<table>
<thead>
<tr>
<th>Title</th>
<th>Geographical Divergence in the Japanese Land Snail Euhadra herklotsi Inferred from Its Molecular Phylogeny and Genital Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nishi, Hirotaka; Sota, Teiji</td>
</tr>
<tr>
<td>Citation</td>
<td>Zoological Science (2007), 24(5): 475-485</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/108567</td>
</tr>
<tr>
<td>Rights</td>
<td>(c) 日本動物学会 / Zoological Society of Japan</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Geographical Divergence in the Japanese Land Snail *Euhadra herklotsi* Inferred from Its Molecular Phylogeny and Genital Characters

Hirotaka Nishi*† and Teiji Sota
Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

We studied genetic variation within the Japanese land snail *Euhadra herklotsi*, which occurs on Kyushu and the surrounding islands, using partial sequences of the mitochondrial COI gene and nuclear ITS2 genes. The phylogenetic analysis revealed the existence of two major clades: clade N in the north and clade S in the south. These clades were parapatric and overlapped in southern Kyushu. Genetic divergence was high in clade N, whereas it was much lower in clade S. In addition, isolation-by-distance within each clade was implied. Since no current geographical barriers separate these clades, the genetic structure of clade S might have been influenced by historical events, such as volcanic activity, and a resulting population bottleneck followed by range expansion. The genital characteristics of clade-S snails were distinct from those of clade-N snails, and snails in both clades were sympatric at one locality. The shells of clade-N snails were generally larger than those of clade-S snails, but the shell-size variation within each clade could not be explained simply by environmental variables. Our study suggests that *E. herklotsi* likely consists of two sibling species. The taxonomic status of the previously proposed subspecies of *E. herklotsi* and related species requires reassessment.

Key words: mitochondrial DNA, land snail, biogeography, *Euhadra herklotsi*, nuclear DNA, bottleneck effect

INTRODUCTION

Land snails have low dispersal ability, and gene flow between populations appears to be limited. Therefore, land snail populations have been studied to investigate population genetic structure and phylogeography in order to understand geographic differentiation and historical biogeography (e.g., Gittenberger *et al*., 2004; Rundell *et al*., 2004; review in Backeljau *et al*., 2001). In addition, land snails show marked variation in shell morphology between and within populations, including shell size, shape, coiling, coloring, and pigment patterns, and these polymorphisms have attracted the attention of many evolutionary biologists (review in Jones, 1973; Goodfriend, 1986; Backeljau *et al*., 2001). The diversity in shell morphology is influenced not only by local adaptation, but also by phylogenetic constraints, genetic drift, and phylogeographic factors. To resolve the confounding effects of ecological, phylogenetic, and phylogeographic factors on the phenotypic differentiation of land snails, a phylogeographic approach utilizing molecular markers provides a powerful tool (Avise, 2000).

The Japanese land snail genus *Euhadra* is a highly divergent group that has proven to be an excellent model organism for molecular phylogenetic studies, which have focused on the phylogeography of two species in central Japan (Hayashi and Chiba, 2000; Shimizu and Ueshima, 2000; Watanabe and Chiba, 2001) and speciation due to reversed chirality in northern Japan (Ueshima and Asami, 2003; Davison *et al*., 2005). The land snail *Euhadra herklotsi* (Martens) occurs throughout Kyushu in southwest Japan, including the surrounding islands, western tip of Shikoku, western tip of Honshu, and Cheju Island. It inhabits lucidophyllous forests and thickets, and exhibits marked variation in shell size, shape, banding pattern, and coloring. It is divided into several subspecies based on shell shape and distribution, but its classification differs among researchers (see Minato, 1985, 1988; Azuma, 1995).

Volcanic activity is one of the historical events that can affect intraspecific phylogeography (Emerson *et al*., 2006). On Kyushu, where *E. herklotsi* occurs, volcanic activity has been frequent over the past 100,000 years, and has likely influenced the flora and fauna (Matsushita, 2002; Sugiyama, 2002). Although its effects on the fauna have not been studied in detail, land snails are terrestrial animals with a low power of dispersal, and their populations were probably influenced greatly by this past volcanic activity.

