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Abstract 
In this study, the radial strain control method for uniaxial compression tests was 

introduced in the Distinct Element Method (DEM) codes and the Class II behavior of 
rocks was simulated. The microscopic parameters used in the DEM models were 
determined based on laboratory uniaxial compression tests and Brazilian tests carried at 
Äspö Hard Rock Laboratory, Sweden. The numerical simulation results show good 
agreement with the complete stress-strain curves for Class II obtained from the 
laboratory experiments. These results suggest that the DEM can reproduce the Class II 
behavior of the rock successfully. The mechanism of the Class II behavior was also 
discussed in detail from the microscopic point of view. The loading condition and 
microscopic structure of rocks will play an important role for the Class II behavior. 
 
Key words: Uniaxial compression test, Class II behavior, radial strain control, Distinct 

Element Method (DEM), particle mechanics approaches
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1. INTRODUCTION 
 The brittle fracture of rocks is the most studied process in rock mechanics fields and 
especially the post-peak behavior of rocks is one of the key issues for rock mechanics 
problems. For the better understanding such a mechanical behavior of brittle rocks, it is 
fundamental to perform laboratory experiments. In the 1960's, many uniaxial 
compression tests using high stiff testing machine were carried out to understand the 
failure mechanism of brittle rocks, and they enable to obtain the post-peak behavior of 
rocks such as complete stress-strain curves [1, 2]. Wawersik obtained successfully the 
complete stress-strain curves for various rocks using a stiff testing machine, and 
classified rock mechanical behavior under uniaxial compression into Class I and Class 
II according to complete stress-strain curves [3, 4]. As shown in Fig.1, for Class I 
behavior, axial strain keeps stable even though the axial stress exceeds the peak strength, 
and the stress-strain curve monotonically increases in axial strain. On the other hand, for 
the Class II behavior, it suddenly falls into uncontrolled when the axial stress exceeds 
the peak strength and the curve does not monotonically increase in axial strain. 
Therefore, it is necessary to control violent collapse of the specimen to obtain the Class 
II complete stress-strain curve illustrated as the curve OABDE in Fig.1 [5]. Hudson et 
al. conducted the uniaxial compression tests with servo-controlled testing machine in 
which the radial strain was selected as a control variable, and obtained the Class II 
complete stress-strain curve successfully [6, 7].  

Fig.1 

Recently, servo-controlled testing machine is commonly used, and various 
experimental values were selected as the feedback signal. Sano et al. controlled inelastic 
volumetric strain rate [8]. Terada et al. accomplished the servo-controlled uniaxial 
compression test using AE rate [9]. Okubo et al. proposed the control method with 
linear combination of axial stress and strain [10, 11]. These recently developed 
servo-controlled testing machines and various testing methods enable to investigate the 
failure behavior of rock in detail [12, 13]. However, at present, there are still difficulties 
to obtain complete stress-strain curve of brittle rocks in the laboratory experiments, and 
the Class II post-peak behavior has not been sufficiently clarified. 
 Another approach to investigate the failure mechanism and post-peak behavior of 
rocks is numerical simulation. By rapid advance of computer technology, various 
numerical analysis techniques have been developed and applied to various problems in 
the rock engineering fields. Among them, the distinct element method (DEM) [14, 15] 
with particles can directly represent grain-scale microstructural features of rocks, such 
as pre-existing flaws, pores, microcracks and grain boundaries. These grain-scale 
discontinuities in the DEM model induce complex macroscopic behaviors without using 
complicated constitutive laws/equations. This means that the DEM model may be more 
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realistic and appropriate representation of rock fracturing comparing with other 
numerical simulation techniques such as finite element method (FEM) [16-18]. 
Numerical simulations are strong tool to understand the fracture mechanism and 
processes of rocks, and some researchers tried to simulate the Class II behavior [19, 20] 
using different loading control methods. However, it is still difficult to simulate the 
Class II post-peak behavior by any numerical analysis technique including the DEM, 
and realistic simulation of the Class II behavior of rock under uniaxial compression has 
not been achieved actually [21]. Therefore, a new DEM code was developed and Class 
II behavior of rock was simulated. The objective of this paper is to simulate the uniaxial 
compression test with radial strain control using a newly developed DEM code, and 
investigate the Class II post-peak behavior of rocks in detail. 
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2. SIMULATION METHODOLOGY 
 In this study, two-dimensional distinct element method (2D DEM) was employed. The 
DEM for granular materials was originally developed by Cundall and Strack [14]. The 
calculations performed in the DEM can be expressed as the translational and rotational 
motion of particles with the force and moment acting at each contact of the particles. 
The force-displacement law is employed to calculate the contact forces and moment 
generated from the relative motion of particles at each contact. The forces and moment 
calculated from all contacts on a particle are summed yielding a resultant forces and 
moment, and Newton’s second law gives the translational and rotational motion of 
particles resulting from the contact force and moment acting between particles. The new 
state of contacts is re-evaluated by the newly computed translational and rotational 
motion of particles, and a new cycle of computation is started. Though the DEM is the 
one of the discontinuum based numerical techniques, it can be applied also to the 
continuum by introducing bonds between particles [15]. In this section, only a summary 
of formulation for the mechanical behavior of bonded particles was given. More 
thorough details of the DEM can be seen in Refs.14 and 15. 
 
