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1. Introduction

　A water utility service incurs customer costs according to the number of customers with a 

connection to the water service system. For example, if a customer connects to a pipedwater 

system, then the costs of pipe installation, meter reading, and revenue collecting are incurred 

irrespective of the actual amount of the customer’s water consumption. To allay those customer 

costs, fixed or minimum fees are usually charged to customer-subscribers of a water service 

system. Such fees can infl uence customers’ subscription decisions if the fees are high in relation 

to customers’ willingness to pay for water or income levels. For instance, it is shown by McPhail 

[18] that in Tunisia, the cash down-payments that municipal water utilities charge to allay the 

connection costs discourage households from connecting to piped water systems.1)

　In the present study, following Littlechild [16], the long run costs of an enterprise are divided 

into customer and production costs: the sum of the customer costs is expressed as a function of  

the number of customers purchasing the product or service provided by the enterprise, whereas 
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武藤　幸雄：公営水道事業における最適料金制と規模の不経済性

　水道事業体から消費者が水道水を購入するとき、メーター計測費や料金徴収費などが
消費者の実際の水購入量の大きさと関わりなく発生する。水道事業において消費者の水
購入量の大きさと関わりなく発生するこのような費用項目は、まとめて需要家費と呼ば
れる。水道事業体は、需要家費を回収するために、水道契約に加入する消費者に対して
固定料金や接続料金を課すのが一般的であり、これらの料金額が比較的高いと、水道契
約に加入しないことを選ぶ消費者が現れるようになる。本研究は、水道事業体の水道料
金収入と総費用を一致させる制約のもとで消費者余剰を最大化するような水料金制を、
最適な水料金制としてみなす。そして、消費者の水に関する選好に関していくつか緩や
かな制約条件を仮定し、水道契約に加入しないことを選択する消費者が発生する状況を
想定しながら、最適な水料金制の特性について分析する。
　水の限界価格とは、消費者が水購入量を追加的に1単位増やすとき、消費者が支払う
べき水料金額がどれだけ増えるかを表す。ファーストベストの状態で水供給に際し規模
の不経済性（あるいは、規模の経済性）が生じる場合、最適な水料金制の限界価格は水
購入量が大きいときほど高くなり（あるいは、低くなり）、最適な水料金制のもとでの
水供給量と水道契約加入者数がそれぞれのファーストベストの水準よりも大きくなる
（あるいは、小さくなる）ことが、本研究では示される。



the sum of the production costs is expressed as a function of the output of the product or service. 

The rise in the production cost resulting from a unit increment in the output is called the marginal 

production cost; the increase in the customer cost when the enterprise supplies the product or 

service to one additional customer is called the marginal customer cost.

　Because of external diseconomies of scale in supplying water, which often accrue from the 

scarcity of water resources,2) it is possible that the average production cost of a water utility (i.e. 

the production cost per unit of water supply) increases with water supply, even when the water 

utility is a natural monopoly. For instance, large plant setup costs that are required for water 

purification and chemical treatment allow a water utility to enjoy internal economies of scale 

and to act as a natural monopoly.3) However, a large city like New York or Los Angeles usually 

uses readily available local sources fi rst; it then gradually reaches out to ever more distant and 

expensive supplementary sources to satisfy growing water demand (Hirshleifer et al. [13, chap. 5]). 

In such a case, if the marginal production cost of supplying water from distant sources is much 

higher than that from the local sources, then the average production cost rises as the water supply 

from the distant sources increases.4)

　Littlechild [16] studied optimal pricing for a monopoly in a simplifi ed case where the customer 

cost and production cost functions are both linear. That study showed that if some potential 

customers do not purchase the product or service provided by the monopoly, then the total surplus 

(the sum of consumer and producer surpluses) is maximized when the monopoly employs a two-

part tariff in which the marginal price equals the marginal production cost and the fi xed charge 

equals the marginal customer cost.5)

　This conclusion is applicable to optimal pricing for a monopolistic water utility in cases where 

the customer cost function is linear, and where, for relevant levels of water supply, the average 

production cost increases with water supply because of external diseconomies of scale. In such 

cases, if some potential customers disconnect from the water service system, then the fi rst-best 

solution can be realized by means of a two-part tariff in which the fixed charge and marginal 

price are respectively set to be equal to the marginal customer and production costs.

　When adopting such a two-part tariff, the water utility obtains a positive level of profi t because 

the marginal production cost is greater than the average production cost at the fi rst-best water 

supply. However, when a local government operates the water utility, it might be viewed as 

socially unacceptable for the water utility to secure such a positive profi t. In this circumstance, if 
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the water utility employs the two-part tariff described above, and if the profi t accrued by means 

of the two-part tariff is redistributed to potential customers, including both those connecting 

to the system and those disconnected from the system, in a lump-sum fashion, then the water 

utility can avoid excess profi ts and simultaneously achieve the fi rst-best solution. However, this 

redistribution is unfair for those customers connecting to the system: under such a redistribution 

program, a part of their payments to the water utility is transferred directly to those who are 

disconnected. Therefore, if those customers connecting to the system form a majority of the 

population, then they might well choose to politically block such redistribution.

　If, as argued above, monetary transfers between the water utility and potential customers 

disconnected are not allowed, then the water utility will be required to satisfy the break-even 

constraint that the tariff revenue it collects from the customers connecting to the system should 

match the total cost of water services.6) In such situations, what rate schedule should the water 

utility employ to maximize consumer surplus? As a solution, one might propose adopting a 

two-part tariff in which the marginal price is set to be equal to the marginal production cost 

at the first-best level of water supply, and in which the fixed charge is adjusted below the 

marginal customer cost so as to satisfy the break-even constraint. However, if, at the fi rst-best 

solution, there are potential customers not provided with water services, then such a two-part 

tariff encourages those excluded customers to subscribe to water services. As a result, the tariff 

increases both the total water consumption and the number of customers subscribing at greater 

than their respective fi rst-best levels, thus engendering an effi ciency loss. This argument indicates 

that if the fi rst-best solution entails customer exclusions, then the water utility cannot meet the 

break-even constraint without introducing an efficiency loss. Nonlinear tariff schedules are 

known to present the advantage that the marginal price is adjustable depending on the quantity 

purchased. In those cases where the efficiency loss associated with customer exclusions is 

unavoidable, nonlinear tariff schedules will thereby offer the water utility the maximum scope for 

minimizing the effi ciency loss, as suggested in Roberts [20, p. 66]. Therefore, if, at the fi rst-best 

solution, there are potential customers who disconnect from the water service system, then it will 

be generally optimal for the water utility to adopt a nonlinear water tariff in order to maximize 

consumer surplus under the break-even constraint.

　The literature regarding nonlinear pricing has so far not fully investigated the problem of 

designing a nonlinear tariff schedule to address the above situation. Willig [25, p. 68] noted that 



marginal cost pricing may be viewed as undesirable for a public utility service if marginal cost 

pricing induces a level of production at which there are locally decreasing returns to scale and 

a positive level of vendor profit that is viewed as socially unacceptable.7) Subsequently, few 

attempts have been made at clarifying the properties of optimal tariffs in such a situation while 

accounting for the infl uences of customer costs and exclusions.8)

　In this paper, we consider a water market wherein a monopolistic municipal water utility 

provides water services to customers while incurring customer costs. Assuming that monetary 

transfers between the utility and customers disconnected from the water service system are 

infeasible, we characterize an optimal water tariff that maximizes consumer surplus in the 

market subject to the break-even constraint that the tariff revenue the utility collects from 

customers connecting to the system should match the total cost of water services. Specifi cally, 

we investigate how the rate structure and effi ciency of the optimal water tariff are affected by 

diseconomies of scale in water production.

　Under certain conditions, this paper demonstrates that the marginal price in the optimal 

water tariff becomes a monotone increasing (resp. decreasing) function of the quantity of water 

purchased if diseconomies (resp. economies) of scale exist in producing water in the fi rst-best 

situation. It is thereby shown that the presence or absence of such diseconomies of scale can 

affect whether public water utilities should use quantity premiums or discounts in water pricing.

