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We analyzed the intraspecific gene genealogies of three 

 

Leptocarabus

 

 ground beetle species (

 

L.
seishinensis

 

, 

 

L. semiopacus

 

, 

 

L. koreanus

 

) in South Korea using sequence data from the mitochon-
drial cytochrome oxidase subunit I (COI) and nuclear 28S rRNA (28S) genes, and compared phylo-
geographical patterns among the species. The COI data detected significant genetic differentiation
among local populations of all three species, whereas the 28S data showed genetic differentiation
only for 

 

L. seishinensis

 

. The clearest differentiation of 

 

L. seishinensis

 

 among local populations was
between the northern and southern regions in the COI clades, whereas the 28S clade, which likely
indicates relatively ancient events, revealed a range expansion across the northern and southern
regions. 

 

Leptocarabus semiopacus

 

 had the most shallow differentiation of the COI haplotypes, and
some clades occurred across the northern and southern regions. In 

 

L. koreanus

 

, four diverged COI
clades occurred in different regions, with partial overlaps. We discuss the difference in phylogeo-
graphical patterns among these 

 

Leptocarabus

 

 species, as well as between these and other groups
of carabid beetles in South Korea.
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INTRODUCTION

 

Since the emergence of phylogeography (Avise 

 

et al

 

.,
1987; Avise, 2000), comparative analyses of phylogeo-
graphical patterns across different taxa and regions have
provided a powerful technique for revealing the evolutionary
history and current status of biodiversity (Bermingham and
Moritz, 1998; Arbogast and Kenagy, 2001). Comparative
phylogeography, with extensive geographic sampling, can
provide substantial insight into the evolutionary process of
closely related taxa across a continuum from population
divergence to species divergence (Avise, 2000, 2004; Tem-
pleton, 2001; Barraclough and Nee, 2001). 

Ground beetle species belonging to the flightless sub-
tribe Carabina (=genus 

 

Carabus sensu lato

 

; family Cara-
bidae) are restricted in their dispersal ability and serve as
important organisms for analyzing the process of geograph-
ical differentiation. Here, we examined the molecular phy-

logeny and phylogeography of three closely related 

 

Lepto-
carabus

 

 ground beetles in South Korea, 

 

L. seishinensis

 

(Lapouge), 

 

L. semiopacus

 

 (Reitter), and 

 

L. koreanus

 

 (Reit-
ter), to explore differences in the current and historical bio-
geography of closely related species in the same region.

 

Leptocarabus

 

 is adapted to cool climatic conditions and
occurs mainly in mountainous regions up to alpine zones
(Sota, 1996; Sota 

 

et al

 

., 2000; Sota and Ishikawa, 2004).
The three species in South Korea have similar life histories,
although 

 

L. seishinensis 

 

and 

 

L. semiopacus

 

 inhabit higher
elevations than 

 

L. koreanus

 

 (Kim and Lee, 1992). 

 

Leptocar-
abus 

 

consists of 20 species in East Asia, including the
Korean peninsula and the Japanese islands (Imura and
Mizusawa, 1996). Kim

 

 et al.

 

 (2000a) studied the phylogeny
of 14 

 

Leptocarabus

 

 species, including the above three
Korean species. However, their study focused on the spe-
cies phylogeny and did not analyze the phylogeography of
individual species.

Comparative phylogeographic analyses of different
groups of organisms within one region can provide infer-
ences about the processes of genetic differentiation, such
as common vicariance events and the various dispersal and
colonization histories of different species. Recently, carabid
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beetles have been studied for this purpose in different
regions of the world (

 

e.g

 

., Emerson 

 

et al

 

., 1999, 2000;
Clarke 

 

et al

 

., 2001; Moya 

 

et al

 

., 2004). In our previous study
of 

 

Coptolabrus

 

, another Carabina group in South Korea
(Zhang 

 

et al

 

., 2005), two closely related species exhibited a
similar geographic differentiation pattern in the mitochondrial
gene genealogy, which likely reflects their recent dispersal
and colonization history. The phylogeographic pattern of

 

Leptocarabus

 

 in South Korea may differ from that of 

 

Copto-
labrus

 

 because of habitat differences: 

 

Leptocarabus

 

 is con-
fined to mountain zones, whereas 

 

Coptolabrus

 

 inhabits both
mountains and lowlands down to coastal areas.