This paper investigates geographic differentiation within the *E. herklotsi* lineage using mitochondrial and nuclear gene sequences. In addition, we analyze genital and shell morphology and examine the relationship between lineages distinguished by molecular markers and morphological types.
Table 1. Specimens used in the phylogenetic and morphological analyses.

<table>
<thead>
<tr>
<th>Localitya</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
<th>Estimated mean temperature</th>
<th>Estimated mean rainfall</th>
<th>Haplotype (n)</th>
<th>Number of individuals used for morphological analysis (genital type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Uchiyama, Izuhara, Nagasaki, Japan</td>
<td>34.63</td>
<td>129.39</td>
<td>unknown</td>
<td>N/A</td>
<td>N/A</td>
<td>N361(1)</td>
<td>0</td>
</tr>
<tr>
<td>2 Mitsushima, Nagasaki, Japan</td>
<td>34.28</td>
<td>129.36</td>
<td>20</td>
<td>15.0</td>
<td>1901.6</td>
<td>N358(2)</td>
<td>1(N)</td>
</tr>
<tr>
<td>3 Shuohi, Yamaguchi, Japan</td>
<td>34.22</td>
<td>131.31</td>
<td>100</td>
<td>14.0</td>
<td>1980.2</td>
<td>N278(1)</td>
<td>1(N)</td>
</tr>
<tr>
<td>4 Mine, Yamaguchi, Japan</td>
<td>34.17</td>
<td>131.19</td>
<td>90</td>
<td>13.8</td>
<td>1892.2</td>
<td>N280(1)</td>
<td>1(N)</td>
</tr>
<tr>
<td>5 Kamiagata, Nagasaki, Japan</td>
<td>34.16</td>
<td>129.23</td>
<td>125</td>
<td>14.2</td>
<td>2207.5</td>
<td>N362(1)</td>
<td>0</td>
</tr>
<tr>
<td>6 Tsutsu, Izuhara, Nagasaki, Japan</td>
<td>34.12</td>
<td>129.19</td>
<td>40</td>
<td>15.2</td>
<td>2051.4</td>
<td>N362(1)</td>
<td>L(1) 0</td>
</tr>
<tr>
<td>7 Onoda, Yamaguchi, Japan</td>
<td>34.02</td>
<td>131.21</td>
<td>40</td>
<td>15.8</td>
<td>1915.7</td>
<td>N216(1), N281(1), N424(1)</td>
<td>2(N)</td>
</tr>
<tr>
<td>8 Genkai, Fukuoka, Japan</td>
<td>33.90</td>
<td>130.49</td>
<td>60</td>
<td>15.8</td>
<td>1647.3</td>
<td>N216(2)</td>
<td>2(N)</td>
</tr>
<tr>
<td>9 Tsuyazaki, Fukuoka, Japan</td>
<td>33.78</td>
<td>130.49</td>
<td>60</td>
<td>15.1</td>
<td>1681.6</td>
<td>N198(1), N216(1), N907(1), N908(1), N909(1)</td>
<td>4(N)</td>
</tr>
</tbody>
</table>

To be continued.
Table 1. Continued.

