Variation in Mitochondrial DNA of Vietnamese Pigs: Relationships with Asian Domestic Pigs and Ryukyu Wild Boars

Hitomi Hongo¹, Naotaka Ishiguro²*, Takuma Watanobe², Nobuo Shigehara¹, Tomoko Anezaki³, Vu The Long⁴, Dang Vu Binh⁵, Nguyen Trong Tien⁵ and Nguyen Huu Nam⁵

¹Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
²Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
³Keio University, Tokyo 160-8582, Japan
⁴Institute of Archaeology, Hanoi, 61. Phan Chu trình, Hanoi, Vietnam
⁵Hanoi Agricultural University, Gia Lam, Hanoi, Vietnam

ABSTRACT—Mitochondrial DNA (mtDNA) sequences (574 bp) of 30 Vietnamese pigs (large and small) were examined and compared with those of 61 haplotypes from wild boars and domestic pigs from various locations in Asia. The large Vietnamese pigs had genetic links to Ryukyu wild boars in southern Japan. The small Vietnamese pigs were closely related to other East Asian domestic pigs. These results indicate that Vietnamese pigs are genetically diverse and may be descendents of wild and domestic pigs from other regions of Asia.

Key words: genetic variation, mitochondrial DNA, phylogeography, Ryukyu wild boar, Sus scrofa

INTRODUCTION

Wild boars (Sus scrofa) inhabit wide areas of Asia, Europe and North Africa, and include about 27 subspecies (Herre and Rohrs, 1977). Domestic pigs in Asia and Europe have been independently domesticated from different wild boar subspecies (Giuffra et al., 2000; Watanabe et al., 1985). Several wild boar subspecies inhabit East Asia, where domestication of pigs from local populations of wild boars occurred repeatedly from 6000 to 9000 years ago (Xu, 1950). In China and Vietnam, well-known domestic pigs such as Meishan, Jinhuas and Mong Cai have been established and used as a genetic source to develop pig breeds (Lan and Shi 1993; Watanabe et al., 1985). Vietnam is thought to be one of the points of origin of Asian domestic pigs. Vietnamese pigs show a remarkable diversity of serum amylase polymorphisms (Kurosawa et al., 1998).

Two subspecies of wild boar now inhabit Japan: the Japanese wild boar (S. s. leucomystax), on the Japanese main islands (Honshu, Shikoku and Kyushu); and the Ryukyu wild boar (S. s. riukiuanus), found only on several islands of southwestern Japan and the Ryukyu Islands (Amami-Oshima, Kakeroma, Tokunoshima, Okinawa, Iriomote and Ishigaki Islands). These 2 subspecies are distinguishable by blood groups, protein polymorphisms (Kurosawa et al., 1984; Kurosawa and Tanaka, 1988), and restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA) (Watanabe et al., 1985). Ryukyu wild boars are also distinguished from Japanese wild boars and East Asian domestic and wild pigs by analysis of mtDNA control and cytochrome b (cytb) regions (Watanobe et al., 1999). Despite the fact that the Ryukyu Islands are located between Taiwan and Kyushu Island, Japan, no wild boar genetically related to Ryukyu wild boars has been identified in Taiwan or the Asian continent (Watanabe et al., 1999, 2001). The origin of the Ryukyu wild boar is still controversial.

We examined pig skeletons stored at 2 Vietnamese research institutes. These pig skeletons were morphologically classified into 2 size groups: large and small. In the present study, to assess the genetic backgrounds of these skeletons, we examined their morphological characters and mtDNA sequence. We found that large and small Vietnamese pigs have genetic links to the Ryukyu wild boar and East Asian domestic pigs, respectively. Here, we describe the phylogenetic relationships among the Ryukyu wild boar, East Asian domestic pigs and Vietnamese pigs.

*Corresponding author: Tel. +81-155-49-5391; FAX. +81-155-49-5394; E-mail: ishiguro@obihiro.ac.jp
MATERIALS AND METHODS

Pig samples and morphological measurement

Samples were taken from 30 pig skeletons stored at the Hanoi Agricultural University and at the Anthropology section of the Institute of Archaeology of the Academy of Science in Hanoi. The specimens were designated as large or small based on skeleton sizes. To compare the body size of pigs, the occlusal length and greatest breadth of the mandibular third molar (M3) were measured by digital calipers (Table 1). When M3 was broken or missing, other mandibular or maxillary molars were measured (samples 19 and 20, AI 2, 3, 7, and 8). Samples for DNA analysis were taken from the rami of the mandibles. The specimens of the Hanoi Agricultural University were purchased on January 7, 1997, in Ba Vi Village, Ba Vi County, Ha Tay Province, near Hanoi, by a group of Japanese and Vietnamese researchers (Yamamoto et al., 1998). Although the exact origin of these bones is not known, they all appear to have been taken from recently hunted or slaughtered animals. Twenty sub-adult or adult animals (older than about 18 months) from this collection were used.

