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The geometry and the mechanics of generalized pseudo-rigid bodies are studied. The

configuration space of a generalized pseudo-rigid bodies is the linear group, P :=

GL+(n,R), of non-singular matrices with positive determinant. It admits the left and

right actions of SO(n) and the two-sided action of SO(n)× SO(n). The left and right

SO(n) actions on P are both free, so that P is made into respective principal fiber bun-

dles according to the left and right SO(n) actions, and further left and right connections

can be defined on the respective fiber bundles. However, the two-sided SO(n)× SO(n)

action is not free on P, and hence P is not made into a principal fiber bundle with

respect to this action. In spite of this, if P is restricted to an open dense subset Ṗ ,

the isotropy subgroup at each point of Ṗ is a finite discrete group, so that the quotient

space (SO(n)×SO(n))\Ṗ becomes a manifold, and further one can define a connection

on Ṗ , which will be called a bi-connection. The bi-connection is used to reduce the

pseudo-rigid body system on T ∗Ṗ with the SO(n)× SO(n) symmetry. Though in the

cotangent bundle reduction theorem and its variants, one usually assumes that the

action of a Lie group on the configuration space is free, or that the isotropy subgroup

of the Lie group is trivial, the reduction procedure works well if the isotropy subgroup

is not trivial but a finite group. As an application of the reduction procedure, relative

equilibria are discussed in relation with the reduced Hamilton and Lagrange equations

of motion. A necessary and sufficient condition is given for a relative equilibrium in

terms of an amended potential on the reduced phase space.
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1 Introduction

A pseudo-rigid body (or affine-rigid body) is a body which is deformable by orientation

preserving linear maps [1]. The pseudo-rigid body can be viewed as a generalization of

a rigid body and, at the same time, as a particular case of continuum. According to

Dirichlet and Riemann, a Riemann ellipsoid is a self-gravitating, constant mass-density

fluid with an ellipsoidal boundary and with a velocity field that is a linear function of

the Cartesian position coordinates in an inertial center-of-mass frame [3, 4, 5]. The

classical theory of Riemann ellipsoids was summarized and further developed in [6].

This article studies the geometry and mechanics of pseudo-rigid bodies. The con-

figuration space of a generalized pseudo-rigid body is the linear group, GL+(n,R),

of non-singular matrices with positive determinant. The GL+(n,R) may be viewed

as the center-of-mass system of n + 1 particles in Rn, where the column vectors of

X ∈ GL+(n,R) are viewed as the Jacobi vectors for the n + 1 particles which are

assumed to form configurations such that det X > 0.

The GL+(n,R) admits the left and right actions of SO(n). Since respective actions

are free, GL+(n,R) is made into a principal fiber bundle, and endowed with a con-

nection in respective manners. The connections that Rosensteel defined on GL+(3,R)

[5] are examples of these connections. In contrast with this, one may consider the left

and right SO(n) actions simultaneously. However, the two-sided SO(n)×SO(n) action

on GL+(n,R) is not free, so that GL+(n,R) is not made into a principal bundle, and

one cannot define a connection on GL+(n,R) in the usual manner. In spite of this, if

GL+(n,R) is restricted to an open dense subset, the isotropy subgroup at each point

of it is a finite discrete subgroup, and hence the orbit space by the two-sided action

becomes a manifold, so that the idea of connection can work in this case. According

to the decomposition of the tangent space into a direct sum of horizontal and vertical

subspaces, a connection form can be defined, which will be called a bi-connection. In

describing the connection form, the “bi-inertia” tensor is introduced. The introduction

of the bi-inertia tensor and the bi-connection gives a new insight into the study of

pseudo-rigid bodies or Riemann ellipsoids from the view point of symmetry reduction

theory. If GL+(n,R) is endowed with a natural Riemannian metric, the bi-connection

is shown to be equal to a mechanical connection [7] associated with a locked inertia

tensor with respect to SO(n)× SO(n) action.
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The mechanics for pseudo-rigid bodies is set up on the tangent/cotangent bundle

over GL+(n,R), and the pseudo-rigid body system with SO(n) × SO(n) symmetry is

reduced by the use of the bi-connection. The reduction by the right SO(n) symmetry is

also studied, which is a slight extension of [4, 8], though Ref[4, 8] treated the mechanics

in Poisson formalism.

If the group action of SO(n) × SO(n) were free, the reduction procedure to be

performed for the pseudo-rigid body would be an example of the theorem known as

the cotangent bundle reduction theorem [7, 9, 10]:

The cotangent bundle reduction theorem: Assume that G acts freely and prop-

erly on a configuration space Q. Then the reduced symplectic manifold from T ∗(Q) is

a fiber bundle over T ∗(Q/G) with fiber the coadjoint orbit Oµ through µ ∈ g.

However, since the isotropy subgroup of SO(n) × SO(n) is a finite group, the re-

duction procedure with the SO(n)× SO(n) symmetry will run in parallel with that in

the above theorem with a slight modification.

The organization of this article is as follows: Section 2 contains geometric setting

associated with the left and right SO(n) actions. The connections associated with the

left and right SO(n) actions are defined, respectively. Section 3 deals with the reduction

by the right SO(n) symmetry, which is a generalization of [3, 4]. The reduction is

performed in both Lagrangian and symplectic manners. In Sec. 4, Lagrangian and

Hamiltonian mechanics are set up for pseudo-rigid bodies in terms of local coordinates

associated with the SO(n)×SO(n) action on GL+(n,R). Section 5 is specialized in the

three-dimensional case. Section 6 is concerned with the SO(n)×SO(n) action. It starts

with the study of the two-sided SO(n)× SO(n) action on the configuration space, and

then gives the definitions of the bi-inertia tensor and the bi-connection. It is shown

that the bi-inertia tensor is equal to the so-called locked inertia tensor [7] associated

with the SO(n) × SO(n) action. Section 7 deals with the symplectic reduction of the

pseudo-rigid body system with SO(n) × SO(n) symmetry by the effective use of the

bi-connection. Further, the reduced system is described in terms of local coordinates.

In Sec. 8, relative equilibria are discussed. A necessary and sufficient condition is given

for an orbit of a one-parameter subgroup of SO(n) × SO(n) to be a solution curve of

the pseudo-rigid body. Section 9 contains concluding remarks on reduction procedure

and on the commuting reduction theorem [11, 12] in addition.
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2 Geometric set-up with left and right SO(n) actions

2.1 Configuration space of a pseudo-rigid body

The configuration space for a generalized pseudo-rigid body is

P := GL+(n,R) =
{
X ∈ Rn×n

∣∣ detX > 0
}
, (2.1)

where Rn×n denotes the set of n × n real matrices. The rotation group SO(n) acts

freely on P both to the left and to the right,

Lg : X 7→ gX, Rh : X 7→ Xh−1, (2.2)

where g, h ∈ SO(n). With respect to each SO(n) action, the configuration space can

be made into a principal fiber bundle with the base space Q := Sym+(n,R), the set of

n× n positive definite real symmetric matrices. Then, according to the left and right

SO(n) actions, the projection maps P → Q are given by

πL : X 7→ X⊤X, πR : X 7→ XX⊤, (2.3)

respectively, where X⊤ denotes the transpose of X. These fiber bundles are trivial,

since Q = Sym+(n,R) is contractible.

Though we can treat two-sided SO(n)×SO(n) action on P as well, we will postpone

it to Sec. 6. However, we here use the two-sided action only to introduce a coordinate

system in P = GL+(n,R). Let

X = RAS−1 (2.4)

be a singular value decomposition of X ∈ P , where R, S ∈ SO(n) and where A is

a diagonal matrix with positive real diagonal entries; A = diag(a1, · · · , an), a1 ≥
· · · ≥ an > 0. The decomposition is not unique. Another decomposition proves to be

expressed as

X = RDADS−1, D = diag(ε1, · · · , εn), εj = ±1, detD = 1. (2.5)

Thus, we have the following.
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Lemma 2.1. Let Ṗ and Ḋ denote the subset of P whose singular values are all distinct

and the set of diagonal matrices A = diag(a1, · · · , an) with entries such that a1 > · · · >
an > 0, respectively. Then the map

ψ : SO(n)× Ḋ × SO(n) → Ṗ , (R,A, S) 7→ X = RAS−1 (2.6)

is 2n−1-fold.

In spite of this, we are allowed to use (R,A, S) as local coordinates of Ṗ with

D fixed. In particular, (R,A) and (A, S) serve as local coordinates of Ṗ/SO(n) and

SO(n)\Ṗ , respectively.

We denote the canonical inner product on Rn×n by

⟨A,B⟩ := tr
(
A⊤B

)
, A,B ∈ Rn×n. (2.7)

Restricted on the Lie algebra so(n) of SO(n), this inner product induces that on so(n).

However, for so(n), we adopt the following definition and notation,

⟨ξ, η⟩so(n) =
1

2
tr(ξ⊤η) =

∑
i<j

ξijηij, ξ = (ξij), η = (ηij) ∈ so(n). (2.8)

With respect to this inner product, the dual space so(n)∗ is identified with so(n).

The inner product (2.7) induces the Riemannian metric on P ;

ds2 := tr
(
dX⊤dX

)
. (2.9)

The reason why this metric is chosen is explained as follows: We assume that we

have a pseudo-rigid body whose constituent particles are labeled by uα at the initial

instance, where α may be continuous indices. Then, the kinetic energy T is given by

and expressed as

2T =
∑
α

Ẋuα · Ẋuα = tr
(
Ẋ⊤Ẋ

∑
α

uαu
⊤
α

)
, (2.10)

where Ẋ and Ẋuα denote the time derivative of X and the velocity vector of the

constituent particle labeled by uα, respectively, and where the center dot stands for

the standard inner product on Rn. If the α are continuous indices, the summation

is replaced by the integral over the region occupied by the pseudo-rigid body at the
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initial instance. Since Q :=
∑

α uαu
⊤
α is a positive symmetric matrix for the pseudo-

rigid body which has an open subset in it, there exists a positive symmetric matrix

Q1/2 such that the kinetic energy is written as 2T = tr((ẊQ1/2)⊤ẊQ1/2). This allows

us to choose XQ1/2 to be a new variable in GL(n,R) and to rewrite XQ1/2 as X.

Then, the kinetic energy is put in the form 2T = tr(Ẋ⊤Ẋ), which leads to the metric

(2.9).

2.2 Left and right connections

We now define connections on the both fiber bundles πL : P → SO(n)\P and πR :

P → P/SO(n).

Proposition 2.2. The maps AL
X ,AR

X : so(n) → so(n) with X ∈ P are defined to be

AL
X : ξ 7→ XX⊤ξ + ξXX⊤, AR

X : ξ 7→ X⊤Xξ + ξX⊤X, (2.11)

and called the left and right inertia tensors, respectively. Both AL
X and AR

X are sym-

metric and positive-definite with respect to the inner product (2.8) on so(n), and then

they are invertible. Furthermore, for g, h ∈ SO(n), the left and right inertia tensors

transform, respectively, according to

AL
gX = Adg ◦AL

X ◦ Adg−1 , AL
Xh−1 = AL

X , (2.12)

AR
gX = AR

X , AR
Xh−1 = Adh ◦AR

X ◦ Adh−1 . (2.13)

Since the proof is straightforward, we do not describe it here. Using the inertia tensors,

we define connection forms.