　In both developing and developed countries, water utility price regulators now often employ 

increasing block tariffs (IBTs), in which the marginal price of water increases stepwise with 

the quantity of water purchased.9) Notwithstanding their popularity, the economic rationale for 

employing IBTs has not been fully explored in the literature on water pricing; theoretical research 

on the rationale has remained underdeveloped.10) By illustrating situations in which quantity 

premiums are optimal for public water utilities, this study aims to bridge the gap that separates 

theory and practice in water pricing.

　This paper is organized as follows: The next section presents a model of a water utility and 

customers’ preference for water, and studies the fi rst-best water allocation. Section 3 formulates a 

water pricing problem when the water utility maximizes consumer surplus under the break-even 

constraint. It then examines the conditions for the optimality of the problem. The rate structure 

and effi ciency of the optimal water tariff are analyzed in section 4. Finally, section 5 describes 

concluding remarks.
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2. The Model

Consider a water market with a municipal water utility and a continuum population of po-

tential customers. Let N denote the size of the population of potential customers. The long-run

cost of the water utility comprises customer and production costs. The customer cost is given

as vNs, where Ns signifies the number of customers connecting to the water service system,

and where v is a positive constant, representing the marginal (average) customer cost. The

production cost is given as C(Y), where Y is the water supply and C is a twice-differentiable,

increasing, and convex function (C′(Y) > 0 and C′′(Y) ≥ 0). The long-run cost is therefore

given as vNs +C(Y).11)

Differences among potential customers are measured using a taste type parameter t. If a

customer of type t purchases x units of water for P dollars, then the customer’s utility U is

given as

U(x, t, P) =
∫ x

0
ρ(y, t)dy − P,

where the function ρ represents the marginal willingness to pay for an additional unit of

water.12) In the study by Timmins [24], the marginal willingness to pay for an additional unit of

water is assumed to be linear in the logarithm of water consumption; the water demand func-

tion is specified in a semilog form. Timmins [24] argued that semilog specifications provide

a reasonable representation of municipal water demand functions given high storage costs of

water and legal prohibition of water resale. The present study follows that approach, and in-

cludes the assumption that differences among customers arise from different levels of satiation

in water consumption: The marginal willingness to pay is specified as ρ(x, t) = (ln t − ln x)/γ,

where γ is a positive constant, and where t is distributed over an interval (0,M) according to

the distribution function F(t).13) In this setting, the marginal willingness to pay ρ(x, t) diverges

to infinity as water consumption x approaches zero; on the other hand, it becomes zero when

x = t, showing that the satiation level for type-t customers equals t. The dollar benefit for a

type-t customer from purchasing x units of water is then given as



b(x, t) ≡
∫ x

0
ρ(y, t)dy =

x
γ
{1 + ln(t/x)}. (1)

The benefit function b satisfies bx(x, t) = ρ(x, t), bt(x, t) = x/γt, and bxt(x, t) = 1/γt > 0.14)

The water utility cannot distinguish any particular customer type, but knows that t is dis-

tributed according to the distribution F. The density function of t, f (t) ≡ F′(t), is assumed to

be positive and continuously differentiable on the interval (0,M). We denote the reciprocal of

the hazard rate function of t as I(t) ≡ F̄(t)/ f (t), where F̄(t) ≡ 1− F(t), and make the following

assumption:

Assumption 1 {I(t)/t}′ = I′(t)/t − I(t)/t2 < 0 for t ∈ (0,M).

For instance, if ln f (t) is a strictly concave function, then, as verified in Prekova [19], I(t) is a

decreasing function, thereby fulfilling Assumption 1.

The remainder of this section examines the water allocation in the first-best optimum. Let

q(t) ∈ [0, 1] denote the probability that a type-t customer connects to the water service sys-

tem. Let x(t) denote the water consumption of a type-t customer when connecting to the

system. The population size of the customers connecting to the system is then expressible as

N
∫ M

0 q(t) f (t)dt. The first-best optimum for the present model can be found by solving the

following social surplus maximization problem:

max
q(t)∈[0,1], x(t)>0, Y

N
∫ M

0
q(t)
{
b(x(t), t) − v

}
f (t)dt −C(Y)

s. t. Y = N
∫ M

0
q(t)x(t) f (t)dt, (2)

where Eq. (2) is the requirement that the water supply be equal to the total water consumption.

The Hamiltonian for the above control problem is represented as

Φ[q(t), x(t),Y, t] =
[
Nq(t)

{
b(x(t), t) − μx(t) − v

}
+ μY −C(Y)

]
f (t),

where μ is the multiplier of constraint (2). By the maximum principle, the following conditions

pertain at the optimum:
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{q(t), x(t)} ∈ arg max
(q, x)

q
{
b(x, t) − μx − v

}
subject to 0 ≤ q ≤ 1 and x > 0, (3)

∫ M

0
ΦY[q(t), x(t),Y, t]dt = μ −C′(Y) = 0. (4)

Let Y f b > 0 denote the value of Y at the first-best optimum. We define a function S as S (t) ≡
maxx>0 b(x, t) − xC′(Y f b) − v. The solution for x to this maximization problem is deduced as

x = x f b(t) ≡ t exp{−γC′(Y f b)}, because the first-order condition implies bx(x, t) = C′(Y f b). As

a result, we obtain S (t) = γ−1t exp{−γC′(Y f b)} − v. Conditions (3) and (4) together imply that

if S (t) > (or <) 0, then q(t) = 1 [or q(t) = 0]. Accordingly, if t > (or <) τ f b ≡ γv exp{γC′(Y f b)},
then q(t) = 1 [or q(t) = 0]. As this result indicates, providing water services to a customer with

type higher (or lower) than τ f b generates a positive (or negative) surplus in the first-best case.

The first-best solution requires those customers with types higher (or lower) than τ f b to connect

to (or disconnect from) the system. Consequently, τ f b represents the marginal customer type

under the first-best solution. The first-best water consumption of a customer with type t ≥
τ f b is given as x f b(t). The minimum water consumption of all connected customers equals

x f b(τ f b) = γv > 0 according to the first-best solution.

The reasoning presented above suggests that {x f b(t), τ f b,Y f b} is determined by solving the

following system of equations:

Y f b = N
∫ M

τ f b
x f b(t) f (t)dt, (5)

bx(x f b(t), t) = C′(Y f b) for t ∈ [τ f b,M), (6)

b(x f b(τ f b), τ f b) = v + x f b(τ f b)C′(Y f b). (7)

If the marginal production cost equals C′(Y f b), and if a type-τ f b customer starts connecting

to the system and consumes x f b(τ f b) units of water, then the water utility incurs a cost of

v + x f b(τ f b)C′(Y f b) in serving the customer. The right-hand side (RHS) of Eq. (7) accordingly

measures the cost for providing an additional marginal customer with water services in the

first-best case. Equation (7) implies that the benefit of water to a marginal customer should

equal that cost. On the other hand, Eq. (6) indicates that the marginal benefit of water to a

customer connecting to the system should equal the marginal production cost.



Consider a situation in which the water utility employs the following two-part tariff for

water:

T f b(x) = v + xC′(Y f b) for x ≥ x f b(τ f b), (8)

where x denotes the quantity of water purchased, T f b(x) is the payment, and x f b(τ f b) represents

the minimum purchase of water in the tariff. The minimum charge and marginal price in this

tariff are given, respectively, as T f b(x f b(τ f b)
)
= v + x f b(τ f b)C′(Y f b) and dT f b/dx = C′(Y f b).

When a type-t customer chooses to connect to the system under this tariff, the customer’s

water purchase is determined by solving the problem: maxx>0 b(x, t)− xC′(Y f b)− v. According

to the definitions of S and x f b, the customer then gains a surplus of S (t) = b(x f b(t), t) −
x f b(t)C′(Y f b)−v through purchasing x f b(t) units of water. As presented above, we have S (t) � 0

for t � τ f b. Therefore, given that the potential customers’ reservation utility is zero, the

marginal customer type equals τ f b under the tariff T f b. The customers whose taste types lie

between 0 and τ f b choose to disconnect from the system under the tariff T f b because the

minimum charge T f b(x f b(τ f b)
)

is greater than the benefits that they can derive from purchasing

water. Consequently, the first-best optimum studied above is realized when the water utility

employs the tariff T f b.