Samples stored at the Anthropology section of the Institute of Archaeology in Hanoi consisted of 10 pig skulls (7 native wild and 3 domestic) collected by one of the present authors (VTL). The wild boars (samples AI 1–5, 9, and 10) were hunted in various localities in northern Vietnam, and the 3 domestic pig skulls (sample AI 6–8) were collected near Hanoi.

Thirteen other pig samples (1 Turkish wild boar, 5 Taiwanese wild boars, and 7 Korean wild boars) were used in constructing the mtDNA database used in this study.

DNA extraction

DNA was extracted from a total of 43 pig specimens (20 from Hanoi Agricultural University, 10 from the Institute of Archaeology in Hanoi, and 13 from Turkey, Taiwan, and Korea). Genomic DNA was isolated from 0.5 to 1.0 g of bone powder, as described elsewhere (Watanobe et al., 2001). Extracted DNA was directly used as polymerase chain reaction (PCR) templates.

PCR and direct sequencing of mtDNA

The mtDNA control region was amplified by PCR using primer sets A, B, and C, designed from the mtDNA control region to amplify 258-, 305- and 229-bp segments, respectively, of the control region (Watanobe et al., 2001): primer set A, mitL76 (5'-AATATGCGACC-CCAAAATTAAACATT^39) and mitH62 (5'-CCTGCCAAGCCGG-TTGCTG^39); primer set B, mitL119 (5'-CAGTCAAATCGTGATCACC^51) and mitH124 (5'-ATGGCTGAGTCCAAGCATCC^57); primer set C, mitL104 (5'-TGGACTAATGACTAATGACCACCATC^51) and mitH1106 (5'-ACGTGTAGCGGTAGTGC^72). DNA was first activated with AmpliTaq Gold (Applied Biosystems, Foster City, CA): denaturing at 95°C for 10 min, annealing at 57°C for 1 min, and extension at 72°C for 1 min. This was followed by 50 cycles of denaturation at 94°C for 30 sec, annealing at 57°C for 30 sec, and extension at 72°C for 1 min. The PCR products were purified using a Centricor 100 micro-concentrator (Millipore, Bedford, MA), and were sequenced on an Applied Biosystems 377 DNA sequencer with BigDye Terminator Cycle Sequencing Kits (Applied Biosystems, Foster City, CA). Nucleotide sequences of 574 bp were formed by connecting the 3 DNA fragments amplified by A, B, and C primer sets. The DNA sequences were deposited in the DDBJ/EMBL/GenBank database (accession nos. AB05306-AB05322).

Alignment of DNA sequences and phylogenetic analysis

The 574-bp DNA sequences from 30 Vietnamese pig samples were constructed from fragments A, B, and C, and aligned with 61 haplotypes from a total of 304 samples of wild boars and domestic pigs. The 61 haplotypes included 6 haplotypes from Turkish, Taiwanese, and Korean wild boars sequenced in this study and 55 mtDNA haplotypes from a mtDNA database (Watanobe et al., 2001). The 304 samples included 122 Japanese wild boars, 13 Ryukyu wild boars, 77 East Asian domestic pigs, 73 European domestic pigs, 3 European wild boars, 3 Northeast Asian wild boars, 1 Turkish wild boar, 5 Taiwanese wild boars, and 7 Korean wild boars. All mtDNA sequences were aligned using GENETYX-MAC software Version 10 (Software Development Co., Tokyo, Japan).

Phylogenetic trees were constructed by the neighbor-joining (NJ) method (Saitou and Nei, 1987) using the PHYLIP program package, version 3.572 (Felsenstein, 1995), and by the maximum parsimony (MP) method using MEGA version 1.0. In the NJ tree, the numbers of nucleotide substitutions per site between haplotypes was estimated using the two-parameter method (Kimura, 1980). The confidence of each branch in the phylogeny was estimated after 1000 bootstrap replications (Felsenstein, 1985). The MP tree was constructed by the branch-and-bound searching method (Kumar et al., 1993), with bootstrap values calculated after 100 replications.