Proposition 2.3. Let ωL and ωR be so(n)-valued forms defined to be

ωL
X :=

(
AL

X

)−1 (
dXX⊤ −XdX⊤) , (2.14)

ωR
X :=

(
AR

X

)−1 (
dX⊤X −X⊤dX

)
, (2.15)

respectively, where X ∈ P. Then, the ωL and ωR are shown to satisfy the following:

ωL
X (ξX) = ξ, ωL

gX = Adg ◦ωL
X , (2.16)

ωR
X(Xη

⊤) = η, ωR
Xh−1 = Adh ◦ωR

X , (2.17)

respectively, where g, h ∈ SO(n) and ξ, η ∈ so(n). The ωL and ωR are called the left and

right connection forms on the fiber bundles πL : P → Q and πR : P → Q, respectively.
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The proof is straightforward and omitted.

Let OL
X and OR

X denote the SO(n) orbits through X ∈ P by the left and right

actions, respectively, and

HL
X := kerωL

X , V L
X := TX(OL

X), (2.18)

HR
X := kerωR

X , V R
X := TX(OR

X), (2.19)

be the horizontal and vertical subspaces with respect to the connections ωL and ωR,

respectively. The horizontal subspaces turns out to be expressed as

HL
X = {Y ∈ TXP|Y X⊤ = XY ⊤}, (2.20)

HR
X = {Y ∈ TXP|Y ⊤X = X⊤Y }, (2.21)

respectively. As is well known, the tangent space at X ∈ P is decomposed into a direct

sum of the vertical and horizontal subspaces with respect to ωL and ωR, respectively,

TX(P) = HL
X ⊕ V L

X , TX(P) = HR
X ⊕ V R

X . (2.22)

As is easily shown, the vertical and horizontal subspaces are orthogonal to each other

with respect to the metric (2.9), in both cases.

2.3 Remarks on the left and right connections

We now show that the connection ωL is an extension of the connection that Guichardet

defined for many-body systems [13]. For simplicity, we assume that we work in three

dimensions. Let xα and mα denote the positions and the mass of the particle labeled

by α, respectively. Then, the inertia tensor A : R3 → R3 is defined to be a linear map

expressed as

A(v) =
∑
α

mαxα × (v × xα), v ∈ R3, (2.23)

and the connection form ω is defined to be

ω = R
(∑

α

mαxα × dxα

)
, (2.24)

where R : R3 → so(3) is the isomorphism defined through R(a)x = a × x with

a,x ∈ R3 (see also [14]). Operated with R, the defining equation of A is put in the

form

R(A(v)) = QXR(v) +R(v)QX , QX :=
∑
α

mαxαx
⊤
α . (2.25)
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In the case of a pseudo-rigid body, we may formally assume that the mass distribution

is homogeneous and that QX = XX⊤. On rewriting R(v) as ξ ∈ so(3) and introducing

AX : so(3) → so(3) by AX(R(v)) = R(A(v)), we come to the definition of the left

inertial tensor in three dimensions. Moreover, the connection form given above is

brought into

ω = A−1
X (−

∑
α

mαxαdx
⊤
α +

∑
α

mαdxαx
⊤
α ). (2.26)

If
∑

αmαxαdx
⊤
α and

∑
αmαxαdx

⊤
α are replaced by XdX⊤ and dXX⊤, respectively,

the above connection form fall into ωL with n = 3. Hence, the ωL proves to be a

natural generalization of Guichardet’s connection.

For comparison’s sake, we now show that the inertia tensors AL
X and AR

X are equal

to the locked inertia tensors [7] associated with the left and right SO(n) actions, respec-

tively. Let ⟨⟨ , ⟩⟩ denote the inner product for vector fields on P , which is determined

by (2.9). For ξ ∈ so(n), we denote the induced vector field on P by ξLP(X) and ξRP (X)

according to the left and right actions, respectively. Then, the locked inertia tensors,

IL(X) : so(n) → so(n)∗ ∼= so(n) and IR(X) : so(n) → so(n)∗ ∼= so(n) are defined

accordingly by

⟨IL(X)ξ, η⟩so(n) = ⟨⟨ξLP(X), ηLP(X)⟩⟩, ⟨IR(X)ξ, η⟩so(n) = ⟨⟨ξRP (X), ηRP (X)⟩⟩, (2.27)

respectively. Since ξLP(X) = ξX and ξRP (X) = Xξ⊤, we can calculate the right-hand

sides of the above defining equations to obtain

⟨⟨ξLP(X), ηLP(X)⟩⟩ = ⟨AL
X(ξ), η⟩so(n), ⟨⟨ξRP (X), ηRP (X)⟩⟩ = ⟨AR

X(ξ), η⟩so(n). (2.28)

Equations (2.27) and (2.28) are put together to imply that IL(X) = AL
X and IR(X) =

AR
X . Needless to say, the left and right inertia tensors AL

X and AR
X are defined inde-

pendently of the metric on P . Further, the connections ωL and ωR are also viewed as

mechanical connections [7]. As stated also in [7], the mechanical connection originated

from [13, 15].

2.4 Angular momentum and circulation

We have here to remark that the connection forms are closely related with the angular

momentum L and the circulation Γ, which are defined to be

L := ẊX⊤ −XẊ⊤, Γ := Ẋ⊤X −X⊤Ẋ, (2.29)
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respectively, where Ẋ denotes a tangent vector to P at X ∈ P . The nomenclature

“angular momentum”and “circulation” come from [4]. If n = 3, L and Γ are associated

with those vectors called the angular momentum and the circulation with respect to

the space frame (see Sec. 5). From the definition of L and Γ, one has

ωL
X(Ẋ) =

(
AL

X

)−1
(L), ωR

X(Ẋ) =
(
AR

X

)−1
(Γ). (2.30)

From (2.20), (2.21), and (2.30), it turns out that Ẋ ∈ HL
X ⇔ L = 0 and Ẋ ∈ HR

X ⇔
Γ = 0. Put another way, a curve X(t) is horizontal with respect to the left (resp. right)

connection if and only if the angular momentum (resp. the circulation) vanishes along

X(t).

Further, we remark that the angular momentum and the circulation are, respec-

tively, subject to the transformation, under the left and right SO(n) actions,

L(gX, gẊ) = Adg L(X, Ẋ), L(Xh−1, Ẋh−1) = L(X, Ẋ), (2.31a)

Γ(gX, gẊ) = Γ(X, Ẋ), Γ(Xh−1, Ẋh−1) = AdhΓ(X, Ẋ). (2.31b)

In terms of the local coordinates (R,A, S), the angular momentum and the circulation

are expressed, respectively, as

L := R
(
ΩA2 + A2Ω− 2AΛA

)
R−1, (2.32a)

Γ := S
(
ΛA2 + A2Λ− 2AΩA

)
S−1, (2.32b)

where

Ω := R−1Ṙ, Λ := S−1Ṡ. (2.33)

2.5 A remark on circulation

Kelvin’s circulation is defined to be the integral
∫
C
v · dx, where C is a closed loop

in the fluid, and where v and x are the velocity field and the position vector of the

fluid particle, respectively. According to the assumption of the Riemann ellipsoid, the

position vector is linear in the labeling vector of the constituent particle; x = Xu.

Since the particle motion is expressed as x(t) = X(t)u, and since the loop C is drawn

at an arbitrarily fixed time, one has v = Ẋu and dx = Xdu. Pulling back v to the

u-space, one has v ·dx = V ·du, where V = X⊤Ẋu. We denote by C0 the closed curve
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pulled back from C and set V := X⊤Ẋ = (Vij). Then, the circulation is rewritten, by

the application of the Stokes theorem, as∫
C

v · dx =

∫
C0

V · du =

∫
C0

∑
i,j

Vijujdui =

∫
S0

d(
∑
i,j

Vijujdui), (2.34)

where S0 is a surface with the boundary C0. The right-hand side of the above equation

is expanded to give∫
S0

d(
∑
i,j

Vijujdui) =
1

2

∫
S0

∑
i,j

(Vji − Vij)dui ∧ duj =
1

2
tr
(
(V ⊤ − V )⊤ζ

)
, (2.35)

where ζ is the anti-symmetric matrix with entries

ζij =

∫
S0

dui ∧ duj. (2.36)

The above discussion is true in n dimensions, so that one has
∫
C
v·dx = ⟨V ⊤−V, ζ⟩so(n).

Since the matrix ζ is arbitrary, we may refer to V ⊤−V = Ẋ⊤X−X⊤Ẋ as the circulation

taking values in so(n). The exterior derivative of v · dx is called the volticity, and so

is that of V · du. However, on account of the above equation, we have chosen to call

V ⊤ − V = Ẋ⊤X −X⊤Ẋ the circulation according to [4].

3 Reduction by right SO(n) symmetry

Suppose we have a Lagrangian L(X, Ẋ) on the tangent bundle T (P). As is easily

verified, the Euler-Lagrange equation is expressed as

d

dt

( ∂L
∂Ẋ

)
− ∂L
∂X

= 0. (3.1)

If the Lagrangian is right SO(n) invariant, i.e., L(Xh−1, Ẋh−1) = L(X, Ẋ) for h ∈
SO(n), Noether’s theorem provides the conserved quantity associated with a one-

parameter subgroup h(τ) = exp(τη) with τ ∈ R and η ∈ so(n). Since the Lagrangian

for a pseudo-rigid body is assumed to be of the form

L =
1

2
tr(Ẋ⊤Ẋ)− U(X), (3.2)

the conserved quantity takes the form⟨ ∂L
∂Ẋ

,Xη⊤
⟩
= ⟨Ẋ⊤X −X⊤Ẋ, η⟩so(n). (3.3)
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Since η ∈ so(n) is arbitrary, we find that the circulation Γ = Ẋ⊤X−X⊤Ẋ is conserved.

We note here that the Kelvin circulation theorem or the conservation of the circulation

is known to be related to the particle relabeling symmetry [16, 17]. In our case, the

particle relabeling is associated with the right SO(n) action.

We wish to perform the reduction procedure in the Lagrangian formalism in order to

show that the theory of Riemann ellipsoids [3, 4] is generalized to that in n dimensions.

For comparison’s sake we apply also the (co)tangent bundle reduction theorem, since

SO(n) acts freely and properly on P to the right.

3.1 Lagrangian reduction

Since the Lagrangian is right SO(n) invariant, the pseudo-rigid body can be reduced

to that on T (P)/SO(n). To derive reduced Euler-Lagrange equations on T (P)/SO(n),

we start by choosing adaptive coordinates on T (P)/SO(n). Right SO(n) invariant

quantities can serve as local coordinates on T (P)/SO(n), among which we take up

Q := XX⊤, N := XẊ⊤. (3.4)

The Q and N are called the quadrupole moment [2] and the shear tensor, respectively,

and used in the study of Riemann ellipsoids [3, 4].