<table>
<thead>
<tr>
<th>Locality</th>
<th>58 Sasue, Nagashima, Kagoshima, Japan</th>
<th>59 Takanabe, Miyazaki, Japan</th>
<th>60 Mt. Nishimata, Suki, Miyazaki, Japan</th>
<th>61 Nakahara, Suki, Miyazaki, Japan</th>
<th>62 Karakuma, Nagashima, Kagoshima, Japan</th>
<th>63 Kiiragi, Kobayashi, Miyazaki, Japan</th>
<th>64 Akusa, Nagashima, Kagoshima, Japan</th>
<th>65 Isuzu, Nagashima, Kagoshima, Japan</th>
<th>66 Iwasa, Kita, Miyazaki, Japan</th>
<th>67 Kii, Sata, Kagoshima, Japan</th>
<th>68 Daia, Sata, Kagoshima, Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude/Longitude</td>
<td>32.15 130.12 20</td>
<td>32.13 131.52 10</td>
<td>32.12 131.08 80</td>
<td>32.11 131.07 540</td>
<td>32.11 130.12 10</td>
<td>32.10 130.99 450</td>
<td>32.08 130.19 20</td>
<td>32.07 130.36 30</td>
<td>32.05 130.77 220</td>
<td>32.05 130.77 220</td>
<td>32.05 130.77 220</td>
</tr>
<tr>
<td>Distance from receptor</td>
<td>17.0 2064.0</td>
<td>17.1 2327.8</td>
<td>11.8 2969.6</td>
<td>12.0 284.7</td>
<td>12.2 2038.7</td>
<td>12.9 2985.6</td>
<td>17.1 2074.2</td>
<td>14.9 2150.3</td>
<td>14.9 2773.4</td>
<td>15.0 2827.3</td>
<td>15.0 2827.3</td>
</tr>
<tr>
<td>58 Sasue, Nagashima, Kagoshima, Japan</td>
<td>32.15 130.12 20</td>
<td>32.13 131.52 10</td>
<td>32.12 131.08 80</td>
<td>32.11 131.07 540</td>
<td>32.11 130.12 10</td>
<td>32.10 130.99 450</td>
<td>32.08 130.19 20</td>
<td>32.07 130.36 30</td>
<td>32.05 130.77 220</td>
<td>32.05 130.77 220</td>
<td>32.05 130.77 220</td>
</tr>
<tr>
<td>Latitude/Longitude</td>
<td>32.15 130.12 20</td>
<td>32.13 131.52 10</td>
<td>32.12 131.08 80</td>
<td>32.11 131.07 540</td>
<td>32.11 130.12 10</td>
<td>32.10 130.99 450</td>
<td>32.08 130.19 20</td>
<td>32.07 130.36 30</td>
<td>32.05 130.77 220</td>
<td>32.05 130.77 220</td>
<td>32.05 130.77 220</td>
</tr>
<tr>
<td>Distance from receptor</td>
<td>17.0 2064.0</td>
<td>17.1 2327.8</td>
<td>11.8 2969.6</td>
<td>12.0 284.7</td>
<td>12.2 2038.7</td>
<td>12.9 2985.6</td>
<td>17.1 2074.2</td>
<td>14.9 2150.3</td>
<td>14.9 2773.4</td>
<td>15.0 2827.3</td>
<td>15.0 2827.3</td>
</tr>
</tbody>
</table>

*Locality numbers are those used in Fig. 1

**Haplotypes connected by hyphen are of same individuals.
We show the existence of two distinct lineages within *E. herklotsi*, which are also discriminated by genital morphology.

MATERIALS AND METHODS

Study organisms and sampling

This study examined *E. herklotsi* as defined by Azuma (1995), who recognized six subspecies: *E. h. herklotsi*, *E. h. yakushima*, *E. h. nesiotica*, *E. h. tsushima*, *E. h. hyugana*, and *E. h. kirishimensis*. Of these subspecies, Minato (1985, 1988) treated *yakushima* as an independent species. We examined 256 individuals belonging to *E. herklotsi* (sensu Azuma, 1995) from 114 localities in western Japan and Cheju Island, Korea, which covered its entire range (Table 1, Fig. 1). We collected one to 11 individuals per sampling site. *Euhadra idzumonis* from Hiroshima, Japan, was used as the outgroup for the molecular phylogenetic analysis, based on the results of a previous molecular phylogenetic study (Ueshima and Asami, 2003). Specimens collected in the field were boiled to separate the bodies and shells, and the tips of the feet were preserved in 99% ethanol for use in the DNA analysis.