 
2. 1 Formulation of mechanics of bonded particles 
 In the two-dimensional DEM, the intact rock is modeled as densely packed small rigid 
circular particles. Neighboring particles are bonded together at their contact points with 
three kinds of springs as shown in Fig.2 and interact with each other. 
The increments of normal force , the tangential force , and the moment  can be 

calculated from the relative motion of the bonded particles, and are given as 
nf sf θf

Fig.2 

( )ijnn dndnkf −=       (1) 

(
⎭
⎬
⎫

⎩
⎨
⎧ +−−= ijijss ddLdsdskf θθ

2
)      (2) 

( )ij ddkf θθθθ −=       (3) 

 
where, ,  and are the stiffness of normal, shear, and rotational springs, 
respectively; ,  and 

nk sk
dn

θk
ds θd  are normal and shear displacements and rotation of 

particles;  and  are the radii of the bonded particles. A bond between the particles 
is presented schematically as a gray rectangle in Fig.3, where, L and D are the bond 
length and the bond diameter, respectively. D is obtained from harmonic mean of the 
radius of two particles. L and D are given by 

ir jr
Fig.3 
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Since the DEM is formulated as a fully dynamic system, small amounts of viscous 
damping are necessary to provide dissipation of high-frequency vibration. If contact 
damping was not introduced, the assemblies will not be able to reach exact equilibrium 
condition. Contact damping operates on the relative velocities at the contacts and is 
represented by dashpots acting in the normal and shear directions at the contact points.  
Since the simulation of laboratory rock tests, such as uniaxial compression test, require 

quasi-static loading, the coefficients of viscous contact damping are determined to 
provide critical viscous damping that approximates quasi-static loading. The 
coefficients of viscous contact damping in both normal and shear directions are given 
by  and , respectively with the following equations. nC sC

nijn kmC 2=        (6) 

nsns kkCC =        (7) 

 

is given by the weight of two particles  and ijm  im jm . where, 

ji

ji
ij mm

mm
m

+
= 2        (8) 

 
If the stiffness of the springs, ,  and are set as tuning parameters treated 

independently  determ
Therefore, the stif

nk sk θk

n , 
, a large effort will be required to ine appropriate values for them. 

fness of the springs, k k  and k are calculated using 
Timoshenko’s beam theory [22], and given by the following equations, 

s θ

L
AE

k p
n =        (9) 

( ) 31

12 IE
k p= ，

Ls φ+ 2

12 IE pφ =      
ALGκ
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L
IE
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where, A and I are the area and moment of inertia of the bonds. pE  and κ  are the 
pa shear correction factors. The shear coefficient Young’s modulus of rticle and κ  

depends on the shape of the cross-section, and normally, 65=κ  for a rectangular 
shape. Shear modulus G is calculated from Young’s modulus pE  and Poisson’s ratio 

pν , and given by 

( )p

pE
G

ν+
=

12
       (12) 

where, young's modulus  and the Poisson's ratio pE pν  given to the particles are 

microscopic paramete
Poisson's ratio of the rocks obtained from the laboratory experiments and/or simulation 

rs, and these values are different from Young's modulus and the 

of the uniaxial compression tests. The normal stress σ  d shear stress an τ  acting on 
the cross-section of the bond are calculated using the following equations.  

D
fn=σ        (13) 

D
fs=τ        (14) 

 
 
 
2. 2 Crack generation and cla
When 

ssification of crack modes 
σ  exceeds the strength of normal spring cσ  or τ  exceeds the strength of 

ear s  sh pring cτ , then the bond breaks and three spri oved from the model 
ltogether. Each bond breakage represents generated microcracks. 

( rea

ngs are rem
a

Bond b k criterion 1)   LLL  
⎭≥ cσσ  Bond Breakage 

(Bond break criterion 2)   

 stress) (Tensile   0 ⎫<σ
⎬

LLLLLLLLLL  ττ ≥  B
c

ond Breakage 

ment 
acting on the parallel-bond (which is expressed as elastic beam) contributes the normal 

This means that the bond breakage is judged by the 
maximum tensile stress acting on the cross section of the assumed elastic beam. On the 
o

In the parallel-bond model developed by Potyondy and Cundall [15], the mo

stress acting on the particles. 

ther hand, in this study, since the spring is introduced to restrict the rotation of the 
particles and used only to calculate the moment acting on the particles, the normal stress 
calculated by equation (13) does not include the moment of the elastic beam. This 
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means that the bond breakage in our model is judged by the average normal stress 
acting on the cross section of the assumed elastic beam. This is the difference in the 
mechanism of particle bondage between the parallel-bond model proposed by Potyondy 
and Cundall [15] and our model presented in this paper. 
In the AE measurement during the laboratory experiment, the AE hypocenter can be 

calculated from the arrival time of the P-wave first motion and the source mechanism of 
AE events are determined from the spatial distribution of the P-wave first motion 
polarities. For tensile cracks, all sensors detect the P-wave first motion as compression 
wave. On the other hand, for shear cracks, both compressional and dilatational P-wave 
first motions are detected [23]. This polarity of the P wave first motion will depend on 
the stress state at the crack generation. Therefore, in this study, the crack modes can be 
classified using shear-tensile stress ratio στ  regardless of broken spring type (normal 
and/or shear springs) as follows. 