In addition, comparative phylogeographic analyses of
one group of organisms in different geographic regions pro-
vide inferences about the differences in historical and geo-
graphical factors that determine the group’s differentiation
(speciation) processes. Kim 

 

et al

 

. (2000b) studied the phy-
logeny of five Japanese 

 

Leptocarabus

 

 species using the
mitochondrial ND5 gene. This study revealed frequent shar-
ing of the same ND5 haplotype, or lineage, between spe-
cies. The discrepancy between this molecular phylogeny
and morphological taxonomy revealed a serious problem in
the phylogeny of closely related 

 

Leptocarabus

 

 species. In
particular, three species in the central to northern part of
Honshu, Japan, including two widely sympatric species
pairs, shared the same or closely related haplotypes. Alth-
ough trans-species polymorphism of mitochondrial haplo-
types is a well-known phenomenon in other carabid beetles,
inferred to be an effect of interspecific hybridization (

 

e.g

 

.,
Sota and Vogler, 2001; Sota 

 

et al

 

., 2001; Sota, 2002;
Takami and Suzuki, 2005; Zhang 

 

et al

 

., 2005), the case of
Japanese 

 

Leptocarabus

 

 is extraordinary and requires fur-
ther assessment and comparative studies of congeneric
species in other areas.

In this study, we sought to resolve the species relation-
ships and explore differences in phylogeographic patterns
among the three species, as well as compare them to other
species inhabiting South Korea and Japan. We used
sequence data from the mitochondrial cytochrome oxidase
subunit I (COI) and nuclear 28S rRNA (28S) genes to con-
struct phylogenetic trees and to investigate population
genetics and phylogeographic patterns using nested clade
analysis. 

 

MATERIALS AND METHODS

 

Sampling, DNA extraction, PCR, and sequencing

 

A total of 162 adult beetles of the three species was obtained
from nine locations in South Korea (Table1; see also Fig. 1). Upon
collection, beetles were preserved in 99% ethanol. 

 

Leptocarabus
arboreus

 

, collected from Japan, was used as the outgroup. Muscle
tissue of the beetles was digested with proteinase K in CTAB buffer,
and total DNA was extracted using the standard phenol–chloroform
method. Primers COS1751C (5’-GGA GCT CCT GAT ATA GCT
TTY CC-3’; Sota and Hayashi, 2004) and COA2703 (5’-CT CCA
ATR AAT ATR ACA ATA AAT TG-3’; Zhang

 

 et al

 

., 2005) were used
to PCR-amplify 894 bp of the COI gene region. Primer pair 28S-01/
28SR-01 (Kim 

 

et al

 

., 2000a) was used to amplify 832- to 852-bp
fragments of the nuclear 28S gene region. For direct sequencing of
the PCR products, dye terminator cycle-sequencing reactions were
performed using the ABI PRISM BigDye Terminator Cycle
Sequencing FS Ready Reaction Kit, followed by electrophoresis on
an ABI 377 sequencer (Applied Biosystems, Foster City, CA, USA).

The number of sequences obtained for each species and gene is
presented in Table 1. The sequence data have been deposited in
GenBank (accession numbers for 28S, DQ184516–DQ184540; for
COI, DQ184541–DQ184632). 

 

Phylogenetic analysis

 

DNA sequences were aligned using the multiple-sequence
alignment program Clustal X version 1.83 (Chenna 

 

et al

 

., 2003) and
later refined manually. Since selection on mutations and intragenic
recombinations within the studied sequences could result in mis-
leading inferences in the phylogenetic and phylogeographic analy-
sis, we tested for the neutrality of mutations following the method of
Fu and Li (1993) and used DnaSP version 4.0 (Rozas 

 

et al

 

., 2003)
to compute 

 

D

 

* and 

 

F

 

* test statistics. In addition, we confirmed the
absence of intragenic recombination using TOPALi version 0.23
(Milne 

 

et al

 

., 2004) for both the 28S and COI sequences, as wide-
spread recombination has been suggested to occur in animal
mtDNA sequences (Tsaousis 

 

et al

 

., 2005). Putative recombination
breakpoints were sought using a 10-bp sliding window and 10-bp
increment along the alignment and 

 

DSS

 

 (difference in sum of
squares) statistics for the sliding windows. Along a sequence align-
ment, each significant peak in 

 

