow (GE Healthcare) to remove unbound 
15

N-ubq-SBP. The 

concentration of any remaining free 
15

N-ubq-SBP was decreased further by washing 10 

times with buffer A containing ATP and D2O, using a filter membrane of 100 kDa 

MWCO. The spectrum was recorded at 37°C on a Bruker 600 MHz NMR spectrometer. 

A series of 16 
15

N-HSQC spectra (each with a measurement time of 160 minutes) was 

recorded. After confirming the identity of each spectrum, all spectra were combined into 

a single spectrum that corresponded to a total measurement time of 42.7 h. After the 

NMR measurement, the protein concentration in the sample was determined by 

reversed-phase HPLC to be 17 M of 
15

N-ubq-SBP and 78 M of SR398, 

corresponding to a molar ratio of 0.2:1. The reference spectrum of 
15

N-ubq-SBP in 

solution was generated by combining four sets of HSQC spectra with identical 

acquisition parameters as for ternary complex. The protein concentration in the 

reference sample was determined to be 62 M. The 4 spectra were summed to obtain a 

single reference spectrum. The spectra were analyzed using NMRPipe [12]. 
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3. Results and discussion 

3.1. Chaperonin cycle and design of model substrate protein 

 GroEL is a large, homo-oligomeric protein composed of two heptameric rings of 

57 kDa subunits stacked back to back. Each GroEL ring possesses a large central cavity 

with a hydrophobic entrance for the binding of substrate proteins in nonnative 

conformations [13,14]. Co-chaperonin GroES, a dome-shaped heptameric protein 

composed of 10 kDa subunits, binds to the GroEL ring in the presence of ATP. Binding 

of GroES leads to a large conformational change in GroEL, resulting in the 

encapsulation and release of the nonnative substrate protein into the GroEL-ES cavity. 

This so-called cis ternary complex acts as a folding chamber where substrate proteins 

can refold without interference from intermolecular aggregation [7,15–18]. Hydrolysis 

of ATP in the cis ring and ATP binding in the opposite (trans) ring of GroEL cause 

dissociation of GroES and release of substrate protein into solution [15–18]. We 

speculated that the cis ternary complex could be sufficiently stable to encapsulate 

proteins in their native conformation for the duration of NMR experiments (Figure 1). 

 To obtain a stable cis ternary complex, we used a single-ring mutant of GroEL with 

the ATPase-deficient mutation D398A. The mutant, referred to as SR398, is known to 

bind GroES stably because its dissociation is normally triggered by binding of ATP to 

the trans-ring (which is absent from SR398) and ATP hydrolysis in the cis-ring [17]. In 

addition, the single-ring GroEL has been shown to be capable of binding a substrate 

protein in non-native form and, with the help of GroES, capture a substrate within its 

large central cavity. Next, to make a stable complex with substrate protein, we used the 

12 residue peptide fragment “strongly binding peptide” (SBP), that binds to the 
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substrate recognition site of GroEL with high affinity (KD ~2 M) [19,20]. To 

demonstrate the generality of our method, we chose ubiquitin as a model substrate 

protein. Ubiquitin is a highly stable protein that refolds reversibly, and it has never been 

reported to interact with GroEL.  

 

3.2. Ternary complex formation confirmed by SDS-PAGE 

 First, we confirmed the interaction of ubiquitin tagged with SBP sequence 

(ubq-SBP) with SR398 and GroES. The molecular weights of ubq-SBP and SR398 are 

11.4 and 400 kDa (as a heptamer), respectively. When each of these proteins was 

subjected separately to a Sepharcryl S-300 size-exclusion column, they eluted as 

separated peaks with retention volume of 7 mL and 3 mL, respectively (data not shown). 

On the other hand, when the mixture of SR398, GroES and ubq-SBP was loaded to the 

column equilibrated with the buffer containing 2 mM ATP, a significant band 

corresponding to ubq-SBP was detected by tricine-SDS-PAGE in fractions where 

SR398 was eluted (fractions 14–17 in Figure 2A). In contrast, ubiquitin free from 

SBP-tag sequence did not measurably interact with SR398, indicating the interaction 

was specifically and depended on SBP tag sequence (Figure 2C). This is rather 

consistent with general observations that GroEL specifically recognizes and binds to 

substrate proteins in denatured states. These results demonstrated the formation of a 

stable ternary complex of SR398, GroES and ubq-SBP. It should be noted that complex 

formation was achieved under near physiological conditions and there was no evidence 

of denaturation of ubq-SBP throughout the experiments. 