(Crack classification criterion 1)    LLLL  
1

 stress) (Tensile   0
⎬
⎫

≤

<

στ
σ

 Tensile Crack 

(Crack classification criterion 2) 

⎭

  LLL  
1

 stress) (Tensile   0

⎭
⎬
⎫

>

<

στ
σ

 Shear Crack 

 S
 
When a microcrack is generated, the strain energy stored in both normal and shear 

 This produces a force imbalance, and subsequent 
stress redistribution induces an AE event. The magnitude of this AE event is related to 

odel which propagates outwar d 
reakage points.  

(Crack classification criterion 3)   hear Crack L    stress) ve(Compressi   0>σ

springs at the contact point is released.

the kinetic energy generated in the m d from the bon
b
Though the strain energy at the contact point does not directly express the magnitude 

of AE event, AE generation process mentioned above is induced by the strain energy. 
For this reason, the strain energy kE  calculated using equation (15) is assumed to be 
the energy corresponding to the magnitude of AE event. 
 

s

s

n

n
k k

f
k

f
E

22

22

+=        (15) 
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2. 3 Contact behavior between unbonded particles 
 When the unbonded p
other, springs and dashpots are introduced into the contact points in both normal and 

ngential directions, and compressive normal force  and tangential (frictional) 
force  act at the contact points. The no-tension constraint condition should be 
satisfied for the springs in the normal direction. 
 The stiffness of the contact springs in the normal direction is given by the following 
equation using the compression force based on the Hertz’s contact theory [24, 25].  

articles and/or particles with bond breakage are in contact each 

nf
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b

p
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2 132
π

ν
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where, r is particle radius and b is the diameter of the contact surface.  and pE pν  are 

Young’s modulus and Poisson’s ratio of particles, respectively. 
When particles and wall boundaries such as loading platen are in contact, the stiffness 

of contact springs in the normal direction is given by the following equations [24, 25]. 
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where,  and wE wν  are Young’s modulus and Poisson’s ratio of wall.  
Equation (16) and (17) represent the contact between cylinders, and Equation (18) and 

(19) represent the contact between a cylinder and a flat plate. More thorough details of 
these equations can be seen Refs.24 and 25. 
The stiffness of shear contact springs  can be calculated by multiplying the 

stiffness of the normal contact spring fness ratio, s as follows.  

       (20) 

 

ssk
and stifnnk  

nnss ksk ⋅=
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where stiffness ratio, s can be calculated from shear modulus G and Young’s modulus E 
as 

( )νE
Gs

+
==

12
1

       (21) 

The coefficients of viscous contact damping in both normal and shear directions, C  
and  can be expressed as, 

nn

ssC

nnijnn        (kmC ⋅= 2 22) 

nnssnnss kkCC =       (23) 

If the frictional force exceeds the critical value
points between the particles and frictional force
Coulomb's frictional la  the critical value lated by the following 
equation.  

sf  

w,

maxs , the slip occurs at the contact 
f  will be replaced. According to the 

f

 is calcu
s

maxsf

ns ff ⋅= μmax   
where 

     (24) 
μ  is a coefficient of friction. 

ll as the Hertz’s contact 
t

As mentioned above, the stiffness of the springs between the bonded particles k sk ，

and unbonded particles ， can be calculate from only Young's modul
the Poisson's ratio using the Timoshenko’s beam theory as we

n ，

us and θk  nnk ssk  

heory. As a result, the number of input parameters can be significantly decreased and 
easily calibrated. 
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3. NUMERICAL SIMULAT N FOR VARIOUS ROCK TEST
3. 1 Experimental data for the simulations 

IO S 

The uniaxial compression tests
the Äspö Hard Rock Laboratory (ÄHRL, 
performe TS 815 rock mechanics testing system according to the ISRM 

h as Young’s modulus and Poisson’s ratio were calculated as secant values between 
axial stress levels at -0.01% of rad
compression tests, the loading ra
constan
uniaxia ized

able.1. As shown in Fi e stress-strain curve obviously shows the Class II 
al strain controlled uniaxial tests performed at the ÄHRL 

were simulated using newly developed DEM c
were carefully calibrated f
 
3. 2 Radial strain controlled uniaxial compression test
Fig.5 shows the rock m

com
in
ting b

g the com
rce acting on the upper loading platen from particles and model width. The 

strain is calculated by d
s del are selected, and the displacement of these 

p

 and Brazilian tests for Äspö diorite were carried out at 
Sweden) [26]. These experiments were 

d using the M
(International Society for Rock Mechanics) Suggested Method [27]. Elastic parameters, 
suc

ial strain and 50% of peak strength. In the uniaxial 
te was controlled so that the radial strain rate becomes 

t. The complete stress-strain curve obtained from the radial strain controlled 
l compression tests is presented in Fig.4 and the testing results are summar  

in T g.4, th
behavior. In this study, the radi

Fig.4 

Table.1 

ode. The input parameters for simulations 
rom the laboratory experimental data. 