Corrected genetic differences (DX: Nei 1987) between pig groups were calculated using the equation DX=2(DX+DY)/2, where DX is the average pairwise nucleotide difference between pig groups X and Y, and DX and DY are average pairwise nucleotide differences within pig groups X and Y, respectively. The significance of differences between pig groups was tested using 1000 permutations in the ARLEQUIN program package, version 2000 (Schneider et al., 2000).

RESULTS

Morphological analysis

When the 30 Vietnamese pig skeletons were divided into groups of large and small pigs, the large pigs were found to be similar in size to wild boars found in East Asia. The large pigs had occlusal lengths of mandibular third molars (M3) ranging from approximately 34.6 mm to 44.5 mm (Table 1), which is similar in size to the wild boars of the Middle East (Flannery, 1983; Hongo and Meadow, 1998). The occlusal length of M3 of the smaller pigs ranged from approximately 23.5 mm to 30.2 mm. The size of M3 of the smaller Vietnamese pigs was similar to that of male and female Ryukyu wild boars (Table 1). However, the small Vietnamese pigs had narrow, straight frontal bones (Fig. 1). Reduction in body size and shortening of the cranium, especially of the teeth, is a characteristic of domestication (Flannery, 1983), suggesting that the small Vietnamese pigs are either primitive breed of domestic pigs or a small wild boar.

Genetic relationship of Vietnamese pigs with other wild boars and domestic pigs

DNA analysis of the 574-nucleotide sequences from a total of 43 individuals revealed 17 Vietnamese haplotypes (Viet 1 to 17), and 6 Korean, Taiwanese and Turkish wild boar haplotypes (Nos. 56 to 61). Fig. 2 shows nucleotide sequences of these haplotypes aligned with those of the representative haplotypes of domestic pigs and wild boars from various localities (Watanobe et al., 2001). Most haplotypes were found in 1 or 2 specimens, but haplotypes Viet 5 and Viet 17 were found in 8 and 4 specimens, respec-
The NJ relationship among the 17 Vietnamese haplotypes and 61 haplotypes from other parts of the world showed 2 major clusters: Asian (69.5% bootstrap value) and European (69.5% bootstrap value) (Fig. 3). The Asian cluster was divided into the Ryukyu lineage and East Asian lineages.
H. Hongo et al.

Sequences containing East Asian domestic pigs, Northeast Asian wild boars, Japanese wild boars, Taiwanese wild boars and Korean wild boars. Although bootstrap values for the Ryukyu wild boar (11.4%) and the East Asian lineage (10%) were very low (Fig. 3), the same cluster of Ryukyu wild boars with 10% bootstrap values was obtained by maximum parsimony (MP) analysis (data not shown). The separation of the Asian cluster into Ryukyu and East Asian lineages was also performed in our previous study (Watanobe et al., 2001). When the NJ tree was constructed from the present data set without the 17 Vietnamese haplotypes, the bootstrap value of the Ryukyu wild boar lineage was 68%.

The 17 Vietnamese haplotypes were distributed across 5 of the 6 groups in the Asian cluster: Viet 1 to Viet 9 in the East Asian domestic pig group; Viet 12 to Viet 16 in the Ryukyu wild boar group; Viet 17 in the Korean wild boar group; Viet 10 in the Northeast Asian wild boar group; and Viet 11 in the Taiwanese wild boar group. No Vietnamese haplotype was included in the Japanese wild boar group.

The DNA haplotypes of the large Vietnamese specimens were mostly in the Ryukyu wild boar lineage, whereas those of the small specimens were mostly in the East Asian domestic pig lineage (Fig. 3). To further examine this correlation, pairwise genetic differences between 7 pig groups (excluding Korean wild boar group) were compared (Table 2). The large Vietnamese pigs were most closely related to the Ryukyu wild boar group (2.926), whereas the small Vietnamese pigs were closest to the East Asian pig group (0.321).

![Fig. 1.](Image) Photograph of pig skulls stored at Hanoi Agricultural University. Note the difference in overall size of large (L) and small (S) specimens.