DSS

 

 corresponds to a recombination
breakpoint. The statistical significance of 

 

DSS

 

 peaks (recombination
breakpoints) was tested at 

 

P

 

=0.05 using 100 parametric bootstraps.
To find the best-fit substitution model for each sequence data

set, a likelihood ratio test (LRT) was performed using Modeltest ver-
sion 3.5 (Posada and Crandall, 1998). For phylogenetic reconstruc-
tion with each sequence data set, we performed a Bayesian Markov-
Chain Monte-Carlo (MCMC) analysis using MrBayes version 3.1
(Huelsenbeck and Ronquist, 2001). Substitution models selected by
Modeltest were used in this analysis. The MCMC analysis was run
for one million generations, with four chains, and every hundredth
tree was sampled. After visually examining the likelihood scores,
data for the first 200,000 generations were discarded as burn-in.

 

Table 1.

 

Sample localities and the number of samples sequenced.

 

Species Sample locality (No./code) No. of 

Coordinates samples

N

 

°

 

E

 

°

 

COI/ 28S

 

L. seishinensis

 

Baekdamsa (1/PAE) 38.17 128.38 3/3
Mt. Seoraksan (2/SOR) 38.14 128.41 6/7
Chuncheon (3/CHU) 37.88 127.73 18/14
Mt. Odaesan (4/ODA) 37.75 128.48 21/22
Mt. Chiaksan (5/CHI) 37.36 128.06 7/6
Mt. Sobaeksan (6/SOB) 36.96 128.41 3/2
Jeungsan-ri, Mt. Jirisan (8/CHN) 35.32 127.76 15/6

 

L. semiopacus

 

Mt. Seoraksan (2/SOR) 38.14 128.41 1/1
Mt. Odaesan (4/ODA) 37.75 128.48 0/1
Mt. Chiaksan (5/CHI) 37.36 128.06 1/1
Mt. Sobaeksan (6/SOB) 36.96 128.41 4/6
Mt. Deogyusan (7/TOG) 35.82 127.72 10/6
Jeungsan-ri, Mt. Jirisan (8/CHN) 35.32 127.76 34/11

 

L. koreanus

 

Chuncheon (3/CHU) 37.88 127.73 2/2
Mt. Chiaksan (5/CHI) 37.36 128.06 1/1
Mt. Deogyusan (7/TOG) 35.82 127.72 12/9
Mt. Beugbyeongsan, Geojedo I. (9/KOJ) 34.88 128.67 17/11

Total 155/111

Outgroup: 

 

L. arboreus

 

Tumagoi-mura, Gunma, Japan 35.56 138.14 1/1
Ohshika-mura, Nagano, Japan 36.46 138.44 1/1
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Fig. 1.

 

Fifty percent majority consensus of 8,000 trees resulting from Bayesian analysis of mitochondrial COI haplotypes (left), and maps of
the Korean Peninsula showing geographic distribution of haplotypes (clades) of the three 

 

Leptocarabus

 

 species (right). Branch lengths are pro-
portional to mean branch lengths of the 8,000 trees. Numerals above the branches are Bayesian posterior probabilities followed by bootstrap
percentages obtained from parsimony analysis (when>50%). Terminal nodes (P-numbers) are sample codes and represent unique sequences
(haplotypes). When the same haplotype appeared two or more times in the sample, the frequency is indicated in parentheses after the P-num-
ber. Vertical grey bars indicate clades that showed significant geographical association (see Table 4). In the maps, black dots with numbers
are sampling sites (see Table 1). Inference from NCA is indicated when available for a clade (see Table 4).
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We also performed a parsimony analysis using PAUP* version
4.0b10 (Swofford, 2002). Heuristic searches were conducted using
100 random-addition replicates with tree bisection–reconnection
branch swapping (MulTree option in effect). The confidence level of
each node was assessed by 1,000 bootstrap replications.

 

Analysis of molecular variance

 

To examine the extent of genetic variation among local
populations, we used analysis of molecular variance (AMOVA) imple-
mented in Arlequin version 2000 (Schneider 

 

et al

 

., 2000). The signif-
icance of the fixation index (

 

F

 

ST

 

) was tested using a nonparametric
analysis with 1,000 permutations, as described by Excoffier 

 

et al

 

.
(1992). In addition, to examine whether the differences in 

 

F

 

ST

 

 among
the three species were statistically significant, we created 100 data
sets for each gene by bootstrap resampling of sequences within each
local population and performed AMOVA for each of the bootstrap
data sets. With 100 

 

F

 

ST

 

 values for each species, we determined 95%
confidence intervals. We considered that 

 

F

 

ST

 

 values to differ between
species if the 95% confidence intervals did not overlap.