DNA extraction, PCR, and sequencing

Total genomic DNA was isolated using a modification of Chiba’s (1999) procedure. Muscle tissues were homogenized in 500 ml of 2X CTAB solution with 10 mg/ml proteinase K and incubated at 55°C for more than 1 h. Standard phenol/chloroform extraction and ethanol precipitation were used to extract DNA, which was dissolved in 30 to 60 μl of TE buffer.

A mitochondrial DNA fragment encoding the cytochrome oxidase subunit I gene (COI) was amplified with the polymerase chain reaction (PCR) using primers CO1DF (5'-TTTTGRTTTTGT-GKCAYCCNGA-3') and 16Scs1r (5'-CCATTATGCAAAAGGTAT-3'; a modification of 16Scs1 in Chiba, 1999) for all 256 specimens. We also PCR-amplified a nuclear DNA region including the internal transcribed spacer 2 (ITS2) gene using primers 18d ("fruitfly") 5'-CA-CACCAGCCGCTCCTACTACGCCATT-3' (Hillis and Dixon, 1991) and ITS-4 5'-TCCTCCGCTTATTGATATGC-3' (White et al., 1990) for 21 specimens (Table 1). The specimens used for the ITS2 analyses were selected randomly from the major clades on the COI tree (see below). Primer 18d is located in the 18S rRNA gene region, and ITS-4 is in the 28S rRNA gene region. PCR amplifications were performed with a GeneAmp PCR System 9700 Thermal Cycler (PE Applied Biosystems, Foster City, CA), using an Ex Taq Polymerase Kit (Takara Shuzo, Otsu, Japan). The thermocycling regime consisted of an initial 2 min at 94°C followed by 30 cycles of 20 sec
at 94°C, 20 sec at 50°C, and 2 min at 72°C, with a final 10 min at 72°C.

The amplified fragment was purified with silica gel (Boom et al., 1990) for subsequent direct sequencing by the dideoxy chain-termina-
nation method using an ABI Prism BigDye Terminator Cycles Sequencing Ready Reaction Kit (PE Applied Biosystems). In the cycle sequencing reaction for ITS2, primer Iss.8I (5'-CATTGAA-
CATCAGACATCTTGAAACC-3'; Y. Kameda and M. Kato, personal communication) was used instead of 18d. Nucleotide sequences of
752 bp (COI) and 498-511 bp (ITS2) were determined for both
strains by electrophoresis on an ABI 377 automated sequencer
(PE Applied Biosystems). Although the sequenced region included
19 bp of the 5.8S ribosomal RNA gene and 6 bp of the 28S riboso-
mal RNA gene in addition to 473-486 bp of the ITS2 gene, we call
it "ITS2" for convenience. The nucleotide sequences reported here
have been deposited in GenBank (accession numbers AB267490–
AB267630).

Phylogenetic analysis

The COI sequences were unambiguously aligned manually.
Only a 1-bp gap was required at the end of the sequences. This gap
was treated as missing data in the analyses. Neighbor-joining,
maximum parsimony, maximal likelihood, and Bayesian analyses
were used to reconstruct the phylogenetic relationships among the
taxa. The neighbor-joining and parsimony analyses were performed
using PAUP* version 4.0b10 (Swoford, 2002). The TVM+I+G
substitution model (transversional model with the gamma shape
parameter and proportion of invariable sites) was selected as the
best-fit model by both the Akaike information criterion and hierarchi-
cal likelihood ratio tests implemented in Modeltest 3.07 (Posada
and Crandall, 1998). TVM is a variation of the general time revers-
ible (GTR) model, with equal substitution rates for transitions. Esti-
mates of genetic divergence used this substitution model. In the
parsimony analysis, a heuristic search was conducted using 100
random-addition analyses with tree bisection–reconnection (TBR)
branch swapping (MulTrees option activated). The confidence in
each node was assessed using 1,000 bootstrap pseudo-replicates.
The GTR+I+G substitution model was used for the maximum likeli-
hood (ML) analysis performed with the June 2005 version of
TREEFINDER (Jobb, 2005) because this was the closest model to
TVM+I+G available in this program. Bayesian analysis was per-
formed using MrBayes version 3.1.2 (Huelsenbeck and Ronquist,
2001; Ronquist and Huelsenbeck, 2003). A Bayesian Markov Chain
Monte Carlo (MCMC) analysis was performed using the GTR+I+G
model. The MCMC analysis was run for 2 million generations
sampling every 100th tree. The first 2,000 trees were discarded as
burn-in.