We here make remarks on the variables Q and N . Let

T (P) ≃ P × gl(n,R) (3.5)

be the right trivialization of the tangent bundle of P = GL+(n,R). Then, the right

and left actions of SO(n) are lifted to those on P × gl(n,R) and expressed as

(X, η) 7→ (Xh−1, η), (h, η) ∈ SO(n)× gl(n,R), (3.6a)

(X, ξ) 7→ (gX,Adgξ), (g, ξ) ∈ SO(n)× gl(n,R), (3.6b)

respectively. According to (3.6a), the factor space T (P)/SO(n) turns out to be

T (P)/SO(n) ≃ (P/SO(n))× gl(n,R). (3.7)

The variables (Q,N) are viewed as coordinates of the right-hand side of the above

equation. Furthermore, let gl(n,R) be decomposed into

gl(n,R) = Sym(n,R)⊕ so(n), (3.8)
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where Sym(n,R) denotes the linear space of n×n symmetric matrices. Then, Eq. (3.7)

is brought into

T (P)/SO(n) ≃ T (P/SO(n))⊕ s̃o(n), (3.9)

where the tangent bundle T (P/SO(n)) is identified with P/SO(n)× Sym(n,R), since

P/SO(n) ≃ Sym+(n,R) is simply connected, and where s̃o(n) denotes the bundle

defined through the right SO(n) action on P × so(n); (X, ξ) 7→ (Xh−1,Adhξ) with

h ∈ SO(n).

Now, we break N into the symmetric and skew-symmetric parts to obtain

N =
1

2
(−L+ Q̇), (3.10)

where Q̇ = ẊX⊤+XẊ⊤ and where L is the angular momentum given in (2.29). Then,

the variables (Q, Q̇) and (Q,L) are regarded as coordinates of T (P/SO(n)) and s̃o(n),

respectively. Under the left SO(n) action, they are subject to the transformation

(Q, Q̇) 7→ (gQg−1, gQ̇g−1), (Q,L) 7→ (gQg−1, gLg−1), (3.11)

respectively, where g ∈ SO(n).

We now derive Euler-Lagrange equations for a Lagrangian L(Q,N) which is invari-

ant under the right SO(n) action, on the variational principle,

δ

∫ t1

t0

L(Q,N)dt = 0. (3.12)

To begin with, we have to study infinitesimal variations of Q and N . Through a

straightforward calculation, we can relate δQ and δN to the right invariant infinitesimal

variation δXX−1;

δQ = δXX−1Q+Q(δXX−1)⊤, (3.13)

δN = δXX−1N − (δXX−1N)⊤ +
d

dt
(Q(δXX−1)⊤). (3.14)

By using these infinitesimal variation, the variations of the Lagrangian with respect to

Q and N are put in the form⟨
∂L
∂Q

, δQ

⟩
= 2

⟨
∂L
∂Q

Q, δXX−1

⟩
, (3.15)⟨

∂L
∂N

, δN

⟩
=

⟨( ∂L
∂N

−
( ∂L
∂N

)⊤)
N⊤ − d

dt

( ∂L
∂N

)⊤
Q, δXX−1

⟩
+
d

dt

⟨
∂L
∂N

,Q(δXX−1)⊤
⟩
, (3.16)
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respectively. On the variational principle together with the boundary condition δX = 0

at t = t0 and t = t1, the variational integral with the integrand expressed as the sum

of (3.15) and (3.16) provides the Euler-Lagrange equation:

Theorem 3.1. The Euler-Lagrange equation on T (P)/SO(n) is given by

d

dt

( ∂L
∂N

)⊤
=
( ∂L
∂N

−
( ∂L
∂N

)⊤)
N⊤Q−1 + 2

∂L
∂Q

. (3.17)

We now apply this equation to the Lagrangian of the form L = K − U with

K =
1

2
tr(N⊤Q−1N) =

1

2
tr(Ẋ⊤Ẋ), U = U(Q). (3.18)

Since
∂K
∂N

= Q−1N,
∂K
∂Q

= −1

2
Q−1NN⊤Q−1, (3.19)

the Euler-Lagrange equation (3.17) are put in the form

dN

dt
= N⊤Q−1N − 2Q

∂U
∂Q

, (3.20a)

dQ

dt
= N⊤ +N, (3.20b)

where (3.20b) is a straightforward consequence of the definition of Q. If n = 3, these

equations, except for the pressure term, coincide with those obtained in [4] for the

Riemann ellipsoid. We note also that the reduced equation (3.17) is put in the form

different from that expected from the usual reduction theorem. We will perform the

well-known reduction theorem in the next subsection for the sake of comparison.

3.2 Symplectic reduction

We now apply the symplectic reduction procedure along with the right SO(n) symme-

try. Let (P,X) be coordinates of T ∗(P). Then, the canonical one-form θ is defined to

be

θ = tr(P⊤dX), (3.21)

and the Hamiltonian associated with (3.2) is expressed as

H =
1

2
tr(P⊤P ) + U , (3.22)
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which is invariant under the right SO(n) action. The momentum map associated with

the right SO(n) symmetry is the circulation Γ = P⊤X − X⊤P ∈ so(n)∗ ≃ so(n). In

fact, for an arbitrary infinitesimal transformation, Xη⊤ with η ∈ so(n), associated with

the right SO(n) action, we have

θ(Xη⊤) = ⟨P⊤X −X⊤P, η⟩so(n) = ⟨Γ, η⟩so(n), (3.23)

where we have used the fact that tr(A⊤B) = 0 with A and B symmetric and anti-

symmetric matrices, respectively. Since the tangent bundle T (P) and the cotangent

bundle T ∗(P) is identified through the metric (2.9), P ∈ T ∗
X(P) is expressed as P =

Y + Xη⊤, according to the (right) orthogonal decomposition (2.22), where Y ∈ HR
X

and η ∈ so(n). The definition of Γ and the decomposition of P is put together to give

Γ = AR
X(η), so that one obtains η = (AR

X)
−1(Γ). Thus, P ∈ T ∗

X(P) is put in the form

P = Y +X
(
(AR

X)
−1(Γ)

)⊤
, Y ∈ HR

X . (3.24)

The level manifold Γ−1(γ) with γ ∈ so(n) fixed is then expressed as

Γ−1(γ) =
{(
X,Y +X

(
(AR

X)
−1(γ)

)⊤)|X ∈ P , Y ∈ HR
X

}
. (3.25)

The isotropy subgroup Gγ = {h ∈ SO(n)|Adh(γ) = γ} acts on Γ−1(γ) in the manner(
X, Y +X

(
(AR

X)
−1(γ)

)⊤) 7→ (
Xh−1,

(
Y +X

(
(AR

X)
−1(γ)

)⊤)
h−1
)
. (3.26)

Since {Y +X
(
(AR

X)
−1(γ)

)⊤} ≃ HR
X ≃ T ∗

πR(X)(P/SO(n)), and since SO(n)/Gγ is difffeo-

morphic with the (co)adjoint orbit Oγ through γ, the reduced phase space Γ−1(γ)/Gγ

is expressed as

Γ−1(γ)/Gγ ≃ T ∗(P/SO(n))×P/SO(n) Õγ, (3.27)

where Õγ denotes the bundle over P/SO(n) whose fiber is diffeomorphic with Oγ.

We now calculate the reduced symplectic form on Γ−1(γ)/Gγ . By using (3.24), we

rewrite the canonical one-form θ as

θ =
1

2
tr
(
(AR

X)
−1(Γ)(X⊤dX − dX⊤X)

)
+ tr(Y ⊤dX)

= ⟨(AR
X)

−1(Γ), dX⊤X −X⊤dX⟩so(n) + tr(Y ⊤dX)

= ⟨Γ, ωR
X⟩so(n) + ⟨Y, dX⟩, (3.28)
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where we have used the fact that AR
X is a symmetric operator on so(n). Let ιγ denote

the inclusion map, ιγ : Γ−1(γ) → T ∗(P). Then, one has

ι∗γθ = ⟨γ, ωR
X⟩so(n) + ⟨Y, dX⟩. (3.29)

The second term of the right-hand side of the above equation projects to the canonical

one-form on T ∗(P/SO(n)).

The Hamiltonian (3.22) is put in the form

H =
1

2
⟨Y, Y ⟩+ 1

2

⟨
X
(
(AR

X)
−1(Γ)

)⊤
, X
(
(AR

X)
−1(Γ)

)⊤⟩
+ U

=
1

2
⟨Y, Y ⟩+ 1

2
⟨Γ, (AR

X)
−1(Γ)⟩so(n) + U . (3.30)

Then, we have

ι∗γH =
1

2
⟨Y, Y ⟩+ 1

2
⟨γ, (AR

X)
−1(γ)⟩so(n) + U . (3.31)

The first term of the right-hand side of the above equation projects to the kinetic

energy on T ∗(P/SO(n)).

Theorem 3.2. Let (T ∗(P), dθ,H) be a Hamiltonian system for a pseudo-rigid body,

where θ and H are given in (3.21) and (3.22), respectively, and where U is assumed

to be invariant under the right SO(n) action. Then the system admits right SO(n)

symmetry and have the circulation Γ as the associated momentum map. For γ ∈
so(n)\{0}, the reduced phase space Γ−1(γ)/Gγ, where Gγ denotes the isotropy subgroup

at γ, is expressed as in (3.27), and the reduced symplectic form ωγ and the reduced

Hamiltonian Hγ are determined through ι∗γdθ = π∗
γωγ and ι∗γH = π∗

γH, respectively,

where ι∗γθ and ι∗γH are given in (3.29) and (3.31), respectively, and where πγ is the

projection Γ−1(γ) → Γ−1(γ)/Gγ.

The above reduction is a realization of the orbit bundle picture of the cotangent

bundle reduction [10] for P.

4 Mechanics for pseudo-rigid bodies

In this section, we derive both the Euler-Lagrange and Hamilton equations on the

variational principle in terms of local coordinates.
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4.1 Lagrangian formalism

We take (R,A, S,Ω, Ȧ,Λ) as local coordinates on the tangent bundle T (P) (see (2.33)

for the definition of Ω and Λ). For a given Lagrangian L on T (P), we derive Euler-

Lagrange equations on the variational principle;

δ

∫ t1

t0

L(R,A, S,Ω, Ȧ,Λ)dt = 0, (4.1)

where the boundary conditions δR = δS = 0, δA = 0 are imposed at t = t0, t = t1. To

carry out the variational calculation, we need the formulae on infinitesimal variations

of Ω and Λ,

δΩ =
[
Ω, R−1δR

]
+
d

dt

(
R−1δR

)
, δΛ =

[
Λ, S−1δS

]
+
d

dt

(
S−1δS

)
, (4.2)

and further, the formula on the inner product on so(n),

⟨ξ, [η, ζ]⟩so(n) = ⟨[ξ, η], ζ⟩so(n) , ξ, η, ζ ∈ so(n). (4.3)

On using these formulae, we can derive the Euler-Lagrange equations.