 

Nested clade analyses for intraspecific phylogeography

 

The nested clade analysis has widely been used to infer the

complex historical processes involved in intraspecific phylogeogra-
phy (Templeton 2001, 2002, 2004), although its statistical reliability
has been questioned (Knowles and Maddison, 2002). To apply the
nested clade analysis to the COI and 28S data, statistical parsi-
mony networks (Templeton 

 

et al

 

., 1995) were constructed using
TCS program version 1.8 (Clement 

 

et al

 

., 2000) with a 95% con-
nection limit. For the 28S gene, intraspecific networks could be esti-
mated without gap sites, although the interspecific sequence align-
ment required gaps. Loops that appeared in the networks were
resolved, whenever possible, following the criteria of Crandall and
Templeton (1993). Nested clades were determined at one-step and
higher levels for use in a subsequent nested clade analysis of each
species, after construction of the network. Cladogram nesting was
made with the nesting algorithm described by Templeton 

 

et al

 

.
(1987) and Templeton and Sing (1993). 

With nested cladograms obtained as above, we assessed the
intraspecific phylogeography of sequences by nested clade analy-
ses using GeoDis version 2.2 (Posada 

 

et al

 

., 2000). The geograph-
ical association of haplotypes or clades was first tested using the
permutational contingency test (Templeton and Sing, 1993). If the
test identified significant nonrandom patterns, the pattern of geo-
graphic structure was further analyzed using two distance mea-

 

Fig. 2.

 

Fifty-percent majority consensus of 8,000 trees resulting from Bayesian analysis of nuclear 28S sequences (left), and maps of the
Korean Peninsula showing phylogeographic patterns of the three 

 

Leptocarabus

 

 species (right). See the legend for Fig. 1 for further explanation.
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sures. One was the clade distance (

 

D

 

c

 

), which measures the geo-
graphical range of a particular clade. The other was the nested
clade distance (

 

D

 

n

 

), which measures how a particular clade is geo-
graphically distributed relative to its closest evolutionary sister
clades (

 

i.e

 

., clades in the same higher-level nesting category). The
distributions of these two distance measures were tested against
the null hypothesis of no geographical associations within the nest-
ing clade by means of 1,000 permutational analyses. The subse-
quent inference of phylogeographical events was performed using
the program AUTOINFER 1.0 (Zhang 

 

et al

 

., 2006), which is based
on Templeton’s (2004) inference key.

 

RESULTS

Sequence variation and phylogenetic analysis

 

The alignment of the COI data set required no gaps. For
the 28S sequences, the intraspecific alignment required no
gaps, and only eight gaps were needed for the alignment of
all species. In total, 91 unique COI haplotypes were found
for all three species: 38 for 

 

L. seishinensis, 

 

32 haplotypes
for 

 

L. semiopacus

 

, and 21 for

 

 L. koreanus 

 

(Fig. 1). Only 26
haplotypes were identified among all three species for the
28S gene: 17 for 

 

L. seishinensis

 

, 5 for

 

 L. semiopacus

 

, and
4 for 

 

L. koreanus

 

 (Fig. 2).
COI exhibited higher sequence variation, with 142 par-

simony-informative characters (excluding the outgroup) over
the total length of 894 bp, than 28S, which had 28 parsi-
mony-informative characters (excluding gaps) over the total
alignment of 855 bp. The level of sequence variation differed
among the three species (Table 2). The largest substitution
rate for COI was found for 

 

L. koreanus

 

 (2.2%), followed by

 

L. seishinensis

 

 (1.3%) and 

 

L. semiopacus

 

 (0.9%; Table 2).
For 28S, 

 

L. seishinensis

 

 had the largest substitution rate
(0.22%), while 

 

L. semiopacus

 

 and 

 

L. koreanus

 

 had much
lower rates (0.09% and 0.07%, respectively; Table 2). 