To detect the effect of isolation by distance, we conducted the
Mantel test (Mantel, 1967) using the computer software R Package
(Casgrain and Legendre, 2000). We calculated Fu's Fs (Bu, 1997)
as an indicator of the effects of past demography using ARLEQUIN
3.01 (Excoffier et al., 2005). The Fs statistic is said to be sensitive
to population demographic expansion, which generally leads to a
large negative Fs (Bu, 1997). A mismatch analysis was also per-
fomed to study the demographic history. The expected pairwise
mismatch distribution under the model of population expansion
(Rogers and Harpending, 1992; Rogers, 1995) was calculated, and
the goodness of fit was tested using ARLEQUIN.

The alignment of the ITS2 data required gaps in two regions,
but no alignment-ambiguous region occurred. In the parsimony
analysis, gaps were treated as missing data and coded separately;
each gap represented one character with the states absent (0) or
present (1). Gaps spanning more than one nucleotide position
were scored as a single character. A haplotype network was con-
structed using the computer program TCS version 1.21 (Clement

Morphological analysis

Euhadra land snails are hermaphrodites. Genital morphology
was studied for adult specimens because they provide the most reli-
able taxonomic characters for this genus (Minato, 1985). In addition,
the shell width and height of adult specimens were measured using
vernier calipers to the nearest 0.01 mm. The shell shape was com-
pared between clades using analysis of covariance (ANCOVA)
based on the width and height data. To examine the effects of envi-
ronmental variables on shell size and shell shape within each clade,
we used general measurements of shell size and shape based on
shell width and height data, the PC1 and PC2 scores obtained by
a principal component analysis. Greater PC1 scores indicate larger
shell sizes, and greater PC2 scores denote flatter shell shapes.
These PC1 and PC2 scores were subject to multiple linear regres-
sion analysis with five environmental factors as explanatory vari-
ables. The environmental variables comprised three geographical
(latitude, longitude, and altitude) and two climatic (annual mean
temperature and mean annual rainfall) variables. The climatic data
were obtained from Mesh Climatic Data 2000 (Japan Meteorological
Agency, 2002), which compiled 30-year averages of climatic data at
a 1-km mesh scale. In the multiple regression, variables were
selected by a stepwise procedure using the Akaike information
criterion.

RESULTS

Mitochondrial gene genealogy

We observed marked variation in the COI sequences
within E. herklotsi and obtained 126 unique COI haplotypes
from 256 individuals (Table 1). The topologies resulting from
different tree search methods were congruent, except for
some nodes with low support. Therefore, only the maximum-
likelihood tree is shown in Fig. 2. Two major clades, named
clad N and clade S, were distinguished. The genetic diver-
sity within clade S was lower than that within clade N, which
consisted of two well differentiated clades: L1 and L2 (Fig.
2). The mean pairwise sequence divergence (±SE) was
0.008±0.002 (n=105) for clade S and 0.044±0.004 (n=151)
for clade N. These clades occurred largely in different
regions (clade N in the northwest, clade S in the southeast;
Fig. 2). We collected haplotypes from both clades at locality
50.