It is implied by Eq. (8) that when adopting the tariff T f b, the water utility obtains a tar-

iff revenue of vNF̄(τ f b) + C′(Y f b)Y f b. In that case, the water utility incurs a total cost of

vNF̄(τ f b) + C(Y f b). The water utility’s profit under the tariff T f b equals C′(Y f b)Y f b − C(Y f b),

which becomes positive (or negative) if diseconomies (or economies) of scale exist in produc-

ing water at the first-best optimum. Subsequent sections investigate a water pricing problem

when it is not socially permissible for the water utility to generate such excess profits or losses.

3. The Water Pricing Problem under a Break-Even Constraint

This section describes a situation in which the water utility must satisfy the break-even

constraint that the tariff revenue it collects from customers connecting to the system should

match the total cost of water services. We formulate a water pricing problem for the water

utility and derive conditions for optimality of the problem.
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Assume a case in which the water utility introduces a water tariff schedule {x(t), P(t)} that

induces a type-t customer to purchase x(t) units of water at a given tariff P(t). In this case, the

incentive compatibility constraint requires that

b(x(t), t) − P(t) ≥ b
(
x
(
t̃
)
, t
) − P

(
t̃
)

for all
(
t, t̃
) ∈ (0,M) × (0,M). (9)

Let w(t) denote the surplus of a type-t customer under the tariff schedule {x(t), P(t)}:

w(t) = b(x(t), t) − P(t) = max
t̃∈(0, M)

b
(
x
(
t̃
)
, t
) − P

(
t̃
)
.

Because bxt(x, t) > 0, the incentive compatibility constraint (9) is equivalent to the conjunction

of the following two conditions: (IC1) x(t) is nondecreasing in t; and (IC2) w′(t) = bt(x(t), t)

(see Fudenberg and Tirole [8, chap. 7]). Condition (IC1) assures the existence of a tariff func-

tion P(t) such that {x(t), P(t)} satisfies the incentive compatibility constraint (9) (see Guesnerie

and Laffont [10]). Condition (IC2), which is deduced from the envelope theorem, implies that

the rate at which the surplus changes with t equals bt(x(t), t). Under condition (IC2), we have

w′(t) = bt(x(t), t) > 0 when x(t) > 0, which means that the surplus that a customer gains

from water purchasing is increasing concomitantly with the customer’s type. With asymmetric

information, the water utility allows higher-type customers to earn higher information rents

because higher-type customers might mimic the behaviors of lower-type customers.

Monetary transfers between the water utility and customers disconnected from the water

service system are assumed to be infeasible because of political or other constraints such as

those discussed in Section 1. The surpluses of disconnected customers are uncontrollable for

the utility and are assumed to be zero. The following analysis addresses a situation in which

the customer cost is sufficiently high that the water utility must impose a minimum charge

on customer-subscribers to allay the customer cost. We assume that under the relevant water

tariff schedules, potential customers whose taste types are sufficiently close to zero choose to

disconnect from the system because of the minimum charge, as in the case in which the water

utility employs the tariff T f b. Let τ ∈ (0,M) signify the marginal customer type under the tariff

schedule {x(t), P(t)}. In this setting, on the interval 0 < t < τ, the surplus and the tariff schedule



are given as w(t) = x(t) = P(t) = 0; both (IC1) and (IC2) are satisfied there because x(t) is

constant at zero, and because we have w′(t) = 0 = x(t)/γt = bt(x(t), t). Type-τ customers gain

zero surplus if connecting to the system. Accordingly, condition w(τ) = b(x(τ), τ) − P(τ) = 0

must hold true. On the other hand, on the interval τ < t < M, the water purchase x(t) is

positive, and, with conditions (IC2) and w(τ) = 0, the surplus function is expressible as

w(t) =
∫ t

τ

bt(x(s), s)ds. (10)

In the circumstance described above, the number of customers connecting to the system is

given as Ns = NF̄(τ), which is decreasing in τ. The water utility’s profit, Π, is the difference

between the tariff revenue it receives from the customers connecting to the system and the total

cost of water services. Using P(t) = b(x(t), t) − w(t) and Eq. (10), and integrating by parts, we

can represent the profit as

Π[x(·), τ,Y] ≡ N
∫ M

τ

{
b(x(t), t) −

∫ t

τ

bt(x(s), s)ds
}
f (t)dt − vNF̄(τ) −C(Y) (11)

= N
∫ M

τ

[{
b(x(t), t) − v

}
f (t) − bt(x(t), t)F̄(t)

]
dt −C(Y). (12)

Furthermore, integration by parts enables us to express the aggregate of customers’ surpluses,

W, as

W[x(·), τ] ≡ N
∫ M

τ

f (t)
∫ t

τ

bt(x(s), s)dsdt = N
∫ M

τ

bt(x(t), t)F̄(t)dt. (13)

Because the water supply must be greater than or equal to the total water consumption, the

following constraint is imposed:

Z[x(·), τ,Y] ≡ Y − N
∫ M

τ

x(t) f (t)dt ≥ 0. (14)

Assume that it is viewed as socially unacceptable for the water utility to secure a positive level

of profit and that the water utility must satisfy the break-even constraint: Π[x(·), τ,Y] = 0. The

problem for the water utility, denoted herein as (WP), is to maximize the consumer surplus

function W[·] subject to (IC1), the output constraint (14), and the break-even constraint. This

can be formulated as the following optimization problem:
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(WP) max
x(t), τ, Y

W[x(·), τ] = N
∫ M

τ

bt(x(t), t)F̄(t)dt subject to (14), and

(IC1) : x(t) is nondecreasing in t on the interval τ ≤ t < M,

Π[x(·), τ,Y]=N
∫ M

τ

[{
b(x(t), t)−v

}
f (t)−bt(x(t), t)F̄(t)

]
dt−C(Y)=0. (15)

The rest of this section presents derivation of the conditions for the optimality of this prob-

lem. In this analysis, for simplicity, we first ignore constraint (IC1) in (WP). The relaxed

problem is denoted as (WP’):

(WP′) max
x(t), τ, Y

W[x(·), τ] subject to (14), (15).

Deriving the necessary conditions for optimality of (WP’), we examine when an optimal solu-

tion to (WP’) satisfies constraint (IC1).

The Lagrangian for the problem (WP’) is defined as

L[x(t), t] ≡ (1 − λ)Nbt(x(t), t)F̄(t) + λN
{
b(x(t), t) − v

}
f (t) − μNx(t) f (t), (16)

where the multipliers μ and λ respectively measure the shadow prices of the output constraint

(14) and the break-even constraint (15), and where μ is nonnegative. The first-order condition

for x(t) yields

Lx[x(t), t] = N f (t)
[
(1 − λ)bxt(x(t), t)I(t) + λbx(x(t), t) − μ] = 0 for t ∈ [τ,M). (17)

On the other hand, differentiating W[x(·), τ] + λΠ[x(·), τ,Y] + μZ[x(·), τ,Y] with respect to τ

and Y , we deduce the first-order conditions for τ and Y , respectively, as follows:

Wτ + λΠτ + μZτ = N f (τ)
[
(λ − 1)bt(x(τ), τ)I(τ) − λ{b(x(τ), τ) − v

}
+ μx(τ)

]
= 0, (18)

λΠY + μZY = μ − λC′(Y) = 0. (19)

Because of Eq. (19) and because C′(Y) > 0, λ has the same sign as μ and is nonnegative.

If we were to obtain λ = μ = 0, we would have Lx[x(t), t] = N f (t)bxt(x(t), t)I(t) > 0 for



t ∈ [τ,M), which contradicts Eq. (17). Consequently, we have λ > 0 and μ > 0 at the optimum

of (WP’).

Let us examine when an optimal solution to (WP’) meets constraint (IC1). The solution for

x(t) to Eq. (17) is unique and is given as x(t) = t exp
[{

(1−λ)H(t)−γμ}/λ], where H(t) ≡ I(t)/t.

Its derivative is expressible as

d
dt

x(t) = x(t)
{

1
t
+

1 − λ
λ

H′(t)
}
. (20)

Assumption 1 implies that H′(t) < 0 for t ∈ (0,M). Therefore, the solution for x(t) to Eq. (17)

satisfies dx(t)/dt ≥ 0 on the interval τ ≤ t < M if and only if

1
tH′(t)

≤ λ − 1
λ

for all t ∈ [τ,M). (21)

Condition (21) is necessarily satisfied if λ ≥ 1. From these arguments, we conclude the fol-

lowing:

Proposition 1 Assume that {x(t), τ,Y} is a solution to problem (WP’), and that the shadow

price of the break-even constraint (15) in problem (WP’) equals λ for the solution {x(t), τ,Y}.
In this case, {x(t), τ,Y} satisfies constraint (IC1) and is a solution to problem (WP) (i) if λ ≥ 1,

or (ii) if λ < 1 and condition (21) holds true for λ and τ.