Selective neutrality was confirmed for the two genes
(

 

P

 

>0.1 for all 

 

D

 

* and 

 

F

 

* test statistics). In addition, no evi-
dence of recombination events (recombination breakpoints
across sequences) was detected (P>0.05 for all test statis-
tics with DSS). Thus, the phylogenetic and phylogeographi-
cal analyses presented here have not suffered from the
effects of recombination and selection. 

The Tamura–Nei model (Tamura and Nei, 1993) with a
proportion of invariable sites and the gamma shape param-

eter (TrN+I+G) was the best-fit model for the COI gene,
while the Hasagawa–Kishino–Yano model (Hasegawa et al.,
1985) with a proportion of invariable sites (HKY+I) was the
best fit for the 28S gene. However, due to the available set-
tings in MrBayes, the GTR (general time reversible) +I+G
model instead of TrN+I+G was used for COI. The COI and
28S gene trees resulting from Bayesian analyses pre-
sented the same basic relationships for the three species,
(L. arboreus, (L. koreanus, (L. semiopacus, L. seishinensis));
Figs. 1 and 2). A parsimony analysis of the COI data
resulted in 451,700 shortest trees of 410 steps (consistency
index [CI] excluding uninformative sites=0.595; retention
index [RI]=0.945; the number of trees saved was restricted
by the available computer memory). The 28S data resulted
in 24 shortest trees of 115 steps (CI=0.826, RI=0.936; gaps
were treated as missing data). The strict consensus of the
above trees did not contradict trees resulting from the Baye-
sian analysis; hence, only the latter trees are reported in
Figs 1 and 2.

Geographical differentiation revealed by AMOVA
An analysis of molecular variance (AMOVA) revealed

significant genetic differentiation among local populations
(fixation indices FST>0) within the COI lineages of each spe-
cies and within the 28S lineages of L. seishinensis (Table 2).
The COI gene indicated that the three species had signifi-
cantly different fixation indices (FST) with respect to haplo-
types within populations, as shown by the nonoverlapping
95% confidential intervals obtained by the bootstrap resam-
pling procedure (Table 2). A significant difference existed for
the FST of the 28S gene between L. seishinensis and the
other two species, but not between L. semiopacus and L.
koreanus, for which the FST was not significantly greater
than zero (Table 2). 

Nested clade analysis of intraspecific phylogeography
Leptocarabus seishinensis had two major COI clades

(sei-A and sei-B), which were not connected within a 95%
connection limit (Figs. 1 and 3, top). For L. semiopacus, all
the COI haplotypes were connected in one network at the
three-step level (Fig. 3, middle). The COI haplotypes of L.
koreanus were distributed in four separate networks that

Table 2. Substitution rate and analysis of molecular variance for population differentiation in three species that show poly-
morphism in mitchondrial COI and nuclear 28S gene sequences.

Gene Pairwise Molecular variance

Species sequence divergence among populations within populaiton FST
a 95% C.I. of FST

b

(Mean±SD) d.f. Variance (%) d.f. Variance (%) lower–upper 
COI
L. seishinensis 1.31±1.23 6 4.621 ( 79.16) 73 1.217 ( 20.84) 0.792** 0.758–0.813
L. semiopacus 0.93±0.47 4 1.941 ( 37.73) 44 3.204 ( 62.27) 0.377** 0.353–0.381
L. koreanus 2.24±1.77 3 5.014 ( 47.64) 27 5.510 ( 52.36) 0.476** 0.454–0.673

28S
L. seishinensis 0.22±0.14 6 0.428 ( 49.05) 53 0.445 ( 50.95) 0.491** 0.522–0.717
L. semiopacus 0.09±0.13 5 –0.054 (–15.37) 20 0.407 (115.37) –0.154 –0.185–0.360
L. koreanus 0.07±0.08 3 0.002 ( 0.51) 19 0.308 ( 99.49) 0.005 –0.161–0.338

a FST , fixation index. ** Significantly greater than zero at P=0.01.
b 95% confidence interval obtained from 100 data sets derived by bootstrap resampling of haplotypes within populations
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Fig. 3. Parsimony networks and nested clade pattern for mitochondrial COI haplotypes. The codes in large circles indicate unique haplo-
types. Each solid line represents one mutational step, and each black dot indicates an undetected intermediate haplotype. When a haplotype
(P-number) occurred two or more times in the sample, the frequency is indicated in parentheses below the P-number. Loops that could be
resolved prior to the cladogram nesting are shown by grey lines and circles. Clades are indicated by rectangles with rounded corners (broken
line for 1-step clades; solid line for 2-step or higher clades), with the clade numbers shown. 
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Table 3. Results of the nested geographical distance analyses of the mitochondrial COI and nuclear
28S genes for three Leptocarabus ground beetles.