Theorem 4.1. For a Lagrangian L(R,A, S,Ω, Ȧ,Λ) on T (P), the Euler-Lagrange

equations are given by

d

dt

∂L
∂Ȧ

=
∂L
∂A

, (4.4a)

d

dt

∂L
∂Ω

= R⊤ ∂L
∂R

−
(∂L
∂R

)⊤
R +

[
∂L
∂Ω

,Ω

]
, (4.4b)

d

dt

∂L
∂Λ

= S⊤∂L
∂S

−
(∂L
∂S

)⊤
S +

[
∂L
∂Λ

,Λ

]
. (4.4c)

We now work with the kinetic energy of the pseudo-rigid body, which is given in

(3.2). After a straightforward calculation, we obtain the kinetic energy in the form

K =
1

2
tr(Ẋ⊤Ẋ) =

1

2
tr
(
Ȧ2 − A2(Ω2 + Λ2) + 2ΩAΛA

)
. (4.5)

As is seen from the expression, the kinetic energy is independent of R and S. This

is a necessary consequence of the fact that the kinetic energy is invariant under the left

and right SO(n) actions. We now assume that the potential function is also invariant

under the same action, so that it has the form, U = U(A). Then our Lagrangian
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becomes SO(n) × SO(n) invariant. We now write out the Euler-Lagrange equations

for this Lagrangian. To do so, we need a notation for matrix operation. For a matrix

B := (bij) ∈ Rn×n, D(B) denotes the diagonal matrix which shares the same diagonal

entries as B;

D(B) := diag (b11, . . . , bnn) . (4.6)

We have to write out every term appearing in the equations of Theorem 4.1. A straight-

forward calculation provides the differential of K in the form

dK = ⟨E, dA⟩+ ⟨Ȧ, dȦ⟩+ ⟨R−1LR, dΩ⟩so(n) + ⟨S−1ΓS, dΛ⟩so(n), (4.7)

where

E := D
(
−
(
Ω2 + Λ2

)
A+ (ΩAΛ + ΛAΩ)

)
, (4.8)

and where we have used the fact that dA is a diagonal matrix. Equation (4.7) results

in

∂K
∂Ω

= R−1LR,
∂K
∂Λ

= S−1ΓS, (4.9)

∂K
∂A

= E,
∂K
∂Ȧ

= Ȧ. (4.10)

Hence, Theorem 4.1 reduces to the following.

Proposition 4.2. For the Lagrangian having the kinematic energy (4.5) and the po-

tential U = U(A), the Euler-Lagrange equations are put in the form

d

dt
Ȧ = E − ∂U

∂A
, (4.11a)

d

dt

(
R−1LR

)
=
[
R−1LR,Ω

]
, (4.11b)

d

dt

(
S−1ΓS

)
=
[
S−1ΓS,Λ

]
, (4.11c)

where E is given in (4.8).

This result is already known in [1] in three dimensions and in [19] as the Euler-

Poincaré equations for Riemann ellipsoids. Further, these equations can be viewed as

the reduced Euler-Lagrange equations named in [20]. The reason for this will be stated

in Sec. 9. We note also that Eqs. (4.11b) and (4.11c) are equivalent to the conservation

of L and Γ, respectively. It is of use further to rewrite the kinetic energy in terms of L

and Γ,

K =
1

2
⟨Ȧ, Ȧ⟩+ 1

2

(⟨
Ω, R−1LR

⟩
so(n)

+
⟨
Λ, S−1ΓS

⟩
so(n)

)
. (4.12)
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4.2 Hamiltonian formalism

We now treat the pseudo-rigid body in the Hamiltonian formalism. We introduce the

variables pA, pΩ, and pΛ, as usual, by

pA =
∂L
∂Ȧ

, pΩ =
∂L
∂Ω

, pΛ =
∂L
∂Λ

, (4.13)

respectively. This means that we have taken (R,A, S, pΩ, pA, pΛ) as local coordinates

of T ∗(P). The Hamiltonian is then defined to be

H = ⟨pΩ,Ω⟩so(n) + ⟨pΛ,Λ⟩so(n) + ⟨pA, Ȧ⟩ − L. (4.14)

If the kinetic energy is chosen as in (4.12), and if the Lagrangian is of the form L =

K − U , a straightforward calculation along with (4.13) provides

pΩ = A2Ω + ΩA2 − 2AΛA = R−1LR, (4.15a)

pΛ = A2Λ + ΛA2 − 2AΩA = S−1ΓS, (4.15b)

and the Hamiltonian takes the form

H =
1

2
⟨pA, pA⟩+

1

2
⟨pΩ,Ω⟩so(n) +

1

2
⟨pΛ,Λ⟩so(n) + U , (4.16)

where Ω and Λ in the above equation should be so(n)-valued functions of pΩ, pΛ, and

A, which are determined through (4.15a) and (4.15b) (see (6.29)).

The Hamilton equations of motion are derived on the variational principle. As a

result, we obtain

Theorem 4.3. For a Hamiltonian H(R,A, S, pΩ, pA, pΛ) on T
∗(P), the Hamilton equa-

tions of motion are given by

d

dt
pA = −∂H

∂A
, (4.17a)

d

dt
pΩ = [pΩ,Ω]−R⊤∂H

∂R
+
(∂H
∂R

)⊤
R, (4.17b)

d

dt
pΛ = [pΛ,Λ]− S⊤∂H

∂S
+
(∂H
∂S

)⊤
S, (4.17c)

Ȧ =
∂H
∂pA

, Ω =
∂H
∂pΩ

, Λ =
∂H
∂pΛ

. (4.17d)
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Proposition 4.4. For the Hamiltonian (4.16) with U = U(A), the Hamilton equations

of motion reduce to (4.17d) and

d

dt
pA = −∂H

∂A
,

d

dt
pΩ =

[
pΩ,Ω

]
,

d

dt
pΛ =

[
pΛ,Λ

]
. (4.18)

As in the Lagrangian formalism, we can show that the second and the third equa-

tions of (4.18) are equivalent to the conservation of the angular momentum L =

RpΩR
−1 and the circulation Γ = SpΛS

−1, respectively. If we put L = λ and Γ = γ with

λ, γ ∈ so(n), one has pΩ = Ad−1
R (λ) and pΛ = Ad−1

S (γ), so that the second and third

equations of (4.18) may be interpreted as equations on the (co)adjoint orbits through

λ and γ, respectively. We will discuss the reduction of the pseudo-rigid body system

with SO(n)× SO(n) symmetry in Sec. 7.

5 In three dimensions

We now specialize in the Euler-Lagrange equations for P = GL+(3,R). By using the

isomorphism R : R3 → so(3), we introduce vectors ω and λ, and further a through

R(ω) = Ω, R(λ) = Λ, a = (ai), (5.1)

respectively, where a = (ai) comes from A = diag(a1, a2, a3). We define also m and c

through

R(m) = R−1LR, R(c) = S−1ΓS, (5.2)

respectively. The vectors m and c are nothing but the angular momentum and the

circulation with respect to the body frame [3], respectively. In contrast with these

vectors, the angular momentum and the circulation with respect to the space frame

are given by Rm and Sc, respectively. Now, calculating R−1LR = ΩA2+A2Ω−2AΛA

and S−1ΓS = ΛA2 + A2Λ− 2AΩA in an explicit manner results in

m =

 (a22 + a23)ω1 − 2a2a3λ1
(a23 + a21)ω2 − 2a3a1λ2
(a21 + a22)ω3 − 2a1a2λ3

 , c =

 (a22 + a23)λ1 − 2a2a3ω1

(a23 + a21)λ2 − 2a3a1ω2

(a21 + a22)λ3 − 2a1a2ω3

 , (5.3)

respectively. The vector corresponding to E = D(−(Ω2 + Λ2)A + (ΩAΛ + ΛAΩ)) is

written out as

E =

a1 (ω2
2 + ω2

3 + λ22 + λ23)− 2a2ω3λ3 − 2a3ω2λ2
a2 (ω

2
3 + ω2

1 + λ23 + λ21)− 2a3ω1λ1 − 2a1ω3λ3
a3 (ω

2
1 + ω2

2 + λ21 + λ22)− 2a1ω2λ2 − 2a2ω1λ1

 . (5.4)
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Then, the Euler-Lagrange equations (4.11a), (4.11b), and (4.11c) are brought into

ä = E −∇U(a), (5.5a)

ṁ = m× ω, (5.5b)

ċ = c× λ, (5.5c)

respectively. These are well-known equations in the liquid drop model of nuclei [3].

In a similar manner, we find that the kinetic energy (4.12) is expressed as

K =
1

2

∑
i

ȧ2i +
1

2

∑
i,j,k

(
(a2i + a2j)(ω

2
k + λ2k)− 4aiajωkλk

)
, (5.6)

where the summation over i, j, k is taken cyclically. It turns out also that

∂K
∂ω

= m,
∂K
∂λ

= c,
∂K
∂a

= E. (5.7)

6 Geometric set-up with SO(n)× SO(n) action

6.1 Two-sided action of SO(n)× SO(n)

To study the SO(n) × SO(n) symmetry of the pseudo-rigid body, we start with the

two-sided action of G = SO(n)× SO(n) on P , which are defined by

X 7−→ gXh−1, (g, h) ∈ SO(n)× SO(n). (6.1)

Let X = RAS−1 be a singular value decomposition of X, where R,S ∈ SO(n) and

A is a diagonal matrix whose diagonal entries are singular values of X. Then, the

isotropy subgroups GA at A and GX at X prove to be isomorphic to each other. We

deal with GA. Let A = diag(a1, a2, · · · , an) with a1 ≥ a2 ≥ · · · ≥ an > 0. GA’s are

determined, depending on various types of the singular values, and hence there are

as many orbit types as the types of singular values. According to orbit types, P is

stratified into strata, among which, the principal stratum, denoted by Ṗ, is the subset

consisting of X whose singular values are all distinct. In what follows, we treat Ṗ in

particular for the reason that the isotropy subgroup GX at X ∈ Ṗ is a finite group, as

is shown below, and this fact makes it feasible to perform the reduction procedure by

SO(n) × SO(n) with slight modification, as will be seen in Sec. 7. In Sec. 9, we will
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give the isotropy subgroups depending on the singular value types in the case of n = 3

(see (9.2)). Let X = RAS−1 ∈ Ṗ , where A = diag(a1, · · · , an) with a1 > · · · > an > 0.

Then, the condition gAh−1 = A for (g, h) ∈ SO(n)× SO(n) is solved by

GA = {(D,D)|D = diag(ε1, ε2, · · · , εn), εj = ±1, detD = 1}, (6.2)

which is isomorphic with (Z2)
n−1, where Z2 = {±1}. The orbit OA through A by the

G action is then diffeomorphic with (SO(n)× SO(n))/(Z2)
n−1, where (Z2)

n−1 acts on

G = SO(n)× SO(n) by (g, h) 7→ (gD, hD). Though the SO(n)× SO(n) action on Ṗ is

not free, the factor space is a manifold, as is shown below.

