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Laplace’s calculations to derive the length of the meter are described. It is noted

that any form of the method of least squares is not used in his determination of the

length of the meter. Instead, he used two equations to solve for two unknowns that

are necessary to determine the length of the meter. In Appendix 1, these two

equations are derived as the asymptotic expansion of the elliptic integral derived by

Bessel. Some estimation results obtained by the method of least squares, namely,

results of calculations by Legendre and by Stigler, are summarized in Appendix 2.
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1 Introduction

The determination of the length of the meter was a major scientific endeavor

after the French revolution. First, the meter was determined to be a ten-millionth

of the meridian quadrant of the earth. Then, a part of the meridian arc between

Dunkirk and Montjoui (Barcelona), which spans an angle of approximately ten

degrees of latitudes was measured in the famous expedition by Delambre and

Méchain; the expedition spanned seven years from 1792 (see Hellman (1936) and

Alder (2002)). The actual meter was determined on the basis of the value

calculated by Laplace (1829-1839) (p. 60, Stigler (1986)). Details are given in the

volume two of Celestial Mechanics (Laplace 1829-1839). Other calculations

include those performed by Gauss (1799), as translated by Stigler (1981, p. 466),

and Legendre (1805). Both used the French data set. These two calculations lead

to the famous priority dispute on the discovery of the method of least squares. See

Stigler (1977, 1981) and Celmi š (1998), who find flaws in the value of the

ellipticity derived by Gauss. Appendix 2 summarizes the estimation results

obtained by the method of least squares, including those of Legendre and Gauss.

Laplace’s calculations related to the determination of the meter can be found
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from p. 417 to p. 468 in volume 2 (Legendre 1805). He analyzed the data sets by

the three methods. One is the method of least absolute deviations (currently

abbreviated as LAD). Laplace’s method is different from the current LAD analysis

since the constant term is adjusted so that the sum of deviations is zero. The

second is the method of minimizing the maximum error of a regression equation.

This is used to examine the validity of the hypothesis that the shape of the earth is

ellipsoidal. The maximum error should be in a reasonable range if the earth is

indeed ellipsoidal. Neither of these methods is used to determine the length of the

meter. See Laplace (1799) for details on these two methods. The length of the

meter is determined by the third method. A nonlinear function for the length of

any meridian arc between two parallels of latitude is linearized, and a set of two

equations is derived. The Bouguer data set obtained by the expedition to Peru

(1734-1744) and the French data set were substituted in one equation, and the

ellipticity of the earth was determined. The French data set and the estimated

ellipticity were substituted in the second equation, and the length of the meridian

quadrant was calculated. See Terrall (2006) and Trystram (1979) for details on the

expedition to Peru. The French and Peruvian data sets are tabulated in Appendix

3.

The two basic equations used by Laplace are interpreted as the asymptotic

expansion of the elliptic integral of Bessel (1837) in Appendix 1.

The derived ellipticity was
1

334
, and the derived meridian quadrant from the

pole to the equator was 2565370 double toises, where toise is the French unit of

time, and the meter, which is a ten-millionth of this length (Laplace (1799), p. 464

and p. 465.), is derived as follows:

meter/0.2565370 double toises/0.513074 toise. [2035] p1�

One double toise is approximately 3.9 m.

The equation and footnote numbers in brackets and parentheses, respectively,

correspond to those in Volume 2 of Celestial Mechanics (Laplace 1829-1839).

This includes many equations and footnotes added by Bowditch, who not only

translated the book into English but also added intermediary steps to Laplace’s

calculations. Most of the symbols used are identical to those in the original, but

some have been changed to new to avoid confusion.

2 Ellipticity

Assuming that a circumference of the path traced by the meridian around the

earth is an ellipse, Laplace calculated the ellipticity and the major as well as minor

radius of the earth using the French and Peruvian data sets.