Gene Permutationala Haplotype/ Geographic distanceb

Species Nested clade χ2 P clade Status Dc Dn

Mitochondrial COI
L. seishinensis

1.2 17.39 0.006 P334 tip 0.00 8.40 S
P322 interior 15.86 13.96
P335 tip 0.00 39.09
P332 tip 0.00 39.09
P362 tip 0.00 4.85
I-T 15.86 L –2.70

 2.1 38.61 0.001 1.1 tip 0.00 73.52
1.4 tip 0.00 38.41
1.5 interior 11.85 19.14
I-T 11.85 –42.68 S

2.2 18.65 0.003 1.2 interior 1.11S 2.67 S
1.20 tip 0.00 41.59 L
I-T 1.11 –38.92 S

3.1 82.72 0.000 2.1 interior 24.88 80.01 L
2.2 tip 4.11 S 37.90 S
2.3 tip 0.00 16.51
2.4 tip 0.00 S 53.25
2.5 tip 0.00 S 51.03
I-T 22.34 37.67 L

Total cladogram 20.16 0.003 3.1 tip 49.69 49.94
3.2 tip 0.00 S 48.99

L. semiopacus
2.5 11.00 0.002 1.9 interior 0.00 S 44.44 L

1.14 tip 0.00 11.22
1.16 tip 0.00 S 11.22 S
I-T 0.00 23.21 L

2.6 12.00 0.062 1.19 interior 0.00 59.41
1.10 tip 0.00 24.94
1.11 tip 0.00 73.29
I-T 0.00 10.29

Total cladogram 24.81 0.000 2.5 tip 17.92 S 147.68 L
2.6 tip 52.55 64.33
2.8 tip 0.00 S 136.91

L. koreanus
3.1 8 0.020 2.1 tip 0.00 S 40.20 S

2.4 interior 0.00 95.13 L
I-T 0.00 54.94 L

Nuclear 28S
L. seishinensis

1.2 25.33 0.000 P344 interior 3.40 S 108.69 S
P320 tip 0.00 112.22
P321 tip 0.00 112.22
P200 tip 0.00 S 209.17 L
I-T 3.40 –76.24 S

2.1 80.02 0.000 1.2 tip 138.54 144.94 L
1.3 tip 131.52 140.02 L
1.1 interior 42.36 S 59.29 S
1.6 tip 0.00 23.60 S
1.5 tip 0.00 40.52
I-T –85.19 S –77.12S

2.2 10 0.023 1.7 interior 0.02 S 27.23 S
1.4 tip 0.00 29.74 L
I-T 0.00 S –2.51 S

Total cladogram 13.12 0.029 2.1 tip 41.69 S 46.31 S
2.2 tip 113.07 L 110.74 L

L. semiopacus
1.4 2.28 0.706 P364 interior 90.44 93.56

P175 interior 27.78 162.85
Total cladogram 8.5 0.534 1.1 tip 0.00 124.84

1.2 tip 0.00 124.84
1.3 tip 0.00 177.90
1.4 interior 97.89 101.02
I-T 97.89 –41.50

L. koreanus
1.1 6.41 0.303 P368 interior 130.46 134.74

P211 tip 38.13 101.27
P215 tip 0.00 82.84
I-T 98.69 L 36.55

Total cladogram 0.48 1.000 1.1 tip 25.65 27.43
1.2 tip 32.33 32.33

a Permutation test for the null hypothesis of no association between nested clades and geographical location within 
a nested clade.

b Dc, clade distance; Dn, nested clade distance. Distances in bold letters with S or L indicate significantly shorter (S) 
or longer (L) than expected from no association between nested clades and geographic location (at P=0.05).
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were not connected within a 95% connection limit (Fig. 3,
bottom). For the 28S gene, the haplotypes of each species
were connected in one network (Fig. 6). The network for L.
seishinensis consisted of two 2-step clades, but that for each
of the other two species was spun into one 2-step clade.