s 
odel and the loading condition for the simulation of uniaxial 

pression tests. The platen under the rock model was fixed and the upper loading 
platen was moved downward slowly at a certa  displacement rate to simulate the 
uniaxial compression tests. Frictional force was ac etween the rock model and the 
platens. The confining wall was not set along the side of the rock model.  
The axial stress applied to the rock model durin pression test was calculated 

from total fo

Fig.5 

isplacements of the monitored particles. As shown in Fig.5, four 
particle at the edge of the rock mo
articles was measured. Axial strain 1ε  and radial strain 2ε  can be calculated using 

 following equations.  the

( ) ( )
00

24
0
2

0
4

1  :Strain  Axial
yy

yyyy tt

−
−−−

=ε     (25) 
24

( ) ( )
0
1

0
3

13
0
1

0
3

2  :Strain  Radial
xx

xxxx tt

−
−−−

=ε     (26) 

where subscript t means time. 
Young’s modulus and Poisson’s ratio were calculated as secant values between axial 
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stress leve
uniaxial compression test is axial strain 

c

e loading rate. For this 
ason, the modification of the loading rate should be done at some time interval. If the 

 and as a result, 
i

3

ul
hanical properties. The calibration is usually performed for 

four tuning parameters, such as young’s modulus of the particle, Poisson’s ratio, tensile 
and shear strength for particle bonds. The unia
rock model can be obtained from the simulation of the uniaxial compression tests. 
Moreover, Young's modulus and the Poisson's ratio can be calculated from the 
stress-strain relations. Since the uniaxial tension
laboratory experiments, relatively easy Brazilian tests were generally conducted to 

e rock specimen. However, using the DEM, both uniaxial 
t

ls at -0.01% of radial strain and 50% of peak strength. 
 The most common control method for the 
ontrol. The axial strain controlled uniaxial compression tests can be easily reproduced 

in DEM models by moving the upper loading platen downward slowly with constant 
displacement rate. On the other hands, in the radial strain controlled uniaxial 
compression tests, loading rate for upper platen should be controlled to keep the radial 
strain rate constant. Therefore, it is necessary to introduce a special operation for the 
upper loading platen in DEM models.  
As shown in Fig.6, the ideal radial strain rate is manually set firstly, and the error of 

actual radial strain from ideal value is calculated every loading steps. If the error 
exceeds the maximum value, the simulation returns to the previous time step, and the 
simulation is restarted with updated loading rate. This process is repeated until the error 
becomes within ±5%, in this study. 
Since one particle influences only the adjacent particles in the DEM simulations, some 

time steps are required to modify the radial strain by changing th

Fig.6 

re
modification interval is too small, too many calculation steps are required
t becomes almost impossible to control radial strain with good accuracy. On the other 

hand, if the modification interval is too large, it is difficult to control sudden increase 
and/or decrease of the radial strain. Therefore, the modification of the loading rate is 
done every 20000 time steps in this study. 
 

. 3 Calibration procedure 
For the proper simulations using DEM, appropriate microscopic parameters should be 

selected [28]. Therefore, preliminary simulations of the uniaxial compression tests, the 
uniaxial tension tests and the Brazilian tests were performed for the calibration of 
microscopic parameters, and the microscopic parameters sho d be adjusted to represent 
a certain macroscopic mec

xial compressive strength (UCS) of the 

 tests have been rarely carried out in the 

obtain the tensile strength of th
ension test and Brazilian test can be simulated easily. Hence, both the uniaxial tension 
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test and Brazilian test were performed to calculate accurate tensile strength of the rock 

tests, and the radial strain controlled uniaxial 
c

models. The calibration process is summarized in Fig.7. Although the actual uniaxial 
compression tests were performed with radial strain control in Äspö HRL, the DEM 
model calibration was performed under axial strain control because the radial strain 
controlled uniaxial compression tests require more computer power and calculation time 
due to the iterative computation for the modification of the loading rate for the upper 
platen. For this reason, input microscopic parameters were determined from the axial 
strain controlled uniaxial compression 

Fig.7 

ompression tests were simulated using the same microscopic parameters.  
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4. DEM simulations for Class II behavior 
4. 1 Particle packing procedure 
 As for the packing process, the particle radius was selected following a uniform 
distribution between maximum and minimum radius using random number. First, four 
particles were arranged in the corner of the model as shown in Fig.8(a). Next, particles 
were aligned along one edge of the model as shown in Fig.8(b) and only the last one 
particle radius is decided manually to exactly contact with the particle already arranged. 
This process is repeated four times to enclose the model as shown in Fig.8(c). As shown 
in Fig.8(d), after arraying particles along the edge of the model, the inside o

Fig.8 

f the model 
is filled with particles. The new particle was arranged to contact with the pre-existing 
particles with at least three contact points. This process is repeated until a new particle 
with minimum radius can not be arranged. When the number of contact points for each 
particle is less than three, the radius of the particle is modified and/or the position of the 
particle changed so that the number of contact points become at least three. Using this 
packing method, it is possible to generate particles in a domain with complicated 
geometry in relatively short time. 
 