Proposition 6.1. Let G = SO(n)×SO(n), and Ṗ denote the principal stratum or the

subset consisting of X ∈ P whose singular values are all distinct. Then one has

G\Ṗ ≃ C := {x = (xj) ∈ Rn| x1 > · · · > xn > 0}. (6.3)

The projection Ṗ → G\Ṗ is denoted by π.

proof. Let µj(X) denote the singular values of X ∈ Ṗ with µ1(X) > · · · > µn(X)

and µ(X) = (µj(X)) the vector consisting of the singular values. Then, µ defines a

map π : Ṗ → C. Since for any x = (xj) ∈ C, a matrix A = diag(x1, · · · , xn) maps

to µ(A) = x, the µ is surjective. We now assume that µ(X1) = µ(X2) = (aj) ∈ C.
Then, there exist (Ri, Si) ∈ G, i = 1, 2, such that X1 = R1AS

−1
1 and X2 = R2AS

−1
2

with A = diag(a1, · · · , an). This implies that X2 = R2R
−1
1 X1(S2S

−1
1 )−1, so that X1

and X2 are sitting in the same orbit of G. It then follows that G\Ṗ ≃ C, and then π

may be identified with µ.

We return to P for the time being. According to the G-action on P , the tangent

space TX(P) at X ∈ P is decomposed into

TX(P) = VX ⊕HX , (6.4)

where VX and HX are the vertical and horizontal subspaces which are defined, re-

spectively, by VX = TA(OX), the tangent space to the orbit OX through X and by
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HX = V ⊥
X , where the orthogonal complement is taken with respect to the canonical

metric (2.9) on P. These subspaces prove to be expressed as

VX = {ξX +Xη⊤| (ξ, η) ∈ so(n)× so(n)}, (6.5)

HX = {Y ∈ TX(P)|Y X⊤ = XY ⊤, X⊤Y = Y ⊤X}, (6.6)

respectively. We remark that the dimensions of VX and HX depend on X in general.

On account of the singular value decomposition X = RAS−1, the vertical and

horizontal subspaces VX and HX are isomorphic with VA and HA, respectively. If we

restrict ourselves to Ṗ, for X = RAS−1 ∈ Ṗ , the HA is easily found to be expressed as

HA = {diag(u1, · · · , un)|uj ∈ R}, (6.7)

so that dim HX = dim HA = n. The dimension of VX with X ∈ Ṗ is then dim VX =

n2 − n = 2dim so(n), which implies also that ξX +Xη⊤ = 0 if and only if ξ = η = 0,

though this fact can be verified in a straightforward manner.

From (6.7), we see that the local coordinates (R,A, S,Ω, Ȧ,Λ) of T (Ṗ), which we

have used in Sec. 4, are in keeping with the SO(n)× SO(n) action; Ȧ is attributed to

the horizontal vector at A and (Ω,Λ) to the vertical vectors (ΩA,AΛ⊤) at A.

6.2 Bi-connection

In accordance with the decomposition (6.4) with X ∈ Ṗ , we may define a connection

form on Ṗ . We start with the definition of the “bi-inertia tensor”. In what follows, we

describe elements ξ ⊕ η ∈ so(n) ⊕ so(n) in the form of column vector, like

(
ξ
η

)
, and

the inner product on so(n)⊕ so(n) is defined through⟨( ξ′

η′

)
,

(
ξ
η

)⟩
so(n)⊕so(n)

= ⟨ξ′, ξ⟩so(n) + ⟨η′, η⟩so(n). (6.8)

Proposition 6.2. The bi-inertia tensor is defined to be a map BX : so(n) ⊕ so(n) →
so(n)⊕ so(n) given by

BX :=

(
AL

X −2AdX

−2Ad⊤
X AR

X

)
:

(
ξ

η

)
7→

(
AL

X(ξ)− 2AdX(η)

−2Ad⊤
X(ξ) +AR

X(η)

)
, (6.9)

where

(
ξ
η

)
∈ so(n)⊕ so(n), and where AdX and Ad⊤

X are defined on so(n) through

AdX(ξ) = XξXT , Ad⊤
X(ξ) = X⊤ξX, (6.10)

22



respectively. Then, the BX is a positive symmetric operator for X ∈ Ṗ. Thus, B−1
X

exists for X ∈ Ṗ. Furthermore, BX transforms according to

BgXh−1 = Ad(g,h) ◦ BX ◦ Ad−1
(g,h), (g, h) ∈ SO(n)× SO(n), (6.11)

where Ad(g,h) := Adg ⊕ Adh.

proof. From the definitions of AL
X , AR

X , AdX , and Ad⊤
X , we can easily verify that

⟨( ξ′

η′

)
,

(
AL

X −2AdX

−2Ad⊤
X AR

X

)(
ξ

η

)⟩
so(n)⊕so(n)

=
⟨( AL

X −2AdX

−2Ad⊤
X AR

X

)(
ξ′

η′

)
,

(
ξ

η

)⟩
so(n)⊕so(n)

, (6.12)

so that BX is symmetric. To verify the positive definiteness of BX for X ∈ Ṗ , we put

X in the singular value decomposition form, X = RAS−1, and set

Ad−1
R (ξ) = ξ′ = (ξ′ij), Ad−1

S (η) = η′ = (η′ij). (6.13)

Then, a straightforward calculation provides

⟨( ξ

η

)
,

(
AL

X −2AdX

−2Ad⊤
X AR

X

)(
ξ

η

)⟩
so(n)⊕so(n)

=
∑
i<j

(ai − aj)
2(ξ′ij)

2 + 2
∑
i<j

aiaj(ξ
′
ij − η′ij)

2 +
∑
i<j

(ai − aj)
2(η′ij)

2 ≥ 0. (6.14)

This implies that when ai ̸= aj with i ̸= j, the above quadratic form vanishes if and

only if ξ′ = η′ = 0, or if and only if ξ = η = 0. Thus, we have verified that BX is

positive definite, if X ∈ Ṗ .

The verification of (6.11) is straightforward;(
AL

gXh−1 −2AdgXh−1

−2Ad⊤
gXh−1 AR

gXh−1

)

=

(
AdgAL

XAd
−1
g −2AdgAdXAd

−1
h

−2AdgAd
⊤
XAd

−1
h AdhAR

XAd
−1
h

)

=

(
Adg 0

0 Adh

)(
AL

X −2AdX

−2Ad⊤
X AR

X

)(
Ad−1

g 0

0 Ad−1
h

)
, (6.15)
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where we have used the transformation property of AL
X and AR

X (see (2.12) and (2.13))

and that for AdX and Ad⊤
X ,

AdgXh−1 = AdgAdXAd
−1
h , Ad⊤

gXh−1 = AdhAd
⊤
XAd

−1
g . (6.16)

This ends the proof.

We are now in a position to define a connection form on Ṗ , which we will refer to as

a bi-connection with respect to the SO(n)× SO(n) action. We denote by (ξ ⊕ η)P(X)

the vector field on P induced by ξ ⊕ η ∈ so(n)⊕ so(n) (see (6.5));

(ξ ⊕ η)P(X) = ξX +Xη⊤. (6.17)

Proposition 6.3. Let ωB be an so(n)⊕ so(n)-valued one-form defined to be

ωB
X =

(
AL

X −2AdX

−2Ad⊤
X AR

X

)−1(
dXX⊤ −XdX⊤

dX⊤X −X⊤dX

)
. (6.18)

Then, the ωB satisfies the following,

ωX((ξ ⊕ η)P(X)) = ξ ⊕ η, ξ ⊕ η ∈ so(n)⊕ so(n), (6.19)

ωB
gXh−1 = Ad(g,h) ◦ ωB

X , (g, h) ∈ SO(n)× SO(n), (6.20)

and is called the bi-connection form.

proof. For a vertical vector ξX +Xη⊤ at X, one has

ωB
X(ξX +Xη⊤)

=

(
AL

X −2AdX

−2Ad⊤
X AR

X

)−1(
ξXX⊤ +XX⊤ξ − 2XηX⊤

−2X⊤ξX + ηX⊤X +X⊤Xη

)

=

(
AL

X −2AdX

−2Ad⊤
X AR

X

)−1( AL
X −2AdX

−2Ad⊤
X AR

X

)(
ξ

η

)
=

(
ξ

η

)
. (6.21)

The transformation property of ωB
X results from that for BX ;

ωB
gXh−1 =B−1

gXh−1

(
d(gXh−1)(gXh−1)⊤ − gXh−1d(gXh−1)⊤

d(gXh−1)⊤gXh−1 − (gXh−1)⊤d(gXh−1)

)

=Ad(g,h)B−1
X Ad−1

(g,h)

(
Adg 0

0 Adh

)(
dXX⊤ −XdX⊤

dX⊤X −X⊤dX

)
=Ad(g,h)ω

B
X . (6.22)

This ends the proof.
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It is now easy to see that

kerωB
X = {Y ∈ TX(Ṗ)|Y X⊤ −XY ⊤ = Y ⊤X −X⊤Y = 0} = HX , (6.23)

where HX has been given in (6.6).

6.3 A remark on the bi-connection

With (6.17) in mind, we now show that the bi-inertia tensor is equal to the locked

inertia tensor I(X) [7] with respect to the two-sided SO(n) × SO(n) action, which is

determined through

⟨I(X)(ξ ⊕ η), ξ′ ⊕ η′⟩so(n)⊕so(n) = ⟨⟨(ξ ⊕ η)P(X), (ξ′ ⊕ η′)P(X)⟩⟩. (6.24)

A straightforward calculation of the right-hand side of the above definition provides

⟨⟨(ξ ⊕ η)P(X), (ξ′ ⊕ η′)P(X)⟩⟩

=tr
(
(ξX +Xη)⊤(ξ′X +Xη′)

)
=⟨AL

X(ξ)− 2AdX(ξ), ξ
′⟩so(n) + ⟨−2Ad⊤

X(η) +AR
X(η), η

′⟩so(n)

=⟨BX(ξ ⊕ η), ξ′ ⊕ η′⟩so(n)⊕so(n). (6.25)

This proves our assertion. Hence, the bi-connection is identified with the mechanical

connection [7] as well. We note that the bi-inertia tensor is defined independently of

the Riemannian metric on P.

6.4 Local expressions

We now express the bi-connection form in terms of local coordinates. A straightforward

calculation with X = RAS−1 provides

ωB
RAS−1 = Ad(R,S)ω

B
A , ωB

A := R−1dR⊕ S−1dS. (6.26)

This implies that the bi-connection is flat.