![Fig. 2.](Image) Variability of the partial mitochondrial DNA control region (574 bp). The 17 haplotypes (Viet 1 -17) from 30 Vietnamese pigs are aligned with the 6 representative haplotypes of Asian pig groups and 6 haplotypes from Korean, Taiwanese and Turkish wild boars identified in this study. Nucleotide positions are numbered according to the complete pig mtDNA described by Ursing and Arnason (1998). Dots indicate nucleotide identity with Japanese wild boar haplotype 1.
Fig. 3. Phylogenetic tree constructed by the NJ method using 574-bp fragments of the mtDNA control region for 17 Vietnamese pig haplotypes and 61 haplotypes from pig populations in various localities. Haplotype numbers (bold numbers) are the same as in Fig. 2 and a previous study (haplotypes 1 to 55 of Watanobe et al., 2001). The size of the Vietnamese pigs (L, Large; S, Small) is indicated in parentheses following the haplotype number. Bootstrap resampling was performed 1000 times, and resulting bootstrap probabilities greater than 50% are shown on the corresponding branches. Code numbers of the haplotypes are written in parentheses when they fall on the same branch as Vietnamese pig haplotypes.
Vietnamese pig populations could be a useful index for evaluation of the genetic divergence of Ryukyu wild boars from Islands from the continent by way of a land bridge. A calcualtal fauna, including hominids, likely migrated into the Ryukyu land bridge is still debated, some members of the continent 1980; Ujiie, 1986). Although the existence of the Pleistocene times in the past (Ujiie and Saito, 1974; Kizaki and Ohshiro, Islands were connected to the Chinese continent several zumi's hypothesis that Ryukyu wild boars are a unique spe- on the Ryukyu Islands. The present results support Imai- nental pig population, as are some other endemic species reported that Ryukyu wild boars may be a relic of the continent domestic pigs, possess remarkable genetic diversity. findings, indicating that Vietnamese pigs, including wild and domestic pigs, may share a common ancestor with other East Asian pigs (Fig. 3). Further morphological and genetic analyses of Vietnamese pigs will provide important information about the history of domestication of pigs in East Asia.

ACKNOWLEDGEMENTS
This study was supported by grants from the Ministry of Education, Science, Sports and Culture of Japan (Grant-in-Aid for COE Research No.10CE2005 and Grant-in-Aid for Scientific Research on Priority Areas (A), No. 1112101). We are grateful to Prof. Yoshio Yamamoto (Hiroshima University) and members of the Society for Research on Native Livestock for providing us with the opportunity to analyze pig skeletons stored at the Hanoi Agricultural University. Professor Hayao Nishinakagawa at Kagoshima University kindly allowed one of the authors to measure the modern Ryukyu wild boar mandibles in his collection. We thank Dr. Richard H. Meadow (Harvard University) and Prof. Dr. Hans-Peter Uerpmann (University of Tübingen) for their comments. We also thank the staff of Hanoi Agricultural University and the Institute of Archaeology in Hanoi for their help in carrying out this study.

REFERENCES

<table>
<thead>
<tr>
<th>Pig group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ryukyu wild boar</td>
<td>2.077</td>
<td>11.471*</td>
<td>9.515*</td>
<td>10.386*</td>
<td>11.269*</td>
<td>10.658*</td>
<td>7.201*</td>
</tr>
<tr>
<td>2 Taiwanese wild boar</td>
<td>8.933*</td>
<td>3.000</td>
<td>6.951*</td>
<td>4.720*</td>
<td>5.904*</td>
<td>6.358*</td>
<td>9.800*</td>
</tr>
<tr>
<td>3 East Asian pig</td>
<td>6.838*</td>
<td>3.813*</td>
<td>3.277**</td>
<td>5.303*</td>
<td>6.855*</td>
<td>3.451**</td>
<td>8.951*</td>
</tr>
<tr>
<td>4 Northeast Asian wild boar</td>
<td>7.647*</td>
<td>1.520*</td>
<td>1.964*</td>
<td>3.400</td>
<td>4.299</td>
<td>4.926*</td>
<td>8.855*</td>
</tr>
<tr>
<td>5 Japanese wild boar</td>
<td>8.247*</td>
<td>2.420*</td>
<td>3.232*</td>
<td>0.615</td>
<td>3.968</td>
<td>6.524*</td>
<td>10.102*</td>
</tr>
<tr>
<td>6 Vietnamese pig (S size)</td>
<td>8.128*</td>
<td>3.367*</td>
<td>0.321*</td>
<td>1.735*</td>
<td>3.049*</td>
<td>2.982</td>
<td>9.057*</td>
</tr>
<tr>
<td>7 Vietnamese pig (L size)</td>
<td>2.926*</td>
<td>5.064*</td>
<td>4.076*</td>
<td>3.918*</td>
<td>4.882*</td>
<td>4.330*</td>
<td>6.473</td>
</tr>
</tbody>
</table>