At the optimum of (WP’), we have μ > 0, so that the water supply equals the total water

consumption:

Y = N
∫ M

τ

x(t) f (t)dt. (22)

On the other hand, insertion of Eq. (19) into Eqs. (17) and (18) yields

bx(x(t), t) = αbxt(x(t), t)I(t) +C′(Y) for t ∈ [τ,M), (23)

b(x(τ), τ) = αbt(x(τ), τ)I(τ) + v + x(τ)C′(Y), (24)

where α ≡ (λ−1)/λ represents the Ramsey number. If condition (21) is satisfied at the optimum

of problem (WP’), then Eqs. (15) and (22) – (24) together represent the necessary conditions

for the optimality of problem (WP). Otherwise, derivation of the optimal solution for x(t) in
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problem (WP) requires bunching of taste types, and the necessary conditions for the optimality

of (WP) become more complicated than those presented above.

Equations (23) and (24) can be interpreted in the following manner. Equation (10) implies

that if the water purchase x(t) is raised marginally for a given t ∈ [τ,M), the information rents

earned by the customers with types higher than t increase. The resultant increases in the infor-

mation rents shift the consumer surplus W upward [see Eq. (13)], but engender reductions in

the water utility’s profit [see Eq. (11)], thereby affecting the break-even constraint negatively.

In Eq. (17), the term (1 − λ)bxt(x(t), t)I(t) captures the impacts that those increases in the in-

formation rents have on the objective function value in problem (WP’). Equation (23) requires

that the marginal benefit of water to a type-t customer equal this term multiplied by −1/λ plus

the marginal production cost.

Equation (10) implies also that if the marginal customer type τ decreases by one unit, the

information rents accrued to the infra-marginal customers increase by bt(x(τ), τ). In a similar

manner to the above, the resultant increases in the information rents shift the consumer surplus

W upward, but negatively affect the water utility’s profit and the break-even constraint. In Eq.

(18), the term (λ − 1)bt(x(τ), τ)I(τ) captures the impacts of those increases in the information

rents on the objective function value in problem (WP’); this term, multiplied by 1/λ, equals

the first term in the RHS of Eq. (24). On the other hand, the sum of the second and third terms

in the RHS of Eq. (24) reflects the cost for providing an additional marginal customer with

water services under the optimal tariff (see the arguments following Eqs. (5) – (7)). Equation

(24) represents that the sum of these three terms is necessary to equal the benefit of water to a

marginal customer.15)

4. The Rate Structure and Efficiency of the Optimal Water Tariff

This section presents an analysis of the rate structure and efficiency of the optimal water

tariff that is determined from the necessary conditions derived in the preceding section.

Assume that (i) the solution to problem (WP’) is given as {x(t), τ,Y} = {x∗(t), τ∗,Y∗}, and

that (ii) x∗(t) is strictly increasing on the interval τ∗ ≤ t < M, i.e. the strict inequality pertains



in condition (21):
1

tH′(t)
<
λ∗ − 1
λ∗

for all t ∈ [τ∗,M), (25)

where λ∗ denotes the shadow price of the break-even constraint (15) in problem (WP’). In this

case, the results in the preceding section indicate that the solution to problem (WP) is also

given as {x(t), τ,Y} = {x∗(t), τ∗,Y∗}, and that {x(t), τ,Y, α} = {x∗(t), τ∗,Y∗, α∗} must satisfy Eqs.

(15) and (22) – (24), where α∗ ≡ (λ∗ − 1)/λ∗.

The first part of this section introduces several functions and characterizes them to facilitate

analysis of the optimal water tariff. Functions x̄ and ᾱ are defined respectively as

x̄[t,Y, α] ≡ t exp
{−αH(t) − γC′(Y)

}
, (26)

ᾱ(τ,Y) ≡ {
ln(τ/vγ) − γC′(Y)

}
/H(τ). (27)

If Eq. (23) is solved with respect to x(t) for a given Y and α, the solution is unique and is

obtained as x(t) = x̄[t,Y, α]. Furthermore, if x(τ) = x̄[τ,Y, α] is substituted into Eq. (24)

and the equation is solved with regard to α for a given τ and Y , the solution is unique; it is

derived as α = ᾱ(τ,Y). Therefore, for a given τ and Y , we can solve the system of Eqs. (23)

and (24) uniquely with respect to α and x(t), and the solutions are given as α = ᾱ(τ,Y) and

x(t) = x̄[t,Y, ᾱ(τ,Y)].

Inserting x(t) = x̄[t,Y, ᾱ(τ,Y)] into Eq. (22), we transform Eq. (22) into the equation

Z̄(τ,Y) = 0, where the function Z̄ is defined as

Z̄(τ,Y) ≡ Y − N
∫ M

τ

x̄[t,Y, ᾱ(τ,Y)] f (t)dt. (28)

Assumption 1 implies that H(t)/H(τ) < 1 for t > τ. The partial derivative Z̄Y(τ,Y) is therefore

evaluated as

Z̄Y(τ,Y) = 1 − NγC′′(Y)
∫ M

τ

{
H(t)
H(τ)

− 1
}

x̄
[
t,Y, ᾱ(τ,Y)

]
f (t)dt > 0, (29)

which means that Z̄(τ,Y) is strictly increasing in Y . Given τ, the value of Y that fulfills the

equation Z̄(τ,Y) = 0 is therefore unique; we denote the value as Y = Ŷ(τ) to express the

functional dependence on τ. Substitution of Y = Ŷ(τ) into ᾱ(τ,Y) permits us to define a
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function α̂ as α̂(τ) ≡ ᾱ(τ, Ŷ(τ)
)
. By construction, if the system of Eqs. (22) – (24) is solved

with respect to Y , α, and x(t) for a given τ, then the solutions are unique, and are derived as

Y = Ŷ(τ), α = α̂(τ), and x(t) = x̄
[
t, Ŷ(τ), ᾱ(τ, Ŷ(τ))

]
= x̄
[
t, Ŷ(τ), α̂(τ)

]
. Given that τ = τ∗,

Eqs. (22) – (24) are satisfied for Y = Y∗, α = α∗, and x(t) = x∗(t). Consequently, we have

Ŷ(τ∗) = Y∗, α̂(τ∗) = α∗, and x̄[t, Ŷ(τ∗), α̂(τ∗)] = x∗(t). On the other hand, Eqs. (5) – (7) indicate

that, given τ = τ f b, Eqs. (22) – (24) are satisfied for Y = Y f b, α = 0, and x(t) = x f b(t).

Therefore, we also have Ŷ(τ f b) = Y f b, α̂(τ f b) = 0, and x̄[t, Ŷ(τ f b), α̂(τ f b)] = x f b(t).

If the solutions for x(t) and Y derived above (respectively, x(t) = x̄[t, Ŷ(τ), α̂(τ)] and Y =

Ŷ(τ)) are substituted into the profit function Π[x(·), τ,Y] shown in (11), then a function Π̂ is

definable as

Π̂(τ) ≡ N
∫ M

τ

{
b
(
x̄[t, Ŷ(τ), α̂(τ)

]
, t
) −
∫ t

τ

bt
(
x̄[s, Ŷ(τ), α̂(τ)], s

)
ds
}

f (t)dt

−vNF̄(τ) −C
(
Ŷ(τ)
)
. (30)

The value of Π̂(τ) reflects the water utility’s profit level when the water allocation is determined

by solving the system of Eqs. (22) – (24) with respect to Y , α, and x(t) given τ. The optimal

solution for τ, τ∗, satisfies Π̂(τ∗) = 0 because x̄
[
t, Ŷ(τ∗), α̂(τ∗)

]
= x∗(t) and Ŷ(τ∗) = Y∗, and

because the break-even constraint Π[x(·), τ,Y] = 0 holds true for x(t) = x∗(t), τ = τ∗, and

Y = Y∗. On the other hand, it is noteworthy that b(x f b(t), t) can be transformed as follows:

b
(
x f b(t), t

)
= b
(
x f b(τ f b), τ f b) +

∫ t

τ f b

d
ds

b(x f b(s), s)ds

= b
(
x f b(τ f b), τ f b) +

∫ t

τ f b

{
bx
(
x f b(s), s

) d
ds

x f b(s) + bt
(
x f b(s), s

)}
ds.