We turn to the Lagrangian and the Hamiltonian. From (2.32), we have(
R−1LR

S−1ΓS

)
=

(
AL

A −2AdA

−2AdA AR
A

)(
Ω

Λ

)
, (6.27)
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so that R−1LR ⊕ S−1ΓS = BA(Ω ⊕ Λ). The kinetic energy (4.12) in the Lagrangian

formalism is then expressed, in terms of the bi-inertia tensor, as

K =
1

2
⟨Ȧ, Ȧ⟩+ 1

2
⟨Ω⊕ Λ,BA(Ω⊕ Λ)⟩so(n)⊕so(n). (6.28)

We proceed to the Hamiltonian. We have introduced the conjugate variables pA, pΩ,

and pΛ in (4.13) and found the relations, (4.15a) and (4.15b), of them to Ω and Λ,

which are put in the form, like (6.27),(
pΩ

pΛ

)
=

(
AL

A −2AdA

−2AdA AR
A

)(
Ω

Λ

)
=

(
Ad−1

R 0

0 Ad−1
S

)(
L

Γ

)
. (6.29)

Then, the Hamiltonian (4.16) is put in the form

H =
1

2
⟨pA, pA⟩+

1

2
⟨pΩ ⊕ pΛ,B−1

A (pΩ ⊕ pΛ)⟩so(n)⊕so(n) + U(A). (6.30)

7 Reduction by SO(n)× SO(n) symmetry

7.1 SO(n)× SO(n) symmetry

The Hamiltonian system we consider is the same as in Sec. 3, but it is assumed to

be invariant under the action of G = SO(n) × SO(n) in this section. The conserved

quantity associated with this symmetry is given by

θ(ξX +Xη⊤) = ⟨PX⊤ −XP⊤, ξ⟩so(n) + ⟨P⊤X −X⊤P, η⟩so(n). (7.1)

From this, it turns out that the associated momentum map J : T ∗(P) → so(n)⊕so(n)

is expressed as

J(X,P ) = (PX⊤ −XP⊤)⊕ (P⊤X −X⊤P ). (7.2)

Like (2.29), we denote the components of J by

L = PX⊤ −XP⊤, Γ = P⊤X −X⊤P, (7.3)

which are called also the angular momentum and the circulation, respectively. As is

easily seen from (2.31a) and (2.31b), J is adjoint-equivariant;

J(gXh−1, gPh−1) = Ad(g,h)J(X,P ), (g, h) ∈ SO(n)× SO(n). (7.4)
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7.2 Symplectic reduction

We study the level manifold J−1(λ⊕γ) for a given λ⊕γ ∈ so(n)⊕so(n). Our problem

is to solve the equation J(X,P ) = λ⊕γ. Since T ∗(P) ≃ T (P), we may put P ∈ T ∗
X(P)

in the form P = ξX + Y +Xη⊤, where ξ ⊕ η ∈ so(n)⊕ so(n) and Y ∈ HX . Plugging

this into the equation J(X,P ) = λ⊕ γ, we obtain

AL
X(ξ)− 2AdX(η) =λ, (7.5a)

−2Ad⊤
X(ξ) +AR

X(η) =γ, (7.5b)

where AdX and Ad⊤
X are given in (6.10). The above equations are put together to be

expressed as BX(ξ ⊕ η) = λ ⊕ γ on account of (6.9). Since BX is invertible if X ∈ Ṗ ,

we obtain ξ⊕η = B−1
X (λ⊕γ) for X ∈ Ṗ . To get an explicit expression of ξ⊕η, we now

put X in the singular value decomposition form, X = RAS−1, and rewrite the above

equations as

AL
A(ξ

′)− 2AdA(η
′) = λ′, (7.6a)

AR
A(η

′)− 2AdA(ξ
′) = γ′, (7.6b)

where

ξ′ = Ad−1
R (ξ), η′ = Ad−1

S (η), λ′ = Ad−1
R (λ), γ′ = Ad−1

S (γ). (7.7)

Now, these equations are easily solved for ξ′ and η′. Let

ξ′ = (ξ′ij), η
′ = (η′ij), λ

′ = (λ′ij), γ
′ = (γ′ij), A = diag(a1, · · · , an). (7.8)

Then, a straightforward calculation provides the solutions,

ξ′ij =
λ′ij(a

2
i + a2j) + 2aiajγ

′
ij

(a2i − a2j)
2

, (7.9a)

η′ij =
γ′ij(a

2
i + a2j) + 2aiajλ

′
ij

(a2i − a2j)
2

. (7.9b)

Here, we note that ai ̸= aj with i ̸= j for X ∈ Ṗ . Using these ξ′ and η′, one obtains

ξ ⊕ η = (AdR ⊕ AdS)(ξ
′ ⊕ η′). The level manifold is now expressed as

J−1(λ⊕ γ)
∣∣
T ∗(Ṗ)

= {
(
X, (B−1

X (λ⊕ γ))P(X) + Y
)
|X ∈ Ṗ , Y ∈ HX}, (7.10)
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where the notation (6.17) has been used for ξ ⊕ η = B−1
X (λ ⊕ γ). On account of

the adjoint-equivariance (7.4), the level manifold J−1(λ ⊕ γ) admits the action of the

isotropy subgroup

Gλ⊕γ = {(g, h) ∈ SO(n)× SO(n)|Ad(g,h)(λ⊕ γ) = λ⊕ γ}. (7.11)

Further, another isotropy subgroup GX
∼= GA

∼= (Z2)
n−1 acts on J−1(λ ⊕ γ) as well

(see (6.2) for the definition of GA).

According to the singular value decomposition X = RAS−1, we now express the

elements of J−1(λ⊕ γ)|T ∗(Ṗ) as

(RAS−1, R(ξ′A+ Y ′ + Aη′
⊤
)S−1), (7.12)

where Y ′ ∈ HA which is determined by Y = RY ′S−1, and where ξ′ and η′ are given in

(7.9). Then, under the action of (g, h) ∈ Gλ⊕γ, the element (7.12) transforms to

(gRA(hS)−1, gR(ξ′A+ Y ′ + Aη′
⊤
)(hS)−1). (7.13)

Moreover, the isotropy subgroup GA acts on J−1(λ⊕ γ)|T ∗(Ṗ) through DAD = A with

D ∈ GA. From these facts, we observe that {ξ′A + Y ′ + Aη′⊤|Y ′ ∈ HA} ≃ HA ≃
Tπ(A)(G\Ṗ) ≃ T ∗

π(A)(G\Ṗ), and that the Gλ⊕γ × (Z2)
n−1 action defines an equivalence

relation on SO(n)×SO(n) through (R,S) ∼ (gRD, hSD). Let Oλ⊕γ denote the adjoint

orbit through λ ⊕ γ in so(n) ⊕ so(n). Then, the factor space of SO(n) × SO(n) by

Gλ⊕γ×(Z2)
n−1 is expressed asOλ⊕γ/(Z2)

n−1. Hence, the factor space of J−1(λ⊕γ)|T ∗(Ṗ)

by Gλ⊕γ × (Z2)
n−1 is put in the form

(Gλ⊕γ × (Z2)
n−1)\J−1(λ⊕ γ)

∣∣
T ∗(Ṗ)

≃ T ∗(G\Ṗ)×G\Ṗ
(
Õλ⊕γ/(Z2)

n−1
)
, (7.14)

where Õλ⊕γ/(Z2)
n−1 denotes a fiber bundle over G\Ṗ whose fiber is Oλ⊕γ/(Z2)

n−1.

The T ∗(G\Ṗ)×G\Ṗ
(
Õλ⊕γ/(Z2)

n−1
)
should be a symplectic leaf ofG\T ∗(Ṗ) from the

orbit reduction theorem [10]. Though the orbit reduction theorem and the cotangent

bundle reduction theorem are proved on the assumption that the configuration space P ′

be a principal fiber bundle with structure group G′ acting freely on it, those theorems

will hold true on the assumption that G′ has the same orbit type on P ′ and that the

isotropy subgroup is a discrete finite group. This is because G′\P ′ is a manifold, and
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because differential calculus for symplectic forms in those theorems will not be affected

under the relaxed assumption stated above.

In what follows, we work with the reduced system. Let P = ξX + Y +Xη⊤ with

X ∈ Ṗ . Then, like (7.5), one has(
ξ

η

)
=

(
AL

X −2AdX

−2Ad⊤
X AR

X

)−1(
L

Γ

)
. (7.15)

With this in mind, we calculate the canonical one-form θ,

θ =⟨ξX + Y +Xη⊤, dX⟩

=⟨Y, dX⟩+
⟨( ξ

η

)
,

(
dXX⊤ −XdX⊤

dX⊤X −X⊤dX

)⟩
so(n)⊕so(n)

=⟨Y, dX⟩+
⟨( AL

X −2AdX

−2Ad⊤
X AR

X

)−1(
L

Γ

)
,

(
dXX⊤ −XdX⊤

dX⊤X −X⊤dX

)⟩
so(n)⊕so(n)

=⟨Y, dX⟩+
⟨
L⊕ Γ, ωB

X

⟩
so(n)⊕so(n), (7.16)

where we have used the fact that B−1
X is a symmetric operator, and the definition of

ωB. Let ιλ⊕γ : J−1(λ⊕γ)|T ∗(Ṗ) → T ∗(Ṗ) be the inclusion map. Then, we obtain, from

(7.16),

ι∗λ⊕γθ = ⟨Y, dX⟩+ ⟨λ⊕ γ, ωB
X⟩so(n)⊕so(n). (7.17)

In a similar manner, the kinetic energy is brought into the form

K =
1

2
⟨ξX + Y +Xη⊤, ξX + Y +Xη⊤⟩

=
1

2
⟨Y, Y ⟩+ 1

2

⟨( ξ
η

)
,

(
AL

X −2AdX

−2Ad⊤
X AR

X

)(
ξ
η

)⟩
so(n)⊕so(n)

(7.18)

=
1

2
⟨Y, Y ⟩+ 1

2

⟨( AL
X −2AdX

−2Ad⊤
X AR

X

)−1(
L
Γ

)
,

(
L
Γ

)⟩
so(n)⊕so(n)

.

It then follows that

ι∗λ⊕γH =
1

2
⟨Y, Y ⟩+ 1

2
⟨B−1

X (λ⊕ γ), λ⊕ γ⟩so(n)⊕so(n) + U . (7.19)

Theorem 7.1. Let (T ∗(P), dθ,H) be the Hamiltonian system for a pseudo-rigid body,

where θ and H are of the same form as given in (3.21) and (3.22), respectively, and
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where U is assumed to be invariant under the SO(n)×SO(n) action. The system admits

SO(n) × SO(n) symmetry and have the associated moment map J = L ⊕ Γ, where L

and Γ are the angular momentum and the circulation, respectively, and given in (7.3).

For λ⊕ γ ∈ so(n)⊕ so(n)\{0⊕ 0}, the reduced phase space (Gλ⊕γ × (Z)n−1)\J−1(λ⊕
γ)|T ∗(Ṗ) is expressed as in (7.14), and the reduced symplectic form ωλ⊕γ and the reduced

Hamiltonian Hλ⊕γ are determined through ι∗λ⊕γdθ = π∗
λ⊕γωλ⊕γ and ι∗λ⊕γH = π∗

λ⊕γH,

where ι∗λ⊕γθ and ι∗λ⊕γH are given in (7.17) and (7.19), respectively, and where πλ⊕γ is

the projection of J−1(λ⊕ γ)|T ∗(Ṗ) onto the reduced phase space.