4. 2 DEM model for Rock specimen and simulation of laboratory tests 
Microscopic properties of the DEM model for rock specimen are summarized in 

Table.2. As mention above, tuning parameters are determined from calibrations using 
laboratory testing results (UCS, tensile strength, Young’s modulus and Poisson’s ratio). 
The other parameters, such as the shape of the rock model, were the same as the rock 
specimen used in the laboratory experiments. The size of rock specimen is 5.1cm in 
width and 14.3cm in height. The number of particles is about 10,000 with the maximum 
and minimum radius are 0.6mm and 0.3mm, respectively. Young's modulus and the 
Poisson's ratio values for steel was selected for the wall material properties  
Koyama et al. showed that the variance of the calculated macroscopic mechanical 

properties such as Young’s modulus and Poisson’s ratio increase significantly as the 
number of particles decreases [29]. However, an actual rock specimen contains small 
grains and minerals. To reproduce such small grains accurately, a great number of 
particles are necessary. Since the simulation using too many particles requires so long 
time for calculations and/or sometimes the simulation itself might become impossible, 
the number of particles and particle radius in this study were selected not only to 
decrease the variance for calculated values of macroscopic mechanical properties, but 
also to perform simulations/calculations effectively. For the simulations of the Brazilian 
tests, a circular shaped rock model was used. Since the number of particles affects 

Table.2 
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significantly the m s of rocks for the 
e number of particles and the same distribution of 

complete stress-strain curve obtained from the axial 
rain controlled uniaxial compression tests can not follow the curve OABDE in Fig.1 

s showing 
C

echanical properties in DEM, the DEM model
Brazilian test was made by the sam
particle radius as the rock model used in the uniaxial compression tests. For this reason, 
even though the rock specimen used in the actual Brazilian test was 50.9mm in the 
diameter, the diameter of the rock model for the simulation of Brazilian test was 96mm. 
 
4. 3 Difference of post-peak behavior by load control method 
The calibration results are summarized in Table.3. The macroscopic parameters of the 

rock model show good agreement with the experimental results. The calculated values 
of mechanical properties obtained from the radial strain controlled uniaxial compression 
tests were close to the values obtained from the axial strain controlled uniaxial 
compression tests. 
 The complete stress-strain curve obtained from the simulation with axial strain 

controlled uniaxial compression tests is shown in Fig.9(a). It is found that the axial 
strain increase monotonically in the post-peak region, and the stress-strain curve shows 
clearly the Class I behavior. The 

Table.3 

Fig.9 

st
because any special axial loading control was not applied. If rock specimen

lass II behavior are tested with axial strain control, rock specimens will suddenly 
break as soon as the axial stress exceeds the peak strength and fall into uncontrolled. 
The complete stress-strain curve will follow the curve OACDE in Fig.1.  
On the other hand, Fig.9(b) shows the stress-strain curve obtained from the simulation 

of the radial strain controlled uniaxial compression tests. As shown in Fig.9(b), the axial 
strain decreases in the post-peak region to keep the radial strain constant. The complete 
stress-strain curve shows the Class II behavior and good agreement with the 
experimental result as shown in Fig.4.  
These simulation results show that DEM can reproduce the Class II behavior of brittle 

rock successfully. Moreover, it was found that only loading control methods affect 
significantly the post-peak behavior of rocks. It should be noted that the same rock 
models with same geometry and microscopic input parameters were used for both 
simulations. This indicates that the loading control methods play important roles for the 
failure mechanisms and their processes of rocks under uniaxial compression (Class I 
and II). The microscopic parameter set determined in this section will be named 
"Case1" later. 
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5. Discussion 
5. 1 Difference of crack patterns by load control methods 
In the previous section, the loading control methods significantly affect on the 

mechanical behavior of rocks under uniaxial compression. A more detailed discussion 
will be given in this section mainly focusing on the effects of the loading control 
methods on the crack generation and propagation, since complex macroscopic behaviors, 

lled by generated 
m

ds to respective magnitude of AE energy obtained by equation (15). 
F

ain controlled 
u

a result, strain energy accumulated in the rock 
s

such as fracture propagation and failure, are strongly contro
icrocracks.  

Fig.10(a) and (b) show the spatial distribution of microcracks for Case1 with axial and 
radial strain controlled uniaxial compression tests, respectively. In this figure, tensile 
and shear cracks are expressed as filled and open circles, respectively. The diameter of 
the circle correspon

Fig.10 

or both control methods, the crack generation pattern in the pre-peak region was 
similar and most microcracks generated in low stress level were tensile cracks. As the 
axial stress increases, the number of microcracks increases gradually, and shear cracks 
starts generating. The detailed discussion on the pre-peak behavior is also seen in Ref. 
18. 
As shown in Fig.10(a), many shear cracks with relatively large energy were connected 

along a line in the post-failure region, which is called “shear band”. On the other hand, 
although a several microcracks were generated and released relatively large energy at 
the center of the model, shear bands does not appear for the radial str
niaxial compression tests as shown in Fig.10(b). As shown in Fig.9(a), radial strain 

increases rapidly when the axial stress exceeds the peak strength for the axial strain 
controlled uniaxial compression tests. For the radial strain control, on the other hand, to 
keep the radial strain constant even in the post-peak region, axial loading control was 
applied and axial load was reduced. As 
pecimen was reduced. Therefore, the cracks released small energy and the formation of 

the shear band can not grow sufficiently under radial strain control. 
Consequently, these simulation results clearly show that the formation of shear bands 

in the rock specimen plays important roles on post-peak Class I and II behaviors. 
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5. 2 Influence of the rock model p
eters for DEM (the shear 

a

as given for each case. The input parameters and calculated material 
p

rved in the uniaxial tests with the radial strain control. 