Geographical distance analysis revealed significant
associations between clades and geographical locations
within each species for COI. However, for 28S, only clades
of L. seishinensis showed significant geographic association
(Table 3). The two major clades of COI haplotypes for L.
seishinensis (sei-A and sei-B) were distributed in the north-
ern and southern regions, respectively (Fig. 1). Within the
sei-A clade, restricted gene flow with isolation by distance
was inferred for clade 1.2, and contiguous range expansion
for clade 2.1. In addition, range expansion was inferred for
clade 2.2, and restricted gene flow with isolation by distance
for clade 3.1 (Table 4; Fig. 1). In L. semiopacus, only clade
2.5 revealed a significant geographical association, except
for the total cladogram; long distance colonization or past
fragmentation was inferred for clade 2.5 (Table 4; Fig. 1). In
L. koreanus, allopatric fragmentation between the peninsula
and Geojedo Island was inferred within clade 3.1 (Fig. 1).
This inference was enhanced by the large number of muta-
tion steps between local haplotypes (Fig. 3). 

For the 28S gene, past fragmentation and/or long-dis-
tance colonization was inferred for clade 1.2 in the northern
region (Table 4; Fig. 2). Because the branch lengths were
short in this clade (Fig. 4), a colonization event likely
occurred (Templeton, 2004). Range expansion was inferred
for clade 2.2 in the northern region and for clade 2.1 occur-
ring across the study area (Table 4; Fig. 2). 

 DISCUSSION

In 155 samples sequenced for the mitochondrial COI
gene, we found no case of shared sequences between spe-
cies. This result differs from that found in Japanese Lepto-
carabus, which showed extensive sharing of identical mito-
chondrial haplotypes among species (Kim et al., 2000b).
The nuclear 28S also showed no trans-species polymor-
phism, despite the fairly low level of sequence variation
across species (maximum sequence difference, 2.65% for
28S vs. 12.75% for COI). These findings indicate that repro-
ductive isolation among the Korean species has been strong
enough to prevent introgressive hybridization, despite their
similar morphologies and life cycles (Kim and Lee, 1992). In
contrast, the reproductive isolation of Japanese Leptocara-
bus species either is incomplete (Kubota, 1991), or gene
flow between species occurred until recently, probably
owing to their relatively short history of divergence.

In this study, we used both mitochondrial and nuclear
genes to reveal biogeographical events of different time
spans based on the genes’ different coalescent times
(Templeton, 2002). In our previous phylogeographic study of
South Korean Coptolabrus, we used two nuclear gene
sequences, phosphoenolpyruvate carboxykinase and wing-
less, in addition to mitochondrial COI (Zhang et al., 2005).
Although these nuclear gene sequences exhibited signifi-
cant geographic variation, they showed complex allelic net-

Table 4. Inferences from nested clade phylogeographical analy-
ses for clades in Table 3 showing a significant association between
the nested clade and geographic location.

Gene

Species
Clade

Chain of
inference

Inference

Mitochondrial COI 

L. seishinensis

1.2 1-2-3-4 No Restricted gene flow with
isolation by distance

2.1 1-2-11-12 No Contiguous range expansion

2.2 1-2-11 Yes Range expansion

3.1 1-2-3-4 No Restricted gene flow with
isolation by distance

L. semiopacus 

2.5 1-2-3-5-6-13 Yes Long distance colonization,
possibly coupled with subsequent
fragmentation, or past fragmenta-
tion followed by range expansion

L. koreanus

3.1 1-19 No Allopatric fragmentation

Nuclear 28S

L. seishinensis 

1.2 1-2-3-5-15 No Past fragmentation and/or long-
distance colonization

2.1 1-2-11 Yes Range expansion

2.2 1-19-20-2-11-12 No Contiguous range expansion 

Fig. 4. Parsimony networks and nesting pattern for nuclear 28S
alleles for three Leptocarabus species. See the legend for Fig. 3 for
further explanation.
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works, with many loops and high frequencies of heterozy-
gosity, demonstrating the difficulties in using nuclear allelic
data in nested clade analyses (Zhang et al., 2005). In this
study, we used 28S as a nuclear DNA marker and detected
no putative heterozygotes in the data. The resulting net-
works were relatively simple, owing to less extensive
sequence variation. The absence of variation within individ-
uals, however, contradicts our detection of allelic diversity
within populations; this may have resulted from the unequal
amplification of a numerically dominant allele type belonging
to the highly repetitive ribosomal gene. 