7.3 The local expression of the reduced system

We wish to describe the reduced system in terms of local coordinates. We start by

expressing the canonical one-form θ in terms of local coordinates. Equation (7.16)

along with X = RAS−1 is rewritten as

θ = ⟨pA, dA⟩+
⟨( pΩ

pΛ

)
,

(
R−1dR
S−1dS

)⟩
so(n)⊕so(n)

, (7.20)

where (6.26) and (6.29) have been used, and where

pA = R−1Y S. (7.21)

We here note that if A ∈ Ṗ , we may put R−1Y S = Ȧ = diag(ȧ1, · · · , ȧn) ∈ HA on

account of (6.7), so that pA = Ȧ = ∂K/∂Ȧ, where K is given in (6.28). The exterior

derivative of θ is then shown to be expressed as

dθ =⟨dpA ∧ dA⟩+
⟨( dpΩ

dpΛ

)
∧
(
R−1dR
S−1dS

)⟩
so(n)⊕so(n)

−
⟨( pΩ

pΛ

)
,

(
R−1dR ∧R−1dR
S−1dS ∧ S−1dS

)⟩
so(n)⊕so(n)

. (7.22)

where ⟨· ∧ ·⟩ denotes an inner product combined with the wedge product; ⟨a ∧ b⟩ =∑
aij ∧ bij with a = (aij), b = (bij).

For a generic HamiltonianH, the Hamiltonian vector fieldXH is determined through

ι(XH)dθ = −dH, where ι denote the interior product. The Hamilton equations of mo-

tion determined through XH then turn out to be the same as (4.17). For a pseudo-rigid

body, the Hamiltonian is given by (6.30).
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We proceed to the reduced Hamilton equations for the pseudo-rigid body. If re-

stricted on T ∗(G\Ṗ)×G\Ṗ
(
Õλ⊕γ/(Z2)

n−1
)
, pΩ and pΛ are reduced, from (6.29), to

(pΩ ⊕ pΛ)
red = Ad−1

(R,S)(λ⊕ γ), (7.23)

which means that if restricted, pΩ ⊕ pΛ is sitting on the (co)adjoint orbit of SO(n) ×
SO(n) through λ⊕γ ∈ so(n)⊕so(n). From (6.30) and (7.23), the reduced Hamiltonian

is expressed as

Hλ⊕γ =
1

2
⟨pA, pA⟩+

1

2

⟨
Ad−1

(R,S)(λ⊕ γ),B−1
A (Ad−1

(R,S)(λ⊕ γ))
⟩
so(n)⊕so(n) + U(A). (7.24)

Among the Hamilton equations of motion (4.18), the second and the last of them

are put together to take the form

d

dt

(
pΩ

pΛ

)
=

( pΩ

pΛ

)
,

(
AL

A −2AdA

−2AdA AR
A

)−1(
pΩ

pΛ

) , (7.25)

where (6.29) has been used and where the commutator on so(n)⊕ so(n) is defined as[(
ξ′

η′

)
,

(
ξ
η

)]
=

(
[ξ′, ξ]

[η′, η]

)
. (7.26)

If pΩ ⊕ pΛ is replaced by (pΩ ⊕ pΛ)
red together with (7.23), Eq. (7.25) is viewed as the

reduced equation on the orbit bundle Õλ⊕γ/(Z2)
n−1,

d

dt
Ad−1

(R,S)(λ⊕ γ) =
[
Ad−1

(R,S)(λ⊕ γ),B−1
A (Ad−1

(R,S)(λ⊕ γ))
]
. (7.27)

The remaining Hamilton equations reduce to

dA

dt
= pA,

d

dt
pA = −∂Hλ⊕γ

∂A
. (7.28)

Equations (7.27) and (7.28) form the reduced Hamilton equations on the reduced phase

space. See [22] for the case of n = 3.

8 Relative equilibria

We now consider critical points of the reduced Hamilton equations (7.27) and (7.28).

Let (A, pA,Ad
−1
(R,S)(λ ⊕ γ)) = (A0, 0, κ ⊕ µ) be a critical point of them in the reduced
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phase space. In other words, ∂Hλ⊕γ/∂A vanishes at (A0, 0, κ ⊕ µ) and κ ⊕ µ satisfies

the condition [κ⊕µ,B−1
A0
(κ⊕µ)] = 0. A sufficient condition for the latter is that κ⊕µ

is an eigenvector of the symmetric operator B−1
A0
. Equation (6.27) with Ω = R−1Ṙ,Λ =

S−1Ṡ, L = λ, and Γ = γ gives rise to the equations for R and S,(
R−1Ṙ

S−1Ṡ

)
=

(
AL

A0
−2AdA0

−2AdA0 AR
A0

)−1(
κ
µ

)
. (8.1)

The right-hand side of the above equation is expressed as B−1
A0
(κ ⊕ µ). On account of

(7.9), there exist κ′ and µ′ such that κ′ ⊕ µ′ := B−1
A0
(κ⊕ µ). Then, Eq. (8.1) are easily

integrated to give a solution of the form

R(t) = R0 exp(tκ
′), S(t) = S0 exp(tµ

′). (8.2)

Hence, the pseudo-rigid body (or a Riemann ellipsoid) is in relative equilibrium,

X(t) = exp(tAdR0κ
′)X0 exp(−tAdS0µ

′), (8.3)

where X0 = R0A0S
−1
0 . We here note that the condition [κ⊕ µ,B−1

A0
(κ⊕ µ)] = 0 is now

rewritten as [BA0(κ
′ ⊕ µ′), κ′ ⊕ µ′] = 0.

Conversely, we assume that (X(t), P (t)) with X(t) given above and P (t) = Ẋ(t)

is a solution to the Hamilton equations (4.18), where R(t) = R0 exp(tκ
′), S(t) =

S0 exp(tµ
′), and A(t) = A0. Then, from (2.32) and (6.9) along with Ω = κ′ and Λ = µ′,

the conserved momentum J = L⊕ Γ proves to take the value

λ⊕ γ := Ad(R0,S0)BA0(κ
′ ⊕ µ′). (8.4)

On the other hand, from (8.3) and P (t) = exp(tAdR0κ
′)P0 exp(−tAdS0µ

′) with P0 =

AdR0(κ
′)X0−X0AdS0(µ

′), the adjoint-equivariance (7.4) of J implies that Adexp(tAdR0
κ′)⊕

Adexp(tAdS0
µ′) leaves λ⊕ γ invariant, so that Ad(exp(tAdR0

κ′),exp(tAdS0
µ′)) ∈ Gλ⊕γ. It then

follows that AdR0κ
′ ⊕ AdS0µ

′ ∈ Gλ⊕γ; [Ad(R0,S0)(κ
′ ⊕ µ′), λ ⊕ γ] = 0. From this fact

along with (8.4), one obtains

Ad(R0,S0)[κ
′ ⊕ µ′,BA0(κ

′ ⊕ µ′)]

=[Ad(R0,S0)(κ
′ ⊕ µ′),Ad(R0,S0)BA0(κ

′ ⊕ µ′)] = 0, (8.5)
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and hence

[κ′ ⊕ µ′,BA0(κ
′ ⊕ µ′)] = 0. (8.6)

From (8.4), Eq. (8.6) is brought into

[Ad−1
(R0,S0)

(λ⊕ γ),B−1
A0
Ad−1

(R0,S0)
(λ⊕ γ)] = 0. (8.7)

We now turn to the reduced Hamilton equations. The above equation implies that

the right-hand side of (7.27) vanishes at Ad−1
(R0,S0)

(λ ⊕ γ). Further, from A(t) = A0,

one has pA = 0. Since the solution of the Hamilton equations projects to that of the

reduced Hamilton equations, ∂Hλ⊕γ/∂A, the right-hand side of (7.28), must vanish at

(A0, 0,Ad
−1
(R0,S0)

(λ ⊕ γ)). Thus, (A0, 0,Ad
−1
(R0,S0)

(λ ⊕ γ)) gives a critical point of the

reduced Hamilton equations. Thus we have shown the following.

Proposition 8.1. The curve X(t) given in (8.3) with A(t) = A0 is in relative equilib-

rium, if and only if Eq. (8.6) holds and ∂Hλ⊕γ/∂A vanishes at (A0, 0,Ad
−1
(R0,S0)

(λ⊕γ))

in the reduced phase space. The condition (8.6) is also equivalent to AdR0κ
′⊕AdS0µ

′ ∈
Gλ⊕γ, where Gλ⊕γ denotes the Lie algebra of the isotropy subgroup Gλ⊕µ given in (7.11).

Relative equilibrium solutions (X(t), P (t)) to the Hamilton equations and critical points

of the reduced Hamilton equations are in one-to-one correspondence.

We now show that the point (A0,Ad
−1
(R0,S0)

(λ ⊕ γ)) coming from the critical point

mentioned in Prop. 8.1 is characterized as a critical point of the amended potential

defined on the orbit bundle Õλ⊕γ/(Z2)
n−1 to be

Vλ⊕γ(A,Ad
−1
(R,S)(λ⊕ γ)) := U(A) + 1

2
⟨Ad−1

(R,S)(λ⊕ γ),B−1
A (Ad−1

(R,S)(λ⊕ γ))⟩so(n)⊕so(n).
(8.8)

From Prop. 8.1, we see that ∂Vλ⊕γ/∂A = 0 at (A0,Ad
−1
(R0,S0)

(λ ⊕ γ)), since Vλ⊕γ =

Hλ⊕γ − 1
2
⟨pA, pA⟩ and pA = 0. We consider the derivative of Vλ⊕γ with respect to

the variable Ad−1
(R,S)(λ ⊕ γ) at (R,S) = (R0, S0). Let ζ1 ⊕ ζ2 be an arbitrary ele-

ment of so(n) ⊕ so(n). Then, any tangent vector at Ad−1
(R0,S0)

(λ ⊕ γ) takes the form

d
dt
Ad−1

(etζ1R0,etζ2S0)
(λ ⊕ γ))|t=0. Hence, the derivative of Vλ⊕γ in the direction of this
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tangent vector is expressed and calculated as

1

2

d

dt

∣∣∣∣
t=0

⟨
Ad−1

(etζ1R0,etζ2S0)
(λ⊕ γ),B−1

A0
Ad−1

(etζ1R0,etζ2S0)
(λ⊕ γ)

⟩
so(n)⊕so(n)

=
1

2

d

dt

∣∣∣∣
t=0

⟨
Ad−1

(R0,S0)
Ad−1

(etζ1 ,etζ2 )
(λ⊕ γ),B−1

A0
Ad−1

(R0,S0)
Ad−1

(etζ1 ,etζ2 )
(λ⊕ γ)

⟩
so(n)⊕so(n)

=−
⟨
Ad−1

(R0,S0)
[ζ1 ⊕ ζ2, λ⊕ γ],B−1

A0
Ad−1

(R0,S0)
(λ⊕ γ)

⟩
so(n)⊕so(n)

=−
⟨[

Ad−1
(R0,S0)

(ζ1 ⊕ ζ2),Ad
−1
(R0,S0)

(λ⊕ γ)
]
,B−1

A0
Ad−1

(R0,S0)
(λ⊕ γ)

⟩
so(n)⊕so(n)

=−
⟨
Ad−1

(R0,S0)
(ζ1 ⊕ ζ2),

[
Ad−1

(R0,S0)
(λ⊕ γ),B−1

A0
Ad−1

(R0,S0)
(λ⊕ γ)

]⟩
so(n)⊕so(n)

=0, (8.9)

where we have used (8.7) and the formula

⟨[ξ1 ⊕ ξ2, η1 ⊕ η2], ζ1 ⊕ ζ2⟩so(n)⊕so(n) = ⟨ξ1 ⊕ ξ2, [η1 ⊕ η2, ζ1 ⊕ ζ2]⟩so(n)⊕so(n). (8.10)

Since ζ1 ⊕ ζ2 is arbitrary, the above equation implies that the derivative of Vλ⊕γ with

respect to the orbit bundle variables Ad−1
(R,S)(λ⊕ γ) vanishes at (R0, S0).