 In principle, each subunit of GroEL has a binding site for the SBP tag so that up to 

7 molecules of SBPs could bind to SR398. Indeed, it has been reported that all 7 
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binding sites were occupied by SBPs in X-ray crystallographic study [19,20]. To 

determine how many molecules of ubq-SBP were encapsulated in a SR398/GroES 

cavity, we collected fractions of size-exclusion chromatography corresponding to 

ternary complex and analyzed quantitatively by reversed-phase HPLC. By comparing 

the eluted peak area with separately applied protein solutions with known concentration, 

it was revealed that about 0.4 molecule of ubq-SBP per molecule of SR398 could be 

detected in isolated ternary complex fractions (Fig. 2B). This result appears to be largely 

due to steric hindrance between ubq-SBP and GroES, probably due to competition 

between them because both of them are expected to bind to the same apical domain of 

GroEL [19,20]. Indeed, much higher stoichiometric ratios were observed during 

formation of binary complexes between ubq-SBP and SR398 alone (data not shown). 

While sub-stoichiometric ratios probably leave some of the SR398/GroES cages 

unoccupied, they also promote the capture of single monomeric molecules. No peak 

corresponding to the substrate protein could be detected in the case of ubiquitin without 

SBP sequence, confirming again SBP sequence is necessary for the binding to GroEL 

(Fig. 2D). 

 

3.3. NMR study of ubq-SBP encapsulated within chageronin cage 

Based on the above observation of stable ternary complex formation by ubq-SBP, 

SR398 and GroES, we prepared the ternary complex using 
15

N-labeled ubq-SBP for 

NMR measurement. By encapsulating an isotopically labeled substrate protein within 

the cage formed by unlabeled chaperonin, it is possible to monitor specifically the 

conformation of ubq-SBP without interference of signals from a huge chaperonin cage. 

 The 
1
H-

15
N HSQC spectrum of the complex showed well-resolved cross-peaks 
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characteristic of protein in the native tertiary fold. Comparison with the corresponding 

spectrum recorded of the free protein in solution revealed close coincidence of most 

cross-peaks (Figure 3). This demonstrates that the SR398/GroES cage encapsulates the 

model substrate protein ubq-SBP in its native conformation. Close comparison of these 

spectra, however, revealed that several cross-peaks including those for SBP sequence 

could not be observed. This might be due to a possible interaction of hydrophobic SBP 

region with the apical domain and/or inner wall of SR398/GroES cage. 

It is known that transverse relaxation time (R2), and line width of the signal in 

NMR spectrum depends on the fluctuations of environment surrounding each nuclear 

spin. Therefore, it reflects sensitively the local and global motion of the molecule. To 

assess the effect of encapsulation into a limited volume of space on the molecular 

motion, we analyzed line widths of several well resolved peaks. Figure 4 shows the 

horizontal slices taken from spectra in Fig. 3. By fitting each resonance line to a 

Lorentzian line shape, it was revealed that most of the amide resonances of ubiquitin in 

the cage were about twice as broad as those of free ubiquitin in solution. This indicates 

that the tether to the SR398/GroES cage slows the reorientational motions of ubiquitin 

only about two-fold.  

 

3.4. Implications for chaperonin function 

Functional role of chaperonin has been considered to serve as the “Anfinsen cage”, 

that is, it sequesters a substrate protein inside the cavity where the substrate refolds to 

the native structure determined by its amino acid sequence. However, there are many 

arguments whether chaperonin just isolates a substrate within its cavity, or it actively 

interacts with the substrate to facilitate the folding. The present study encapsulated a 
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protein in the native conformation by tagging with SBP, and it might not necessarily 

reflect the true interaction between chaperonin and its substrate, however, it would be 

noteworthy to consider the environment inside the cavity because the present study 

provided the first high quality NMR spectrum of the protein encapsulated within the 

central cavity of GroEL/ES. 

Conformation of true substrate protein captured by GroEL, has already been 

analyzed by 2D NMR, in which the “binary complex” between human didhydrofolate 

reductase and single ring variant SR1 was formed [21]. The [
15

N,
1
H]-CRINEPT-HMQC 

spectrum of 
15

N-DHFR tightly bound to SR1 showed a very small chemical shift 

dispersion, indicating no stable secondary and tertiary structures, and large line widths 

due to slow overall tumbling of huge complex. These results were strikingly contrast to 

the cis-ternary complex of ubq-SBP, SR398 and GroES presented here, emphasizing the 

critical role of the cis-ternary complex in function of chaperonin. 

Weissman et al. [15] reported that acid-denatured green fluorescent protein (GFP) 

recovered its characteristic fluorescence in the complex with single-ring variant of 

GroEL (SR1) and GroES. They analyzed the spectra and lifetime of fluorescence and 

concluded that GFP attained a native conformation within the cavity of chaperonin. 