We tested the hypothesis that the low genetic diversity
in clade S resulted from a bottleneck followed by a recent
demographic expansion. The simulated value of Fu's Fs (Fu,
1997) was significantly smaller than the observed Fs in
clad S (F=−25.27, P<0.001), while it was not significantly
different in clade N (F=−10.13, P=0.09). Therefore, a
bottleneck likely occurred in clade S. A mismatch analysis
was performed to compare the demographic history of the
two clades. The mismatch distribution for clade N was
multimodal (Fig. 3a), reflecting the high genetic diversity (see Fig. 2), whereas it was close to unimodal for clade S
(Fig. 3b). For both clades, however, the observed mismatch
distribution fit the expected distribution under a model of
population expansion (clade N: sum of the squared devia-
tion SSD=0.0039, P=0.68 and raggedness index r=0.0026,
P=0.52; clade S: SSD=0.0076, P=0.31 and r=0.015, P=
0.43). Mantel tests revealed a significant positive correlation
between genetic and geographic distance within clades N and
S (Fig. 4; clade N: r=0.52, Mantel's r=0.44, P<0.01;
clade S: r=0.58, P<0.01), indicating the effect of isolation by distance.
Fig. 2. Maximum-likelihood tree of the mitochondrial COI gene sequences. The posterior probability values of nodes resulting from the Bayesian analysis are shown above branches when >70%. Bootstrap values derived from 1,000 replicates in the NJ and parsimony analyses are shown in italics and bold font, respectively, below branches for major clades (when >70%). Maps show the geographical distributions of the major clades.
For ITS2, 13 haplotypes were obtained from 21 specimens. The direct sequencing results for six of the 21 specimens revealed duplicated signals, probably caused by a difference among the multiple copies of ITS2. These were resolved manually based on the two sequences from the forward and reverse primers. Variation within the ITS2 region was low, and all the haplotypes were connected with each other without missing haplotypes in the statistical parsimony tree (Fig. 5). In the ITS2 tree, four ITS2 haplotypes from clade S snails formed a monophyletic group, and eight ITS2 haplotypes formed another group.

Morphological analysis

Individuals of the mitochondrial clades N and S had dif-

Nuclear gene genealogy

Fig. 3. Mismatch distributions of the mitochondrial COI haplotypes for clades N and S. Closed circles show the observed distributions, and open circles the expected distribution under the sudden demographic expansion model.

Fig. 4. Relationship between the genetic and geographic distances between populations of clades N and S. Linear regression lines are drawn for illustrative purposes.

Fig. 5. Statistical parsimony network for the nuclear ITS2 gene. Open circles represent haplotypes; closed circle indicates a haplotype that did not appear in the samples. Haplotypes separated by a single line are one step apart. The number in each haplotype circle indicates the number of individuals with that haplotype.
Different genital morphologies (Fig. 6). In clade N snails, the basal part of the vagina was attached to the genital atrium vertically, i.e., in almost the same direction as the penial sheath (called the N type hereafter). In contrast, the basal part of the vagina of clade-S snails was almost parallel to the genital atrium, and the genital atrium was swollen (S type). However, samples from localities 95, 96, and two of four samples from locality 94 had S-type genitalia, although they belonged to mitochondrial clade N, suggesting introgressive hybridization between the two lineages. These localities were at the geographic boundary between the two mitochondrial clades.

In the analyses of shell morphology, we excluded clade-N snails with genital type S (n=11) to remove the effect of inconsistency between mitochondrial lineage and morphological type that may have been due to hybridization. The mean shell width and height (Fig. 7) were greater for clade N than clade S (width (mean±SD): clade N, 35.2±3.33 mm; clade S, 28.0±3.15 mm; df=172, t=14.64, P<0.001; height: clade N, 21.5±1.96 mm; clade S, 18.1±1.80 mm; df=172, t=11.82, P<0.001). However, ANCOVA showed no significant difference in shell height between these clades after controlling for the effect of shell width (ANCOVA, shell width effect: df=1, F=219.6, P<0.0001; clade effect: df=1, F=0.70, P=0.40), indicating no difference in shell shape between the clades.

In the stepwise multiple linear-regression analyses of the determinants of shell size and shape (Table 2), the selected model for shell size (PC1) included altitude for both clades, and longitude and climatic variables (mean annual temperature, annual precipitation) for clade S only (clade N: model R^2=0.047, P=0.022; clade S: model R^2=0.180, P<0.001). For shell shape (PC2), the selected model...
because only clade N occurs in Nagasaki. The subspecies isolation at their contact zone is needed. The type locality of be treated as two species, further analysis of reproductive
The snails of clade N likely correspond to
thought to be Nagasaki in northwest Kyushu (Minato, 1988).