Using this equality and Eqs. (6) and (7), it can be deduced that

b
(
x̄
[
t, Ŷ(τ f b), α̂(τ f b)

]
, t
)
−
∫ t

τ f b
bt
(
x̄
[
s, Ŷ(τ f b), α̂(τ f b)

]
, s
)
ds

= b
(
x f b(t), t

) −
∫ t

τ f b
bt
(
x f b(s), s

)
ds = b

(
x f b(τ f b), τ f b) +

∫ t

τ f b
bx
(
x f b(s), s

) d
ds

x f b(s)ds

= v +C′(Y f b)x f b(τ f b) +C′(Y f b)
∫ t

τ f b

d
ds

x f b(s)ds

= v +C(Y f b)x f b(t) = T f b(x f b(t)
)
. (31)



Incorporating the above into Eq. (30) when τ = τ f b, we can obtain Π̂(τ f b) = C′(Y f b)Y f b −
C(Y f b).

We now present the results of the impacts of changes in τ on the function values of Ŷ , α̂,

and Π̂. As described later, the results help us clarify how the size relationships between τ∗

and τ f b, between Y∗ and Y f b, and between λ∗ and 1 are determined. Differentiating Eq. (27)

with respect to Y , we have ᾱY(τ,Y) = −γC′′(Y)/H(τ) ≤ 0; that is, ᾱ(τ,Y) is nonincreasing

in Y . Furthermore, if 1/τH′(τ) < α̂(τ), then, differentiating Eq. (27) with respect to τ, and

incorporating Y = Ŷ(τ), we have:

ᾱτ
(
τ, Ŷ(τ)

)
=

H′(τ)
H(τ)

{
1

τH′(τ)
− α̂(τ)

}
> 0. (32)

In the Appendix, the following theorem is established using these properties of ᾱ.

Theorem 1 Assume that the following inequality is satisfied for a given τ:

1/τH′(τ) < α̂(τ) < 1. (33)

Then, we have Π̂′(τ) > 0, Ŷ ′(τ) < 0, and α̂′(τ) > 0.

As implied by the theorem, if the system of Eqs. (22) – (24) is solved with respect to

{x(t),Y, α} for a given τ, and if the solution for α, α̂(τ), satisfies condition (33), then the water

utility’s profit level determined from the solution for {x(t),Y, α}, Π̂(τ), increases with τ. In

addition, α̂(τ) is increasing in τ, whereas the solution for Y , Ŷ(τ), is decreasing in τ.

Application of this theorem enables characterization of τ∗, Y∗, and λ∗ in the following man-

ner.

Proposition 2 Assume that the solution to problem (WP’) is given as {x(t), τ,Y} = {x∗(t), τ∗,Y∗},
that the shadow price of constraint (15) in (WP’) equals λ∗ for the solution {x∗(t), τ∗,Y∗}, and

that these satisfy condition (25). Then, one of the following three cases can occur:

(I) The solution and the shadow price fulfill τ∗ = τ f b, Y∗ = Y f b, and λ∗ = 1. Under the first-

best situation, there are constant returns to scale in producing water: C′(Y f b) = C(Y f b)/Y f b.
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(II) The solution and the shadow price fulfill τ∗ < τ f b, Y∗ > Y f b, and 0 < λ∗ < 1. Under

the first-best situation, there are decreasing returns to scale in producing water: C′(Y f b) >

C(Y f b)/Y f b.

(III) The solution and the shadow price fulfill τ∗ > τ f b, Y∗ < Y f b, and λ∗ > 1. Under the first-

best situation, there are increasing returns to scale in producing water: C′(Y f b) < C(Y f b)/Y f b.

Proof. We have α∗ = (λ∗ − 1)/λ∗ < 1 because λ∗ > 0. A number π f b is defined as π f b ≡
C′(Y f b)Y f b −C(Y f b). First, assume that τ∗ = τ f b. In this case, we have π f b = Π̂(τ f b) = Π̂(τ∗) =

0 and Y∗ = Ŷ(τ∗) = Ŷ(τ f b) = Y f b. We also have α∗ = α̂(τ∗) = α̂(τ f b) = 0, which implies that

λ∗ = 1.

Second, assume that τ∗ < τ f b. Condition (33) is satisfied for τ = τ∗ because α̂(τ∗) = α∗ < 1

and because of (25). By Theorem 1, for a sufficiently small number ε > 0, we obtain α∗ =

α̂(τ∗) < α̂(τ∗ + ε) < 1. This inequality and (25) together imply that 1/(τ∗ + ε)H′(τ∗ + ε) <

α∗ < α̂(τ∗ + ε) < 1, which indicates that condition (33) is satisfied for τ = τ∗ + ε. Because of

Theorem 1, for a sufficiently small number ε′ > 0, we have α̂(τ∗ + ε) < α̂(τ∗ + ε + ε′) < 1.

Combining this result with (25), we obtain 1/(τ∗+ε+ε′)H′(τ∗+ε+ε′) < α∗ < α̂(τ∗+ε+ε′) < 1,

which shows that condition (33) is satisfied also for τ = τ∗ + ε + ε′. Repeating this argument,

we can prove that as τ increases from τ∗ to τ f b, α̂(τ) increases monotonically and reaches

α̂(τ f b) = 0, and that condition (33) is satisfied on the interval τ∗ ≤ τ ≤ τ f b. We therefore

obtain α∗ = α̂(τ∗) < α̂(τ f b) = 0, showing that λ∗ < 1. Theorem 1 indicates that Y(τ) (resp.

Π(τ)) is decreasing (resp. increasing) on the interval τ∗ ≤ τ ≤ τ f b. Consequently, we also

obtain Y∗ = Ŷ(τ∗) > Ŷ(τ f b) = Y f b and π f b = Π̂(τ f b) > Π̂(τ∗) = 0.

Finally, assume that τ∗ > τ f b. Because α̂(τ f b) = 0, condition (33) holds true for τ =

τ f b. Theorem 1 implies that, for a sufficiently small number ε > 0, we have 0 = α̂(τ f b) <

α̂(τ f b + ε) < 1. Therefore, 1/(τ f b + ε)H′(τ f b + ε) < 0 < α̂(τ f b + ε) < 1, which shows

that condition (33) is satisfied also for τ = τ f b + ε. By virtue of Theorem 1, we know that

α̂(τ f b + ε) < α̂(τ f b + ε + ε′) < 1 for a sufficiently small number ε′ > 0. Repetition of

this argument shows that, as τ rises from τ f b to τ∗, α̂(τ) increases monotonically and reaches

α̂(τ∗) = α∗ < 1, and that condition (33) is satisfied on the interval τ f b ≤ τ ≤ τ∗. Accordingly,



we have 0 = α̂(τ f b) < α̂(τ∗) = α∗, which implies that λ∗ > 1. It follows from Theorem 1 that

Y∗ = Ŷ(τ∗) < Ŷ(τ f b) = Y f b and that π f b = Π̂(τ f b) < Π̂(τ∗) = 0.

We therefore established that one of the three cases described in the proposition can occur

under the assumption of the proposition, thereby completing the proof. Q.E.D.

Proposition 2 suggests that given condition (25), if diseconomies (or economies) of scale

exist in producing water under the first-best situation, then both the water supply and the num-

ber of customers connecting to the system are greater (or less) in the solution of problem (WP)

than under the first-best situation. When condition (25) is satisfied, the shadow price λ∗ can

be either larger or smaller than 1 because the left-hand side (LHS) of the inequality in (25) is

negative. Proposition 2 indicates that, in such a case, whether or not the shadow price λ∗ is

larger than 1 depends on the presence or absence of scale economies in producing water at the

first-best optimum.