 loading conditions 
(

roperties 
 In this section, to investigate the effect of microscopic param
nd tensile strength of the particles) on the mechanical behavior of rocks under uniaxial 

compression, especially post-peak Class I and II behaviors, a series of simulations using 
different values for microscopic parameters were performed.  
Among the microscopic parameters, the shear and tensile strength of the particles 

significantly affect the microcrack generation. Therefore, the different shear-tensile 
strength ratio w
roperties of four rock models are listed in Table 4. The microscopic parameters were 

calibrated using the uniaxial compressive strength and Young's modulus obtained from 
the laboratory experiments. Noted that the model geometry (particle location and radius) 
is the same as the one used in Case1. 
The DEM simulations for uniaxial compression tests with both axial and the radial 

strain controls were performed, and the complete stress-strain curves were obtained for 
each case and are shown in Fig.11. As shown in Fig.11, for all cases, the Class I 
behavior was observed only for the axial strain control, and the Class II behavior was 
obse

Table.4 

Fig.11 

Fig.12 shows the microcrack distributions obtained from the axial strain controlled 
uniaxial compression tests. As shown in Fig.12, microcrack generation was different for 
each case. When tensile strength is small (Case2), a lot of tensile cracks had been 
generated in the whole rock specimen. On the other hand, when the tensile strength is 
large (Case5), the generation of tensile cracks was controlled and fewer tensile cracks 
were generated. However, clear shear bands appear for all cases when the axial strain 
controlled method was applied. Similar to Case1 discussed in the section 5.1, these 
shear bands were not observed when the radial strain controlled method was applied. 
From these simulation results, the microscopic parameters (in this case the tensile and 

shear strength) affect only tensile/uniaxial strength of the rock specimen but do not 
affect significantly the post-peak Class I and II behaviors. Again the

Fig.12 

controlled axial and/or radial strain) affect the post-peak behaviors and the formation of 
shear bands will be key issue. 
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5. 3 Local strain distribution 
 The DEM simulation results show that the key to understand the Class II behavior is 

the localized deformation along the shear bands. Hudson et al. mentioned in Ref 7 that 
“. . . as one region of the specimen is loaded and fails, the rest of the specimen remains 
intact and is elastically loaded and unloaded.” This statement implied that the failure 
l

e one explained in the section 3.2. Four particles 
a

g.13. As shown in Fig.14(a), 
a

ch 
r

 Since shear bands were not formed clearly for the radial 
strain controlled uniaxial compression tests, all local small regions of rock specimen 
still keep elastic behavior, and as a result, the complete stress-strain curve of rock 
specimen showed the Class II behavior. 
 

ocalization and non-uniform failure in rock specimen probably causes the class II 
behavior. However, the mechanism of non-uniform failure was not sufficiently 
investigated. 
For further discussions, the inside of the rock model was divided into nine local small 

regions as shown in Fig.13, and local axial strain in each region was measured. The 
input parameters of Case1 were used for this calculation. The measurement procedure 
of the local axial strain is similar to th

Fig.13 

re selected in each region. The radial and axial strain was calculated from the 
displacement of selected particles using equation (25), (26). 
Fig.14(a) shows the relation between a local axial strain for each region and the 

loading stress obtained from the axial strain controlled uniaxial compression tests. The 
numbers in Fig.14 represent the region number shown in Fi

Fig.14 

lthough the local axial strain recovers in most regions after passing the peak, a 
significant increase of the axial strain observed in the region No.5. As shown in 
Fig.10(a), shear bands clearly appear in the axial strain controlled uniaxial compression 
tests, and the shear bands pass the small region No.5 in Fig.13. This means that an 
increase of local axial strain in the region No. 5 which was caused by the crack surface 
slips along the shear bands dominates the mechanical behavior of whole rock specimen 
and as a result, the complete stress-strain curve shows the Class I behavior. 
On the other hand, Fig.14(b) shows the relation between a local axial strain in ea
egion and the loading stress obtained from the radial strain controlled uniaxial 

compression tests. As shown in Fig.14(b), the axial strain recovers in all local small 
region of rock specimen after the peak stress. This is because the formation of shear 
band does not grow due to the axial strain control was applied after the peak stress to 
keep the radial strain constant.
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6. CONCLUSION 
 

 be summarized as follows. 
 

ior of rocks with uniaxial 

 

ial strain occurs in some small regions of the 
rock specimen following the crack surface slips along the shear bands. As a result, 
the stress-strain curve of the entire rocks will show the Class I behavior. On the 
other hand, since clear shear band is not formed during the radial strain controlled 

A new DEM code for the uniaxial compression tests with radial strain control was 
developed and Class II behavior of rock was simulated in this study. The simulation 
results show good agreement with the complete stress-strain curve obtained from the 
laboratory experiment. These results suggest that the DEM can reproduce the Class II 
behavior of the rock successfully. In addition, the mechanism of the Class II behavior 
was discussed in detail from the microscopic point of view. The findings obtained from 
this study can

1.  Although the same rock model and the same input microscopic parameters were 
used, Class I behavior was obtained in the axial strain controlled uniaxial 
compression tests and Class II behavior was obtained from the radial strain 
controlled uniaxial compression tests. This indicates that the loading control 
methods significantly affect on the mechanical behav
compression (Class I and II). 