Table 2. Stepwise multiple regression analyses for factors affecting the shell size (PC1) and shell shape (PC2) of E. herklotsi. PC1 explained 93.4% of the variance.

<table>
<thead>
<tr>
<th>Clade / genital type</th>
<th>Explanatory variable</th>
<th>Standard regression coefficient</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1 N</td>
<td>Altitude (m)</td>
<td>0.241</td>
<td>2.33</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Longitude (°E)</td>
<td>−0.479</td>
<td>−4.40</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Altitude (m)</td>
<td>−0.578</td>
<td>−2.81</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Annual rainfall (mm)</td>
<td>0.313</td>
<td>2.36</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Mean temperature (°C)</td>
<td>−0.330</td>
<td>−1.90</td>
<td>0.061</td>
</tr>
<tr>
<td>PC1 S</td>
<td>Longitude (°E)</td>
<td>0.591</td>
<td>5.82</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Mean temperature (°C)</td>
<td>0.488</td>
<td>3.14</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Annual rainfall (mm)</td>
<td>0.492</td>
<td>2.91</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Latitude (°N)</td>
<td>0.323</td>
<td>1.80</td>
<td>0.075</td>
</tr>
<tr>
<td>PC2 N</td>
<td>Longitude (°E)</td>
<td>0.556</td>
<td>5.16</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Longitude (°E)</td>
<td>−0.183</td>
<td>−1.70</td>
<td>0.093</td>
</tr>
</tbody>
</table>

included longitude, mean annual temperature, annual precipitation, and latitude for clade N (model $R^2_{a=0.326}$, $P<0.001$), and latitude and longitude for clade S (model $R^2_{a=0.232}$, $P<0.001$). Therefore, the factors affecting shell size and shape were not consistent between the two clades, as indicated by the difference in model composition and the regression coefficients.

DISCUSSION

Two lineages within E. herklotsi

This study revealed the existence of two distinct lineages within E. herklotsi (sensu Azuma, 1995) as evidenced by both mitochondrial and nuclear DNA markers and genital morphology. These lineages occur in parapatry, with a boundary zone in southern Kyushu. The two lineages co-occurred at one site (locality 50), and discordance of the genital morphology with the COI and ITS2 lineages was detected at three localities (94–96) at the boundary only, where all individuals possessed type-S genitals, whereas all but two had clade-N mitochondria. All of these localities are located in southern Kyushu, the boundary between the two lineages. Therefore, while the two lineages apparently have attained allopatric differentiation, secondary contact and gene flow due to introgressive hybridization may have occurred at the boundary zone.

Although we found a difference in shell size between snails of different mitochondrial lineages and genital morphologies, the variation in shell morphology within each lineage was large and could not be explained simply and consistently by environmental variables. Therefore, different selection regimes might have acted on shell morphology during the formation of the two lineages, resulting in the present divergence in shell size.

The taxonomic treatment of the two lineages remains to be resolved in a future study. Although these lineages may be treated as two species, further analysis of reproductive isolation at their contact zone is needed. The type locality of E. herklotsi is described as “Japan” (Martens, 1860) and is thought to be Nagasaki in northwest Kyushu (Minato, 1988). The snails of clade N likely correspond to E. herklotsi, because only clade N occurs in Nagasaki. The subspecies E. h. kirishimensis Kuroda, 1936, distributed in southern

Kyushu, corresponds to clade S, and E. h. nesiota (Pilsbry, 1902), which is described from Tanegashima Island, south of mainland Kyushu, is found where only clade S occurs. Therefore, nesiota may be used as the species name of clade S because of its priority. Subspecies yakushimana was originally described as a separate species (Pilsbry and Hirase, 1903) and has unique characteristics that easily distinguish it from E. herklotsi. However, we found that yakushimana had the same COI and ITS2 haplotypes as clade S of E. herklotsi. The species status of yakushimana needs to be studied based on other nuclear DNA genealogies and experimental crosses with E. herklotsi lineages from other regions.