Since the 28S data exhibited a low level of variation, we
could make biological inferences only for L. seishinensis
from the 28S nested clade analysis. Therefore, most of the
biogeographical inferences here rely on the mitochondrial
COI results. AMOVA indicated that the extent of genetic dif-
ferentiation among local populations within species was
greater in L. seishinensis than in L. semiopacus and L. kore-
anus for both the COI and 28S sequences. This finding
should be interpreted with caution, as sampling was unin-
tentionally more intensive in the number of localities and
specimens for L. seishinensis. The sample sizes of L. semi-
opacus and L. koreanus from northern sites were small, and
thus the molecular variance among local populations may
have been underestimated. However, the level of nucleotide
diversity for each local population appears to differ among
the species. For populations with 10 or more samples for
COI, the within-population nucleotide diversity (average
pairwise difference) was 0.16–0.56% for L. seishinensis, but
0.52–0.84% for L. semiopacus and 1.21–1.33% for L. kore-
anus. Therefore, geographic differentiation with the fixation
of haplotypes is likely more advanced in L. seishinensis than
in L. semiopacus, and especially, L. koreanus.

The distribution pattern of locally unique haplotype
clades of COI differed among the species. In L. seishinensis,
two separate clades, sei-A and sei-B, occurred in the north
and south, respectively. However, the nested clade analysis
for nuclear 28S revealed a range expansion over the south-
north region in this species. Diploid nuclear genes have
longer coalescent times than haploid mitochondrial genes
and can indicate relatively ancient events (Templeton 2002).
Therefore, the differentiation in COI may have followed the
range expansion detected by 28S. Leptocarabus koreanus
also showed north-south differentiation of COI clades.
Among the four separate clades of COI, kor-D occurred in
the north and kor-A, B, and C occurred in the south. Although
allopatric fragmentation was detected in southern clade 3.1,
diverse haplotypes co-occurred in the south. In contrast with
the other two species, L. semiopacus exhibited a shallow
coalescence of COI haplotypes (Fig. 1), with all the COI hap-
lotypes united in a single network (Fig. 3), and geographical
segregation was absent for the highest clades (Fig. 1). The
nested clade analysis detected a wide northward range
expansion of a mitochondrial clade (2.5) in this species.
Thus, the timing of recent range expansion and local differ-
entiation appears to be different among the three species.

Leptocarabus seishinensis and L. semiopacus inhabit
middle and upper elevations of mountainous areas and are
adapted to very cool habitats (Kim and Lee, 1992), whereas
L. koreanus does not appear to be cold-adapted, and
instead colonizes lower elevations. Leptocarabus koreanus,

which occurs on Geojedo, a coastal island, is an exceptional
case of an island distribution of Leptocarabus (Kwon and
Lee, 1984). Leptocarabus koreanus apparently expanded its
range southward during a glacial period, when the current
coastal islands were part of the continental peninsula. How-
ever, the fact that no Leptocarabus species occurs on Jeju,
the largest island of South Korea, 100 km off the Korean
peninsula, suggests a restricted range expansion. Jeju
Island was colonized by two Coptolabrus species by the late
Pleistocene (the estimated time of differentiation between
the Jeju and peninsular populations is 110,000–40,000
years ago; Zhang et al., 2005). Since these beetles inhabit
coastal areas, their range expansion during a regression
(low sea-level) would have been more extensive than that of
Leptocarabus. In Coptolabrus, genetic differentiation bet-
ween the northern and southern regions of the Korean pen-
insula was not clear, and COI clades revealed gene flow
along the Sobaek Mountains. This result is similar to that for
L. semiopacus, but contrasts with those for L. seishinensis
and L. koreanus, which showed differentiation between the
northern and southern regions. However, Coptolabrus spe-
cies exhibited differentiation between the eastern and west-
ern regions of the peninsula. This difference between the
two groups may stem from disparities in habitat preference
and colonization history. Coptolabrus inhabits lowlands and
lower mountain zones and disperses mainly via lowland
habitats, while Leptocarabus disperses along mountain
zones, such as the Sobaek Mountains, which run longitudi-
nally along the peninsula. Thus, the comparative phylogeog-
raphy of closely related species, as well as of related
groups, can reveal variation in the historical biogeography of
related organisms in the same region.
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