Proposition 8.2. Critical points of the reduced Hamilton equations are determined by

critical points of the amended potential (8.8) defined on the orbit bundle Õλ⊕γ/(Z2)
n−1.

We notice in addition that the amended potential on Ṗ is defined to be

Ṽλ⊕γ(X) := U(X) +
1

2
⟨λ⊕ γ,B−1

X (λ⊕ γ)⟩so(n)⊕so(n), (8.11)

which is an extension of (8.8). From the assumption that U(X) is G-invariant and from

the transformation property of BX , we see that Ṽλ⊕γ(X) takes the same values as those

Vλ⊕γ(A,Ad
−1
(R,S)(λ ⊕ γ)) does. Hence, the relative equilibrium is also characterized by

critical points of the amended potential (8.11).

For comparison’s sake, we mention relative equilibria in the Lagrangian formalism.

According to the relative equilibrium theory [21], (X0, Ẋ0) with Ẋ0 = ξX0 +X0η
⊤ is a

relative equilibrium or the curve X(t) = etξX0e
−tη is a solution to the Euler-Lagrange

equation, if and only if X0 is a critical point of the augmented potential. In the present

case, the Euler-Lagrange equations are given in Prop. 4.2, and the augmented potential

takes the form

Uξ⊕η(X) := U(X)− 1

2
⟨ξ ⊕ η,BX(ξ ⊕ η)⟩so(n)⊕so(n), (8.12)
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where the second term of the right-hand side of the above comes from the second term

of the right-hand side of (7.18). In fact, we can verify this fact by using Prop. 4.2. We

note here that the Euler-Lagrange equations in Prop. 4.2 are now rewritten as

d

dt
Ȧ =

∂

∂A
(K − U), (8.13a)

d

dt
BA(Ω⊕ Λ) = [BA(Ω⊕ Λ),Ω⊕ Λ]. (8.13b)

In the rest of this section, we look into Eq. (8.6). As is easily seen, this equation

is satisfied by eigenvectors of the symmetric operator BA0 , which are easily found by

calculation. Let ξ = (ξij). Then, AL
A0
(ξ) = AR

A0
(ξ) = ((a2i + a2j)ξij) and AdA0(ξ) =

Ad⊤
A0
(ξ) = (aiajξij). Hence, we have

BA0

(
ξ
η

)
=

(
(a2i + a2j)ξij − 2aiajηij
−2aiajξij + (a2i + a2j)ηij

)
. (8.14)

Let eij with i < j be the standard basis of so(n), i.e., the (i, j) and (j, i) components of

eij are 1 and -1, respectively, and the others vanish. Then, the above equation provides

BA0

(
eij
eij

)
= (ai − aj)

2

(
eij
eij

)
, BA0

(
eij
−eij

)
= (ai + aj)

2

(
eij
−eij

)
, (8.15)

which shows that eij ⊕ eij and eij ⊕ (−eij) are eigenvectors of BA0 , where i < j. Since

dim(so(n) ⊕ so(n)) = n(n − 1), and since these vectors are linearly independent, we

have found all the eigenvectors for BA0 with A0 ∈ Ṗ .

The condition (8.6) may be satisfied by vectors other than the eigenvectors of BA0 ,

as is shown below: Let λ and λ′ be distinct eigenvalues of BA0 and ξ ⊕ η and ξ′ ⊕ η′

respective associated eigenvectors; BA0(ξ⊕ η) = λ(ξ⊕ η) and BA0(ξ
′ ⊕ η′) = λ′(ξ′ ⊕ η′)

with λ ̸= λ′. Then, a straightforward calculation provides

[ξ ⊕ η + ξ′ ⊕ η′,BA0(ξ ⊕ η + ξ′ ⊕ η′)] = (λ′ − λ)([ξ, ξ′]⊕ [η, η′]). (8.16)

If [ξ, ξ′] = [η, η′] = 0, the right-hand side of the above equation vanishes, so that (8.6)

is satisfied by (ξ + ξ′) ⊕ (η + η′). Incidentally, for the standard basis eij of so(n), the

commutation relations are given by

[eij, ekℓ] = eiℓδjk + ejkδiℓ − eikδjℓ − ejℓδik. (8.17)
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Hence, one has [eij, ekℓ] = 0 if i, j, k, ℓ are distinct to one another. This occurs if n ≥ 4.

Thus, for a linear combination of the eigenvectors eij ⊕ eij and ekℓ ⊕ ekℓ with i, j, k, ℓ

distinct to one another, we have, for example,[(
eij
eij

)
+

(
ekℓ
ekℓ

)
, BA0

((
eij
eij

)
+

(
ekℓ
ekℓ

))]
=
(
(ak − aℓ)

2 − (ai − aj)
2
)([eij, ekℓ]

[eij, ekℓ]

)
= 0.

(8.18)

The stability of the Riemann ellipsoid in three dimensions is studied in [22]. As for

relative equilibria for the generalized rigid body, see [23], in which the left-invariant

Lagrangian system on the tangent bundle of a Lie group is discussed. Proposition 8. 1

is an extension of a proposition [23] on relative equilibrium of the generalized rigid

body.

9 Concluding remarks

In Sec. 3, we have mentioned that the right SO(n) action is associated with particle

relabeling. In the case of identical N particles in Rn, we deals with the set, Rn×(N−1),

of real n× (N − 1) matrices, which is isomorphic with the center-of-mass system. The

particle exchange is expressed as the action of the symmetric group SN on Rn×(N−1)

to the right in the form of an irreducible representation of SN in O(N − 1) (see [24] for

particle exchange symmetry in quantum mechanics).

In Sec. 3, we have further carried out the reduction procedure for the pseudo-rigid

body by the right SO(n) symmetry in the Lagrangian formalism. However, the Poisson

formalism works in the reduction procedure as well. In Ref. [3, 4], the commutation

relations (or Poisson structure),

{Qij, Qkℓ} = 0, {Qij, Nkℓ} = δiℓQjk + δjℓQik, {Nij, Nkℓ} = δiℓNkj − δjkNiℓ, (9.1)

are used to obtain the reduced system on T (P)/SO(n). The semi-direct product reduc-

tion [25] is performed in three dimensions [4] by using the semi-direct product group

GL+(3,R) n Sym(3,R). Similar model has been studied under the name of collec-

tive models [26]. We note that the collective model comes from the idea of collective

states for a nucleus model. For example, for the study of nuclear collective states, the

SL(3,R)n Sym(3,R) is treated in [27, 28], and the group O(3)×O(N − 1) acting on
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R3×(N−1) is studied in [29]. There are a variety of groups associated with collective

states, which are out of the scope of the present article.

In Sec. 4, we have used the local coordinates (R,A, S,Ω, Ȧ,Λ). As is stated in

Sec. 6.1, Ȧ is viewed as the horizontal velocity and (Ω,Λ) as the vertical (angular)

velocity with respect to the SO(n)× SO(n) action. Since the bi-connection ωB is flat,

the velocity shift [20] is not needed, and hence the reduced Euler-Lagrange equations

look the same as the Hammel equation [20]. In our case, the transformation group

is G = SO(n) × SO(n) and the action of G is not free, so that Ṗ is not made into a

fiber bundle. However, the isotropy subgroup is finite on Ṗ and hence the reduction

procedure works well with a slight modification.

In Sec. 6, we have treated the isotropy subgroup on the principal stratum Ṗ . We

here write out the isotropy subgroups on the whole P for n = 3. Depending on types

of singular values, the isotropy subgroups are given by

GA ≃


(Z2)

2 for (i) a1 > a2 > a3 > 0,

S(O(2)× Z2) for (ii) a1 = a2 > a3, or a1 > a2 = a3 > 0,

SO(3), for (iii) a1 = a2 = a3 > 0,

(9.2)

where S(O(2)× Z2) denotes the set of matrices of the form

(
k 0
0 ε

)
with k ∈ O(2),

ε = ±1 and ε det(k) = 1. The orbit spaces G/GA are determined accordingly, and the

dimensions of the vertical and horizontal subspaces are given, respectively, by

(dim VX , dimHX) =


(6, 3) for (i),

(5, 4) for (ii),

(3, 6) for (iii).

(9.3)

In general, the group action on the space of rectangular matrices is classified ac-

cording to types of singular values of matrices. With this idea, the left action of SO(3)

on R3×(N−1) is treated in [30] for the study of multi-particle systems, and the two-sided

action of U(p)× U(q) on Cp×q is studied in relation to multi-qubit entanglement [31].

We have performed the reduction procedure with the right SO(n) symmetry in

Sec. 3. It is needless to say that one can perform the reduction procedure through

the left SO(n) symmetry to obtain a system on SO(n)\T (P) in the same manner as

that for T (P)/SO(n). The conservation law associated with the left SO(n) symmetry
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is the angular momentum. With respect to the left SO(n) symmetry (with n = 3), the

stability of relative equilibria of the pseudo-rigid bodies is extensively studied in [32].

The reduction procedure by the left SO(n) symmetry has been used in many-body

dynamical systems with n = 3 [33] by using the Guichardet connection, and studied

in detail in terms of local coordinates with insight into stratification and boundary

behaviors [34, 35].

If the reduced system on T (P)/SO(n) admits further the left SO(n) symmetry,

we would be able to perform the reduction procedure to obtain a further reduced

system on SO(n)\T (P)/SO(n). However, we have difficulty in this stage. Let Q and

N be the same as in Sec. 3. They admits the left SO(n) action, Q 7→ gQg−1, N 7→
gNg−1 with g ∈ SO(n). However, this action is not free, so that we cannot expect

SO(n)\T (P)/SO(n) to be a manifold. However, if we restrict ourselves to Ṗ , we will

be able to obtain a reduced system on SO(n)\T (Ṗ)/SO(n). The reduced space will

be isomorphic with that stated in Th. 7.1. It is a point to make that the action of

SO(n)×SO(n) on Ṗ and hence on T (Ṗ) is not free, but the isotropy subgroup is a finite

discrete group. See [11, 12] for the commuting reduction theorem, which is proved on

the assumption that the product Lie group acts freely and properly on the cotangent

bundle.
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Birkhöuser, Boston, 2004.

[11] J.E. Marsden, G. Misolek, M. Perlmutter, and T.S. Ratiu, Diff. Geom. and its

Appl., 9, 173-212 (1998),

[12] J.E. Marsden, G. Misolek, M. Perlmutter, J-P. Ortega, and T.S. Ratiu, Hamilto-

nian Reduction by Stages, Lec. Notes in Math., vol. 1913, Springer-Verlag, Berlin,

2007.

[13] A. Guichardet, Ann. Inst. H. Poincaré, 40, 329-342 (1984).
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