Having examined the size relationship between λ∗ and 1, we can derive properties of the

optimal water tariff. Let T (x) denote the optimal charge for x units of water as defined from

the solution {x∗(t), τ∗,Y∗}. We consider a case where the consumption of a marginal customer,

x∗(τ∗), gives the minimum purchase in the optimal water tariff, and where it is sold as a block

for the minimum charge T (x∗(τ∗)), in a way similar to that seen for the tariff T f b.16) We have

T
(
x∗(τ∗)

)
= b(x∗(τ∗), τ∗) because the marginal customers gain zero surplus. On the other

hand, let XM denote the limit of the optimal water consumption as taste type approaches M,

i.e., XM ≡ limt→M x∗(t). For x ∈ [x∗(τ∗), XM), let t∗(x) denote the value of t that satisfies

condition x∗(t) = x; in other words, t∗(x) stands for the type of customer who purchases x

units of water under the optimal tariff. (Note that such a type is unique because x∗(t) is strictly

increasing on the interval τ∗ ≤ t < M.) The first-order condition for maximizing customer

utility implies that the optimal marginal price at consumption level x ∈ [x∗(τ∗), XM) is given as

T ′(x) = bx
(
x, t∗(x)

)
.

If C′(Y f b) = C(Y f b)/Y f b, then τ∗ = τ f b, Y∗ = Y f b, and x∗(t) = x̄[t,Y f b, 0] = x f b(t); the

optimal payment by a customer of type t ≥ τ f b is given as T
(
x∗(t)
)
= T f b(x f b(t)

)
because of

equality (31). That is, the optimal tariff T (·) coincides with T f b(·), realizing the first-best water
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allocation studied in Section 2. Its marginal price and minimum charge respectively equal the

marginal production cost, C′(Y f b), and the cost for providing an additional marginal customer

with water services, v +C′(Y f b)x f b(τ f b).

On the other hand, if C′(Y f b) > (or <) C(Y f b)/Y f b, then α∗ < (or >) 0, and Eq. (24) indicates

that T
(
x∗(τ∗)

)
< (or >) v+C′(Y∗)x∗(τ∗): the optimal minimum charge is lower (or higher) than

the cost for providing water services to an additional marginal customer. Using Eq. (23), the

percentage profit margin at consumption level x ∈ [x∗(τ∗), XM) is expressible as

T ′(x) −C′(Y∗)
T ′(x)

=
α∗bxt

(
x, t∗(x)

)
I
(
t∗(x)
)

bx
(
x, t∗(x)

) =
α∗

η(x)
, (34)

where η(x) ≡ bx
(
x, t∗(x)

)
/bxt
(
x, t∗(x)

)
I
(
t∗(x)
)

is the price elasticity of the water demand for an

increment of consumption at consumption level x.17) If C′(Y f b) > (or <) C(Y f b)/Y f b, then α∗ <

(or >) 0, and T ′(x) < (or >) C′(Y∗), which indicates that the optimal marginal price is distorted

below (or above) the marginal production cost. With the help of Eq. (23), η is expressible

as η(x) = α∗ + γC′(Y∗)/H
(
t∗(x)
)
.18) On the interval x∗(τ∗) ≤ x < XM, the elasticity η(x)

increases with x because t∗(·) is increasing, and because H′(t) < 0. Therefore, Eq. (34) implies

that T ′′(x) > (or <) 0 when C′(Y f b) > (or <) C(Y f b)/Y f b. We thus establish the following

proposition:

Proposition 3 Assume the same conditions as those in Proposition 2. Let T (x) denote the

optimal charge for x units of water as defined from the solution {x∗(t), τ∗,Y∗}. Then, we have:

(I) If constant returns to scale exist in producing water under the first-best situation (i.e.

C′(Y f b) = C(Y f b)/Y f b), then the optimal water tariff T (·) coincides with the tariff T f b(·) shown

in Eq. (8).

(II) If decreasing returns to scale exist in producing water under the first-best situation

(i.e. C′(Y f b) > C(Y f b)/Y f b), then (i) the optimal minimum charge satisfies T
(
x∗(τ∗)

)
< v +

C′(Y∗)x∗(τ∗), and (ii) the optimal marginal price T ′(x) is less than C′(Y∗) and is increasing in

water purchase x on the interval x∗(τ∗) ≤ x < XM.

(III) If increasing returns to scale exist in producing water under the first-best situation

(i.e. C′(Y f b) < C(Y f b)/Y f b), then (i) the optimal minimum charge satisfies T
(
x∗(τ∗)

)
> v +



C′(Y∗)x∗(τ∗), and (ii) the optimal marginal price T ′(x) is higher than C′(Y∗) and is decreasing

in water purchase x on the interval x∗(τ∗) ≤ x < XM.

The rate structure of the optimal water tariff is demonstrably determined according to whether

diseconomies or economies of scale exist in producing water under the first-best situation. The

break-even constraint (15), which is deduced under the assumption that monetary transfers be-

tween the utility and disconnected customers are infeasible, plays a key role in deriving this

result: If diseconomies of scale exist in producing water under the first-best situation, then

Π̂(τ f b) = C′(Y f b)Y f b − C(Y f b) > 0, i.e. the utility obtains excess profits when the water al-

location is determined by solving the system of Eqs. (22) – (24) with τ set equal to τ f b. By

the increasing property of Π̂(·) described in Theorem 1, the optimal marginal customer type τ∗

must be less than τ f b for the utility to avoid excess profits and fulfill the break-even constraint.

In this case, because α∗ = α̂(τ∗) < α̂(τ f b) = 0, Eqs. (23) and (24) prescribe that downward

distortions be introduced into the marginal price and minimum charge. These adjustments en-

courage the purchase of water and connection to the system, thereby raising information rents

for customers. The adjustments raise the total cost of water services and consequently enable

the utility to satisfy the break-even constraint with restriction of profit. Conversely, if scale

economies exist in producing water under the first-best situation, the utility incurs a loss when

the water allocation is determined by solving the system of Eqs. (22) – (24) with τ set as equal

to τ f b. In such cases, the optimal marginal customer type must be greater than τ f b for the util-

ity to satisfy the break-even constraint (15) along with promotion of profit. The optimal water

tariff then introduces upward distortions in the marginal price and minimum charge because

α∗ = α̂(τ∗) > α̂(τ f b) = 0 and because of Eqs. (23) and (24). Curtailing information rents to

customers and the total cost of water services, those price distortions allow the utility to in-

crease its profit to satisfy the break-even constraint. Thus, if diseconomies (resp. economies)

of scale exist in producing water under the first-best case, then the optimal marginal price is

distorted below (resp. above) the marginal production cost and increases (resp. decreases)

with the quantity of water purchased because of the increasing property of the elasticity η.

We compare this result with two representative studies of nonlinear pricing of public utilities:
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Goldman, Leland, and Sibley [9] studied nonlinear pricing of a public utility that maximizes

the weighted sum of the utility’s profit and consumer surplus, where the weight on the former

is greater than that on the latter. Wilson [26, chapters 5, 6, and 8], on the other hand, examined

nonlinear pricing of a public utility that maximizes the unweighted sum of the utility’s profit

and consumer surplus subject to the nonnegativity of the profit. In these studies, because of

the specific settings, the optimal marginal price is necessarily greater than the marginal (pro-

duction) cost except at the maximum consumption rate; the percentage profit margin of the

optimal tariff is inversely proportional to the price elasticity of the demand for an increment

of consumption. Therefore, quantity discounts are optimal if and only if the price elasticity of

the demand for an increment of consumption increases with consumption. In our analysis, by

contrast, whether the optimal marginal price of water is greater than the marginal production

cost depends on the presence or absence of scale economies in producing water at the first-

best solution because the water utility faces the break-even constraint (15), together with the

infeasibility of monetary transfers with customers disconnected. As a result, while the price

elasticity of the water demand for an increment of consumption increases with water consump-

tion, both quantity premiums and discounts can be optimal in this study, depending on whether

diseconomies or economies of scale exist in producing water under the first-best solution.

5. Concluding Remarks

In this paper, we have modeled a water market in which a monopolistic municipal water

utility provides water services while incurring customer costs. We have investigated an optimal

water tariff that maximizes consumer surplus in the water market under the constraint that the

utility’s tariff revenue collected from the customers connecting to the water service system

match the total cost of water services. Under certain conditions, the analysis presented in this

paper demonstrates that if diseconomies (resp. economies) of scale exist in producing water

under the first-best situation, then (i) the marginal price in the optimal water tariff increases

(resp. decreases) monotonically with the quantity of water purchased, and (ii) both the water

supply and the customers connected to the system are more (resp. less) numerous under the

optimal water tariff than under the first-best situation. It is thus demonstrated that the presence



or absence of those diseconomies of scale can affect the rate structure and efficiency of the

optimal water tariff.