Whereas their conclusion is, in a strict sense, limited around the region of fluorophore 

of GFP, we demonstrated here that the conformation of ubiquitin within the cavity of 

chaperonin was the same throughout the molecule as that in solution. On the other hand, 

from the analysis of fluorescence anisotropy, they concluded that the rotational 

correlation time of GFP molecule increased by about 4 times. Similar but less 

significant effect was found in the case of ubiquitin encapsulated in chaperonin. We 

obtained the results of about two times increase in the line width of 
1
H resonances, 
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which corresponds roughly twice increase in the rotational correlation time. Considering 

the relative dimensions of ubiquitin molecule (19,000 Å
3
) to that of chaperonin cage 

(175,000 Å
3
), these increases in the rotational correlation time might be consistent with 

each other. 

Although line width of NMR signal is influenced by many factors including local 

fluctuations in environment surrounding the nuclear spin, we considered it might be 

attributable to the increase in the overall rotational correlation time of the molecule 

because of relatively homogeneous in most of resonances (Fig. 4). We cannot exclude 

the possibility of nonspecific interaction of hydrophobic SBP moiety with the apical 

domain of GroEL and/or the inside wall of the cis-cavity. However, these interactions 

are considered to be relatively small, because substrate tightly bound to the apical 

domain would have much broader line widths [21]. In addition, a repulsive interaction 

has been suggested for a majority of the substrate proteins and the interior wall of the 

cavity [22]. 

 In summary, we successfully encapsulated a protein in the central cavity of the 

SR398/GroES complex. A small GroEL-binding tag is sufficient for specific recognition 

of a protein by SR398 and can lead to successful encapsulation of about 50% of the 

target protein molecules in the folding chamber of SR398/GroES. Importantly, all steps 

of the encapsulation were performed under near physiological conditions, retaining the 

native conformation of the target protein. As binding only depends on the 12-residue tag 

sequence, this encapsulation method can be applied to a large number of target proteins. 

Isolation of the target proteins in the molecular cage of SR398/GroES will make it 

possible to study highly aggregation-prone proteins by solution NMR. 
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Figure legends 

Figure 1. Schematic drawing of (A) the ATP-dependent chaperonin-cycle of GroEL and 

GroES and (B, C) the chaperonin-encapsulation system for NMR measurements 

designed in the present work. In (A), a substrate protein in the denatured conformation 

(red line) binds to one of the rings of wild-type GroEL. Subsequent binding of GroES to 

the same ring results in the release of the substrate protein into the large cavity formed 

by GroEL/ES (the cis-ternary complex), where the substrate protein can fold to its 

native conformation (represented by an orange oval). Binding of ATP to the opposite 

ring (trans-ring) triggers the release of GroES and substrate protein. In (B), the 

single-ring variant with an ATPase deficient mutation, SR398, binds GroES in the same 

manner as wild-type GroEL. The absence of the trans-ring results in formation of a 

stable ternary complex. A 12-residue GroEL binding-tag (SBP sequence, shown in 
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green) enables binding of substrate protein in its native conformation (represented by a 

blue oval). „T‟ and „D‟ in the cartoon designate the ATP- and ADP-bound states of 

GroEL, respectively. In (C), the molecules are drawn to scale from crystal structure 

coordinates (PDB ID 1AON and 1UBQ [14,23]) showing the volume of the chamber 

(175,000 Å
3
, which corresponds to a globular protein of 142 kDa) is much larger than 

ubiquitin [24,25]. Asp398 C

 of the ATP-binding site of GroEL is marked by a red 

sphere. Its location deep inside the complex shows that small compounds of similar size 

to ATP can freely enter the cavity. The figure was drawn using Molmol [26]. 

 

Figure 2. Formation of the ternary complex of SR398, GroES and substrate. (A, C) 

SR398, GroES, and ubq-SBP (A) or wild-type ubiquitin (C) were incubated in the 

presence of ATP in a molar ratio of 1:2:10. The mixture was subjected to size-exclusion 

chromatography. Fractions (200 L each) were collected and analyzed by SDS-PAGE. 

(B, D) Fractions 14-17 of the size-exclusion chromatography run shown in (A) or (C) 

were concentrated and applied to reversed-phase HPLC to determine the molar ratio of 

SR398 and ubq-SBP (B), or to confirm the failure of the complex formation between 

SR398 and wild-type ubiquitin (D). The inset shows the elution profile of each substrate 

protein alone.  

 

Figure 3. 
15

N-HSQC spectra of ubiquitin-SBP (A) free in solution and (B) encapsulated 

in SR398/GroES. The line widths of the peaks labeled in panel (A) are analyzed in 

detail in Figure 4. t1-noise bands at the 
1
H chemical shifts of 8.6 and 8.3 ppm are from 

ATP NHs. 
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Figure 4. Cross-sections taken along the 
1
H frequency axis of the 

15
N-HSQC spectra 

shown in Figure 4. The left and right panels are taken from the spectra of the reference 

(Fig. 3A) and the ternary complex (Fig. 3B), respectively. The red lines show the best 

fits to a Lorentzian line shape. The assignments and line widths FWHH are indicated. 
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