 
2.  The pre-peak behavior was almost the same for both loading control methods. 

However, the mechanical behavior in post-peak region is different between two 
different loading control methods and the formation of shear bands play important 
roles in the post-peak region. The shear bands appear clearly in the axial strain 
controlled uniaxial compression tests. On the other hand, clear shear band does not 
appear in the radial strain controlled uniaxial compression tests. This is caused by 
the fact that the formation of shear bands does not grow rapidly due to the axial 
loading control (unloading) to keep constant radial strain.  

3.  A series of simulations using different values for microscopic parameters were 
also carried out and simulation results clearly show that the microscopic parameters 
do not affect significantly the post-peak Class I and II behaviors. Hence, the key to 
understand the Class II behavior of brittle rocks is the localized deformation, such 
as the formation of a shear band. 

 
4.  A clear shear bands appear in the axial strain controlled uniaxial compression tests 

and a significant increase of the ax

 19



uniaxial compression tests, m ons of rock specimen still keep 

sts with radial strain control was simulated in 
is study, many other experimental techniques to obtain the complete stress-strain 

 detail using DEM will be our future works. 

ost local small regi
elastic behavior, and as a result, the complete stress-strain curve of the whole rock 
specimen shows the Class II behavior. 

 
The post-peak behavior of the rocks was discussed in detail by using newly developed 

DEM code. The DEM model may be a strong tool to analyze and understand the failure 
mechanisms and their processes of rocks such as Class II behavior. 
Even though the uniaxial compression te

th
curves including Class II behavior using various measuring values as the feedback 
signal to control the loading conditions [8-11]. It is very interesting to simulate and 
discuss these experimental techniques using DEM. Moreover, it is well-known that the 
geometry and size of the rock specimen also affect significantly the mechanical 
behavior in the post-peak region of the rocks [13], which was not investigated in this 
study. Investigating these issues in
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CAPTIONS for TABLES  
 
Table1  Laboratory tests and testing results. 
 
Table2  Rock model properties. 
 
Table3  Calibration results. 
 
Table4  Four data sets with different values for microscopic parameters. 
 
 
 
CAPTIONS for FIGURES 
 
Fig.1  Representative figures for stress-strain curves of class I and class II behavior of 
rock failure under uniaxial compression. 

l. 

ined by using the radial strain controlled 

ulation of uniaxial compression tests. The 

Fig.6  Simulation procedure for radial strain controlled uniaxial compression test. 
 
Fig.7  Calibration process. 
 

 
Fig.2  Three kinds of springs between two bonded particles. 
(a) Normal spring. 
(b) Shear spring. 
(c) Rotational spring. 
 
Fig.3  Bonded particles mode
 
Fig.4  Complete stress-strain curve obta
loading method 26). 
 
Fig.5  Loading condition for the sim
measuring points for the axial and radial strain were located slightly inside from the 
edge of the rock model. The distance between two measuring points is 90% of the rock 
model width or height. 
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) Four particles are arranged in the corner of the model. 
model. 

) Process (b) is repeated four times to enclose the model. 
 the pre-existing particles. 

n curves obtained from the simulation with different 
ontrolling methods. 

) Radial strain control. 

ig.10  Spatial distribution of all the cracks for case1 in pre-failure region (left) and 
al strain control and (b) radial strain control. Tensile 

nd shear cracks are expressed as filled and open circles, respectively. The diameters of 

) Radial strain control. 

tress-strain curves obtained from each case. 
ntrol. 

l. 

 the cracks for each cases. These figures are obtained 
om axial strain controlled uniaxial compression tests. Tensile and shear cracks are 

espective magnitudes of energy. 

n in Fig.13. 
) Axial strain control. 

Fig.8  Particle packing method. 
(a
(b) Particles are aligned along one side of the 
(c
(d) Put on a new particle tangent to
 
Fig.9  Complete stress-strai
c
(a) Axial strain control. 
(b
 
F
post-failure region (right). (a) axi
a
each circle correspond to their respective magnitudes of energy. 
(a) Axial strain control. 
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Fig.11  Complete s
(a) Axial strain co
(b) Radial strain contro
 
Fig.12  Spatial distribution of all
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expressed as filled and open circles, respectively. The diameters of the circles 
correspond to their r
 
Fig.13  Local strain monitoring procedure in each region. 
 
Fig.14  Local stress-strain curves in each region. The numbers in the figure represent 
the region number show
(a
(b) Radial strain control. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Client:    SKB  
Test:    Uniaxial 
Equipment:   MTS 815  
Test Date:  2003-06-10 

Loading Control:  Radial Strain Rate 
Equivalent Loading Rate: 0.75 MPa/s 
Confining Stress:  0 MPa 
 

Site:   Äspö  
Type:   Diorite 
Hole:   KA3376B01 
Depth:   33.32 m 

Diameter:  50.9 mm 
Length/Diameter: 2.80 
Density:   2742 kg/m3 
 

Young’s Modulus: 67.4 GPa 
Poisson’s Ratio:   0.27 

Peak Strength:  195.1 MPa 
Tensile Strength:   15.5 MPa 

TEST DATA 

SPECIMEN DATA 

Table1  Laboratory tests and testing results. 