Above diagonal: Average number of pairwise differences between pig groups (D_{XY})
Diagonal elements: Average number of pairwise differences within pig groups (D_X)
Below diagonal: Corrected average pairwise difference between pig groups (D_{XY}−(D_X+D_Y)/2)
Asterisks on the numbers indicate significant difference (P<0.05).
PEL Smith, P Mortensen, Studies in Ancient Oriental Civiliza-
tion, Vol. 36, Orient Inst Univ Chicago, Chicago, pp 163–188
Giuffra E, Kijas JMH, Amarger V, Carlbory O, Jeon J-T, Anderson L
(2000) The origin of the domestic pig: Independent domestica-
tion and subsequent introgression. Genetics 154: 1785–1791
Herre W, Rohrs M (1977) Zoological considerations on the origins of
farm ing and domestication. In “Origins of Agriculture” Ed by CA
Reed, Mouton, The Hague, pp 245–279
Hayashida S (1960) Studies on wild boar and dog found at shell-
mounds in the Amami-Oshima Archipelago. Anthropol Soc Nip-
Hongo H, Meadow RH (1998) Pig exploitation at neolithic Çayönü
Tepesi (southeastern Anatolia). In “Ancestors for the Pigs: Pigs
in Prehistory” Ed by SM Nelson, MASCA Research Papers in
Science and Archaeology 15, Univ Mus Univ Pennsylvania,
Philadelphia, pp 77–98
Imaizumi Y (1973) Taxonomic study of the wild boar from the
Japanese with English summary)
of base substitutions through comparative studies of nucleotide
sequence. J Mol Evol 16: 111–120
“Natural History of the Ryukyu”, Tsukiji Shokan, Tokyo, pp 8–37
Kumar S, Tamura K, Nei M (1993) MEGA: Molecular evolution-
ary genetic analysis. Pennsylvania State University, University
Park, PA
transferrin in wild pig populations of Japan. Anim Genet 19: 31–
35
Kurosawa Y, Tanaka K, Okuda Y, Namikawa T, Yamamoto Y, Hung
H Q, Binh D V (1998) Electrophoretic variations of serum amy-
Res. Native Livestock 16:85–90
groups observed in wild pig populations in Japan. Jpn J Zooltech
Sci 55: 209–212
breeds of pigs in southwest China: An approach from mitochon-
drial DNA polymorphism. Biochem Genetics 31: 51–60
Naora N (1937) On the pig in the prehistoric age of Japan. Anthro-
Press, New York
Schneider S, Roessli D, Excof fier L (2000) ARLEQUIN ver 2000 A
software for population genetics data analysis. University of
Geneva, Geneva
Semba T (1960) On the bones of wild boar from the Shimotabar u
Shell-mound in the Haderuma Island, Louchoo Islands. Quart J
Anthropol 7: 57–60 (in Japanese with English summary)
Ursing BM, Arnason U (1998) The complete mitochondrial DNA
sequence of the pig (Sus Scrofa). J Mol Evol 47: 302–306
Ujiie H (1986) Sea bottom of the Ryukyu Arc-Bottom material and
g eology. Shinsei Tosho, Naha (in Japanese)
Ujiie H, Saito Y (1974) Holocene geological history and biological
geography of the Ryukyu Islands. Shizen Kagaku to Hakubutu-
kan 41: 131–139 (in Japanese)
Watanabe T, Hayashi Y, Ogasawara N, Tomita T (1985) Polymor-
phism of mitochondrial DNA in pigs based on restriction endo-
Watanobe T, Ishiguro N, Okumura N, Nakano M, Matsu s A, Hongo
H. Ushiro H (2001) Ancient mitochondrial DNA reveals the ori-
gin of Sus scrofa from Rebun Island, Japan. J Mol Evol 52:
281–289.
Watanobe T, Okumura N, Ishiguro N, Nakano M, Matsu s A, Sahara
M, Komatsu M (1999) Genetic relationship and distribution of
the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu
wild boar (Sus scrofa riukiuanus) analyzed by mitochondrial
DNA. Mol Ecol 8: 1509–1512
Xu Z Y (1950) The Animal Husbandry of China, Shanghai Yongx-
iang, Shanghai
animal resources in Vietnam. Rep Soc Res Nativ Livestock 16:
13–32 (in Japanese)
(Received August 28, 2002 / Accepted September 10, 2002)