This study has paid scant attention to cases in which the shadow price of the break-even

constraint in problem (WP’) is so low that condition (25) fails. In such situations, generally,

bunching of taste types is necessary to solve the optimal water consumption in problem (WP),

and the necessary conditions for the optimality of (WP) become more complex than those

described above. Even in such cases, however, it will be possible to define functions corre-

sponding to α̂, Ŷ , and Π̂ from the necessary conditions through a procedure similar to that

described above. Examination of the properties of those defined functions will clarify how the

results in Propositions 2 and 3 can be extended to those cases. Exploration of this issue is left

as a focus for additional research.

Appendix: Proof of Theorem 1

First, to examine the signs of Ŷ ′(τ) and α̂′(τ), we introduce a function ζ defined as

ζ(τ,Y, α) ≡ Y − N
∫ M

τ

x̄[t,Y, α] f (t)dt. (35)

Using Eq. (26), the partial derivatives of ζ are given as follows:

ζτ(τ,Y, α) = Nx̄[τ,Y, α] f (τ) > 0, (36)

ζY(τ,Y, α) = 1 + NγC′′(Y)
∫ M

τ

x̄[t,Y, α] f (t)dt > 0, (37)

ζα(τ,Y, α) = N
∫ M

τ

x̄[t,Y, α]H(t) f (t)dt > 0. (38)

By definition, Z̄(τ,Y) = ζ
(
τ,Y, ᾱ(τ,Y)

)
. Differentiating this equality with respect to τ, and

incorporating Y = Ŷ(τ), we deduce the following:

Z̄τ(τ, Ŷ) = ζτ
(
τ, Ŷ , ᾱ(τ, Ŷ)

)
+ ζα
(
τ, Ŷ , ᾱ(τ, Ŷ)

)
ᾱτ(τ, Ŷ) = ζτ

(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱτ(τ, Ŷ), (39)

where Ŷ = Ŷ(τ) and α̂ = α̂(τ) = ᾱ
(
τ, Ŷ(τ)

)
. From the above, we have Z̄τ(τ, Ŷ) > 0 because

of (36) and (38) and because inequality (32) is satisfied under condition (33). We also have

Z̄Y(τ, Ŷ) > 0 by virtue of Eq. (29). We thus show that Ŷ ′(τ) = −Z̄τ(τ, Ŷ)/Z̄Y(τ, Ŷ) < 0.
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Because of inequality (32), and because ᾱY(τ,Y) ≤ 0, we then establish that α̂′(τ) = ᾱτ
(
τ, Ŷ
)
+

ᾱY(τ, Ŷ)Ŷ ′(τ) > 0.

Differentiating Z̄(τ,Y) = ζ
(
τ,Y, ᾱ(τ,Y)

)
with regard to Y , and incorporating Y = Ŷ(τ), we

get

Z̄Y(τ, Ŷ) = ζY
(
τ, Ŷ , ᾱ(τ, Ŷ)

)
+ ζα
(
τ, Ŷ , ᾱ(τ, Ŷ)

)
ᾱY(τ, Ŷ) = ζY

(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱY(τ, Ŷ), (40)

where Ŷ = Ŷ(τ) and α̂ = α̂(τ) = ᾱ
(
τ, Ŷ(τ)

)
. Using (39) and (40), Ŷ ′(τ) is expressible as

Ŷ ′(τ) = − ζτ
(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱτ(τ, Ŷ)

ζY
(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱY(τ, Ŷ)

. (41)

If Eq. (41) is substituted into α̂′(τ) = ᾱτ
(
τ, Ŷ
)
+ ᾱY(τ, Ŷ)Ŷ ′(τ), then α̂′(τ) is transformed as

α̂′(τ) =
ζY
(
τ, Ŷ , α̂)ᾱτ(τ, Ŷ) − ζτ(τ, Ŷ , α̂)ᾱY(τ, Ŷ)
ζY
(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱY(τ, Ŷ)

. (42)

Next, substituting x(t) = x̄[t,Y, α] into Eq. (11), we define a function π as

π(τ,Y, α) ≡ N
∫ M

τ

{
b
(
x̄[t,Y, α], t

) −
∫ t

τ

bt
(
x̄[s,Y, α], s

)
ds
}

f (t)dt − vNF̄(τ) −C(Y)

= N
∫ M

τ

[{
b
(
x̄[t,Y, α], t

) − v
}
f (t) − bt(x̄[t,Y, α], t)F̄(t)

]
dt −C(Y). (43)

Furthermore, we define functions A and B as

A(τ,Y, α) ≡ πα(τ,Y, α)ζY(τ,Y, α) − πY(τ,Y, α)ζα(τ,Y, α), (44)

B(τ,Y) ≡ πτ(τ,Y, ᾱ(τ,Y)
)
ζY
(
τ,Y, ᾱ(τ,Y)

) − πY
(
τ,Y, ᾱ(τ,Y)

)
ζτ
(
τ,Y, ᾱ(τ,Y)

)
+
{
πτ
(
τ,Y, ᾱ(τ,Y)

)
ζα
(
τ,Y, ᾱ(τ,Y)

)−πα(τ,Y, ᾱ(τ,Y)
)
ζτ
(
τ,Y, ᾱ(τ,Y)

)}
ᾱY(τ,Y).

(45)

By definition, Π̂(τ) = π
(
τ, Ŷ(τ), α̂(τ)

)
. Incorporation of Eqs. (41) and (42) enables representa-

tion of the derivative Π̂′(τ) as

Π̂′(τ) = πτ(τ, Ŷ , α̂) + πY
(
τ, Ŷ , α̂

)
Ŷ ′(τ) + πα

(
τ, Ŷ , α̂

)
α̂′(τ)

=
A(τ, Ŷ , α̂)ᾱτ(τ, Ŷ) + B(τ, Ŷ)
ζY
(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱY(τ, Ŷ)

, (46)



where Ŷ = Ŷ(τ) and α̂ = α̂(τ) = ᾱ
(
τ, Ŷ(τ)

)
. We have ζY

(
τ, Ŷ , α̂

)
+ ζα
(
τ, Ŷ , α̂

)
ᾱY(τ, Ŷ) =

Z̄Y(τ, Ŷ) > 0, as shown before. Thus, in order to complete the proof, it suffices to verify that

A(τ, Ŷ , α̂)ᾱτ(τ, Ŷ) + B(τ, Ŷ) > 0.

Differentiating Eq. (43) with respect to Y , and using the fact that Eq. (23) holds true for

x(t) = x̄[t,Y, α], we obtain the following expression for πY :

πY(τ,Y, α) = N
∫ M

τ

{
bx
(
x̄[t,Y, α], t

)
f (t) − bxt

(
x̄[t,Y, α], t

)
F̄(t)
}

x̄Y[t,Y, α]dt −C′(Y)

= N
∫ M

τ

{
(α − 1)bxt

(
x̄[t,Y, α], t

)
F̄(t) +C′(Y) f (t)

}
x̄Y[t,Y, α]dt −C′(Y)

= NC′′(Y)(1 − α)
∫ M

τ

x̄[t,Y, α]H(t) f (t)dt −C′(Y)ζY(τ,Y, α), (47)

where Eq. (37) is used to deduce the last equality. Similarly, the partial derivative πα is

expressible as

πα(τ,Y, α) = N
∫ M

τ

{
bx
(
x̄[t,Y, α], t

)
f (t) − bxt

(
x̄[t,Y, α], t

)
F̄(t)
}

x̄α[t,Y, α]dt

= N
∫ M

τ

{
(α − 1)bxt

(
x̄[t,Y, α], t

)
F̄(t) +C′(Y) f (t)

}
x̄α[t,Y, α]dt

=
N(1 − α)
γ

∫ M

τ

x̄[t,Y, α]H2(t) f (t)dt −C′(Y)ζα(τ,Y, α), (48)

where Eq. (38) is used to obtain the last equality. Substituting Eqs. (37), (38), (47), and (48)

into Eq. (44), and rearranging the terms, we can rewrite A(τ,Y, α) as

A(τ,Y, α) = N2(1−α)C′′(Y)
[∫ M

τ

x̄[t,Y, α]H2(t) f (t)dt
∫ M

τ

x̄[t,Y, α] f (t)dt

−
{∫ M

τ

x̄[t,Y, α]H(t) f (t)dt
}2]
+

N(1− α)
γ

∫ M

τ

x̄[t,Y, α]H2(t) f (t)dt. (49)

Application of Schwarz’s inequality yields the following because H(t) is a decreasing function:
{∫ M

τ

x̄[t,Y, α]H(t) f (t)dt
}2

=

{∫ M

τ

H(t)
√

x̄[t,Y, α] f (t)
√

x̄[t,Y, α] f (t)dt
}2

<

∫ M

τ

x̄[t,Y, α]H2(t) f (t)dt
∫ M

τ

x̄[t,Y, α] f (t)dt.