TEST RESULTS 



 
 
 
 
 
 

Rock model for simulation of Brazilian test 
Diameter:     96mm 
Number of particles:    9401 

Maximum particle radius:    0.6mm 
Minimum particle radius:    0.3mm 
Particle density:     2742 kg/m3 

Friction coefficient of particle:   0.5 
Friction coefficient of wall:   0.3 
Young’s modulus of wall ( wE ):   200GPa 
Poisson’s Ratio of wall ( wν ):   0.3 

Rock model for simulation of uniaxial compression (tension) test 
Width:     51mm 
Height:     143mm 
Number of particles:    9457 

ROCK MODEL DATA 

Young’s modulus of particle ( pE ):   146.0 (GPa) 
Poisson’s Ratio of particle ( pν ):   0.2 
Shear strength of bonding ( cτ ):   245.0 (MPa) 
Tensile strength of bonding ( cσ ):   60.0 (MPa) 

TUNING PARAMETERS 

Table2  Rock model properties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Loading control: 
UCS of rock model (MPa): 
Young’s modulus of rock model (GPa): 
Poisson’s Ratio of rock model: 
Tensile strength of rock model (MPa) 

Brazilian test: 
Uniaxial tension test: 

Simulation 
 
 
 
 

 
15.51 
16.05 

Axial 
195.47 
67.63 
0.276 

Experiment 
Radial 
195.10 
67.40 
0.270 

 
15.50 

- 

Radial 
200.65 
67.55 
0.286 

Table3  Calibration results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table4  Four data sets with different values for microscopic parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case3 
255 
51 
5 

150.0 
0.2 

 
 

196.08 
67.52 
13.69 

Case4 
198.5 
99.25 

2 
140.0 
0.2 

 
 

194.97 
67.06 
26.56 

Case5 
162.5 
162.5 

1 
142.0 
0.2 

 
 

194.66 
67.96 
43.50 

-Input parameters- 
Shear strength of bonding ( c

Case2 
320 
32 
10 

170.0 
0.2 

 
 

195.93 
67.83 
8.59 

σ  MPa): 
Tensile strength of bonding ( cτ  MPa): 

Shear/Tensile strength ratio 
Young’s modulus of particle ( pE  GPa): 
Poisson’s Ratio of particle ( pν ): 

 

-Results (Axial strain control)- 
UCS of rock model (MPa): 
Young’s modulus of rock model (GPa): 
Tensile strength of rock model (MPa): 
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(c) Rotational spring 

Fig.1  Representative figures for 
stress-strain curves of class 
I and class II behavior of 
rock failure under uniaxial 
compression. 

Fig.2  Three kinds of springs 
between two bonded 
particles. 
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Fig.3  Bonded particles model. 
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Fig.4  Complete stress-strain curve obtained by using the radial strain 
controlled loading method 26). 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Loading condition for the simulation of uniaxial 
compression tests. The measuring points for the 
axial and radial strain were located slightly inside 
from the edge of the rock model. The distance 
between two measuring points is 90% of the rock 
model width or height. 
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Fig.6  Simulation procedure for radial strain 
controlled uniaxial compression test. 



 
 
 
 
 
 
 
 
 
 Setting the input parameter 
 Young’s modulus of particle ( ) pE

pPoisson’s Ratio of particle ( ν ) 
 Shear strength of bonding ( cτ ) 
 

Tensile strength of bonding ( cσ ) 
 
 
 Uniaxial compression test (Axial strain control) 
 →Uniaxial compression strength (UCS) of rock model 

→Young’s modulus of rock model  
 →Poisson’s Ratio of rock model 
 Uniaxial tension test, Brazilian test 
 →Tensile strength of rock model

Comparison with the experimental data
Yes 

No 

Uniaxial compression test (Radial strain control)

Fig.7  Calibration process. 



 
 
 
 
 
 

(d) Put on a new particle tangent to 
the pre-existing particles. 

New particle 

(a) Four particles are arranged 
in the corner of the model. 

(b) Particles are aligned along 
one side of the model. 

The last one particle 
radius is decided to 
just contact with 
existing particles. 

(c) Process (b) is repeated four 
times to enclose the model. 

1 

2 

3 

4 

 
 
 
 
 
 
 
 

Fig.8  Particle packing method. 
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(a) Axial strain control. 
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(b) Radial strain control. 
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Fig.9  Complete stress-strain curves obtained from the simulation 
with different controlling methods. 



 
 
 
 
 
 
 
 

Pre-failure Pre-failure Post-failure Post-failure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Axial strain control. (b) Radial strain control.  
Fig.10  Spatial distribution of all the cracks for case1 in pre-failure region (left) and 

post-failure region (right). (a) axial strain control and (b) radial strain control. 
Tensile and shear cracks are expressed as filled and open circles, respectively. 
The diameters of each circle correspond to their respective magnitudes of 
energy.  
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(a) Axial strain control.  
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(b) Radial strain control.  
 

Fig.11  Complete stress-strain curves obtained from each case. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12  Spatial distribution of all the cracks for each cases. These figures are 
obtained from axial strain controlled uniaxial compression tests. Tensile 
and shear cracks are expressed as filled and open circles, respectively. The 
diameters of the circles correspond to their respective magnitudes of 
energy. 
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Fig.13  Local strain monitoring procedure in each region. 
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(b) Radial strain control. 
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Fig.14  Local stress-strain curves in each region. The numbers in 
the figure represent the region number shown in Fig.13.  
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