Historical process of divergence

We found relatively low genetic diversity in clade S compared with clade N. The result of Fu’s F_S (Fu, 1997) and the mismatch analysis suggest that clade S experienced a bottleneck and successive rapid range expansion. The putative bottleneck event in clade S might be related to volcanic eruptions, which occurred frequently during the last 100,000 years on Kyushu (Fig. 8). During this period, the Aso caldera in central Kyushu erupted from 85,000 to 90,000 years ago (Machida and Arai, 2003), the Aira caldera in southern Kyushu erupted 29,000 years ago (Okuno, 2002; Machida and Arai, 2003), and the Kikai caldera in the south of mainland Kyushu erupted 7,300 years ago (Okuno, 2002; Machida and Arai, 1978). Since these large volcanic eruptions affected different regions (Fig. 8), and the boundary of clades N and S lies in southern Kyushu, we hypothesize that the Aira eruption once depleted the land snails in southern Kyushu, especially clade S, and recolonization by the two clades from the south and north resulted in the present contact zone. A bottleneck event followed by population expansion was also suggested in the Japanese macaque (Macaca fuscata yakui) on Yakushima Island (Hayaishi and Kawamoto, 2006), and the event that caused the bottleneck is thought to be the Kikai eruption.

Application of the molecular clock to our COI data should be useful for estimating the time of the bottleneck event in clade S and identifying the related geohistorical event. Unfortunately, no appropriate calibration method or
published evolutionary rate exists for the COI sequences of Euhadra. If we use a rate of 10% per million years estimated for the mitochondrial 16S rRNA gene of Euhadra (Hayashi and Chiba, 2000), the bottleneck event in clade S occurred 40,000 years ago, before the eruption of the Aira caldera, based on the mean pairwise distance between clade S haplotypes (=0.008). However, this age can be overestimated because the molecular clock is likely faster over shorter periods (Ho et al., 2005). In addition, the COI clock may be very different from the 16S clock used here.

The wide distribution of clade N on islands other than Kyushu might have been facilitated by the repeated formation of land bridges during glacial periods, although rafting could be another means of dispersal. In fact, land bridges for the dispersal of clade N were available between Tsushima Island and mainland Kyushu (Keigwin and Otani, 1998). The snails might have dispersed to Tsushima Island and mainland Kyushu (Keigwin and Otani, 1998), Shikoku and Kyushu (Kimura, 2000; Nagaoka, 2005). In addition, the COI clock may be even different from the 16S clock used here.

ACKNOWLEDGMENTS

We thank T. Tanigaki, M. Shimizu, K. Uozumi, K. Nakao, K. Nakata, J. U. Otani, H. Toju, Y. Nakahara, H. Sako, M. Nishi, and K. Nishi for their help in sampling; T. Tanigaki and N. Nagata for helpful suggestions on the analysis of DNA sequences; Y. Kameda and M. Sasabe for comments on the manuscript. We also thank Prof. M. Hori and other members of the Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, for discussion. This study was supported by Grants-in-aid from the Japan Society for the Promotion of Science (Nos. 11304068, 17405007) and from the Ministry of Education, Culture, Science, Sports and Technology, Japan (Biodiversity Research of the 21 Century COE, A14).

REFERENCES

Keigwin L, Gorbarenko S (1992) Sea level, surface salinity of the Japan Sea, and the other dryas event in the northwestern
Geographical Divergence in Euhadra

Kuroda T (1936) Two new subspecies of Euhadra herklotsi from Kyushu. Venus 6: 81–84, Pl. 4

Pilsbry HA, Hirase Y (1903) New land snails of the Japanese Empire. Nautilus 17: 78–79

(Received August 4, 2006 / Accepted December 18, 2006)