Consequently, if α < 1, then Eq. (49) implies that A(τ,Y, α) > 0. Given condition (33), we

thus obtain A
(
τ, Ŷ(τ), α̂(τ)

)
ᾱτ(τ, Ŷ(τ)) > 0 using inequality (32).
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On the other hand, by the definition of ᾱ, the following equality pertains [see Eq. (24)]:

b
(
x̄[τ,Y, ᾱ], τ

)
= ᾱbt

(
x̄[τ,Y, ᾱ], τ

)
I(τ) + v + x̄[τ,Y, ᾱ]C′(Y),

where ᾱ = ᾱ(τ,Y). Differentiating Eq. (43) with respect to τ, and incorporating the above, we

obtain

πτ(τ,Y, α) = −N
[{

b
(
x̄[τ,Y, α], τ

) − v
}

f (τ) − bt
(
x̄[τ,Y, α], τ

)
F̄(τ)
]

= −N
{
(ᾱ − 1)bt

(
x̄[τ,Y, ᾱ], τ

)
F̄(τ) + x̄[τ,Y, ᾱ]C′(Y) f (τ)

}

= N(1 − ᾱ)x̄[τ,Y, ᾱ]H(τ) f (τ)/γ −C′(Y)ζτ(τ,Y, ᾱ), (50)

where Eq. (36) is used to derive the last equality. Inserting Eqs. (36) – (38), (47), (48), and

(50) into Eq. (45), and rearranging the terms, we can transform B(τ,Y) as follows:

B(τ,Y) =
N(1 − ᾱ)x̄[τ,Y, ᾱ] f (τ)

γH(τ)

[
H2(τ) + NγC′′(Y)

∫ M

τ

x̄[t,Y, ᾱ]
{
H(t) − H(τ)

}2 f (t)dt
]
,

where ᾱ = ᾱ(τ,Y). Hence, B(τ,Y) > 0 if ᾱ(τ,Y) < 1. Accordingly, B
(
τ, Ŷ(τ)

)
> 0 if

ᾱ
(
τ, Ŷ(τ)

)
= α̂(τ) < 1. Because of these results and Eq. (46), we have Π̂′(τ) > 0 under

condition (33). Q.E.D.

NOTES
1) Even in developed countries, some households living in suburbs and rural areas where the

availability and quality of groundwater are favorable choose to use private wells for a potable

water supply rather than connect to water service systems. See Stone [23] for information on

residential groundwater use in the US.
2) External diseconomies of scale refer to diseconomies of scale that are external to any one

firm in a given industry. More specifically, an industry is subject to external diseconomies of

scale if the long-run average cost of the industry rises concomitant with the supply, whether

the industry comprises one firm or many (Bonbright [2, p. 16]; Kahn [14, Vol. II, p. 124]).
3) Bonbright [2, p. 16] characterized internal economies of scale as: “the economies enjoyed

by a monopolistic utility company through its ability to make use of larger generating equip-



ment and of a more capacious distribution network are referred to as internal economies —

economies internal to a given firm or company.”
4) Kim [15] confirmed empirically that large water utilities in the US suffer from disec-

onomies of scale, whereas small ones enjoy substantial economies of scale. That study sug-

gested that in water utilities in the US, scale economies tend to be exhausted as the size of

water services grows. Kahn [14, Vol. II, p. 124] illustrated the fact that an industry subject to

external diseconomies of scale can be a natural monopoly if internal economies of scale exist

in the industry. Kahn cited municipal water supply as an example of that phenomenon.
5) Schmalensee [21] and Sherman and Visscher [22] have shown similar results.
6) Taxation of the excessive profit accrued by the first-best two-part tariff can be a solution

to this revenue-and-cost mismatch problem. However, the American Water Works Association

[1, p. 25] notes that “municipally owned utilities are not normally subject to taxation by local,

state, or federal authorities.” As confirmed empirically by Dalhuisen et al. [5], residential

water demand tends to be income-inelastic, which implies that the payments by lower-income

households to water utilities are higher in relation to their income levels. The taxation there-

fore has a regressive impact on lower-income households, which will make it impractical and

difficult for authorities to introduce the taxation.
7) Similar concerns are echoed in the manual of water rate determination, published by the

American Water Works Association:

A tenable solution to the revenue and cost mismatching is critical to both man-

agerial and public acceptance of the concept of marginal cost as a basis for rates.

Mismatching arises because pure marginal cost rates generate greater revenues

than the utility’s rate revenue requirements, demanding utility decision-makers to

balance potential efficiency benefits of marginal cost rates with the difficulties of

excess revenue generation (American Water Works Association [1, p. 121]).

8) Allowing for the influences of customer costs and exclusions, Wilson [26, chapters 6 and

8] examined nonlinear pricing of a public utility that maximizes the total surplus under the

constraint that the utility should obtain a nonnegative profit. That study placed no restriction
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on the upper bound of the utility’s profit, nor did it address the possibility that the supply

conditions of the utility exhibit external diseconomies of scale.
9) See Dinar and Subramanian [6] and McIntosh and Yniguez [17].
10) Hall and Hanemann [12] argued that if marginal cost pricing generates too much revenue

for a water utility, IBTs can be an efficient way for the water utility to equate the actual revenue

to the required revenue (see also Hall [11]). Boland and Whittington [2] challenged this view,

claiming that when marginal cost pricing brings excess revenues to a water utility because of

diseconomies of scale in water services, a pricing policy exists that achieves a higher economic

efficiency than IBTs without collecting too much revenue. Both of these arguments are not

based on a formal model analysis. Their validity has never been theoretically tested.
11) For more detailed classifications of water-supply cost components, see American Water

Works Association [1] and Elnaboulsi [7].
12) In the model described herein, to preserve analytical simplicity, seasonal variations and

uncertainty in the demands for water and in the costs of water services are ignored. Further-

more, differences in characteristics between the residential, commercial, and industrial demand

for water are ignored.
13) When analyzing the efficiency of the water pricing policy in the city of Vigo in Spain,

Castro-Rodriguez, Da-Rocha, and Delicado [4] assumed that the marginal willingness to pay

for an additional unit of water is linear in water consumption, and that differences among

customers are attributable to the different levels of satiation in water consumption.
14) In this paper, subscripted variables denote partial derivatives with respect to the sub-

scripted variable.
15) In contrast to the assumptions used for the present study, Wilson [26, p. 126] assumed

that the total cost for a regulated firm is expressible as the sum of the costs of supplying the

product or service to each customer. Consequently, the conditions for the optimality of the

marginal customer type derived in Wilson [26, p. 160 and p. 187] take slightly different forms

from Eq. (24).
16) Alternatively, as described in Wilson [26, p. 159 and p. 187], the water utility can be



assumed to extend the tariff schedule to purchase levels below the consumption of a marginal

customer, x∗(τ∗). However, we avoid making such an assumption because it makes the study

of the optimal tariff schedule more complicated.
17) See Goldman, Leland, and Sibley [9] for explanations on the price elasticity of the de-

mand for an increment of consumption.
18) Inserting x(t) = x∗(t), Y = Y∗, and α = α∗ into Eq. (23), and dividing it by bxt

(
x∗(t), t

)
I(t) =

H(t)/γ, we obtain bx
(
x∗(t), t

)
/bxt
(
x∗(t), t

)
I(t) = α∗ + γC′(Y∗)/H(t). Incorporation of t = t∗(x)

into this equation produces η(x) = α∗ + γC′(Y∗)/H
(
t∗(x)
)
.
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