The relationship between a radius of an ellipse and a latitude y of the radius is

given as
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1,a psiny�2

in the footnote (1480) on p. 462 (This equation follows from equation [1965] by

setting h/0.). Then. the radius at the pole (minor radius) is

1,a

and that at the equator is 1 (major radius). This implies that a is the ellipticity. In

general,

a/
semimajor,semiminor

semimajor
/

k',k

k'
p2�

where the length of the semimajor and semiminor axes of the ellipse are defined to

be k' and k , respectively (See [1969d] in the book. Later, this ellipticity is

alternatively defined as e' in equation p12�.).

2.1 The first equation (Footnotes (1480) on p. 462 and (1483) on p. 464)

The meridian arc length s' of a n-degree interval with a mean latitude L is

approximated as

s' /n,
an

2
,

3

2
ancos p2L�

/n r1,
a

2 ��1,
3

2
acos p2L��. [2032b] p3�

See the figure 1 where n/y',y, and L/py'+y�/2. This is the first equation

that is used to calculate the ellipticity (This equation is derived from [1966] by

setting h/0. Equation [1966] includes cos2L, but equation [1965k] should be

referred to. See also equation p32� in Appendix 1 of this note; the equation is

derived from the elliptic integral of Bessel (1837)).

The arc length of a degree interval is obtained from equation p3� as

1°r1,
1

2
a��r1,

3

2
a�cos p2L��. [2033e] p4�

By selecting the Peruvian length per degree (s'/n, where s' and n are listed in the

table in Appendix 3) and setting the mean degree to 0°, this equation is modified as

25538.85/r1,
1

2
a��r1,

3

2
a�. �2033f] p5�

By selecting the French length per degree (s'/n) and setting the mean degree to
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46.19943°, we have

25658.28/r1,
1

2
a��r1,

3

2
a�cos p92.39886°��. p6�

The center angles of meridian arcs at Peru and France are 3.1170°and 9.6738°,

respectively (pp. 443-444). From the ratio of these two equations, it followsthat

a/
1

334
p7�

which is the value derived by Laplace. The modern value is 1/ 298.257222101.

The Peruvian data set is used only for this calculation.

3 The meridian quadrant

Bowditch used another function for the arc length between two latitudes to find

the Laplace value of the meridian quadrant. He approximated the function first in

terms of e' by terms of order O pe'� and then (confusingly) in terms of e by terms

of order O pe2� (e and e' are alternative definitions of the ellipticity. e' is the same

as a in Section 2, and has been chosen to use the same notations as Laplace.

Later, he also used r for the ellipticity.).

3.1 The second equation (Footnote (1426) on pp. 417-421)

The equations necessary to calculate the arc length between two parallels of
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latitude are derived. Let the ellipticity be expressed in parts of the polar radius k

([1969l] in p. 418)

e/
semimajor,semiminor

semiminor
/

k',k

k
/

k'

k
,1,

where k' is the equatorial radius. The function for the arc length s' between two

parallels of latitude y' and y is

s' /k �r1+
1

2
e+

1

16
e2�py',y�,

3

4
e psin p2y'�,sin p2y��

+
15

64
e2 psin p4y'�,sin p4y���. �1969o] p8�

The meridian quadrant S is as follows. which is obtained by setting y'/p/2 and

y/0 in equation p8�:

S/k
1

2
p r1+

1

2
e+

1

16
e2�, �1969u] p9�

and the mean length per degree is

s/k r1+
1

2
e+

1

16
e2�. p10�

This equals the length of a degree at
p

4
since sin p2y'�,sin p2y�/0 and similarly,

sin p4y'�,sin p4y�/0. Neglecting terms of order O pe3�, equationp8� is expressed

as

s' /s �py',y�,r
3

4
e,

3

8
e2�psin p2y'�,sin p2y��

+
15

64
e2psin p4y'�,sin p4y���. �2034d	 p11�

This is the second equation of Laplace for determining the length of the meter and

is given in the footnote (1984) of p. 465. This equation follows from equation p30�

in Appendix 1 of this note.

An alternative definition of the ellipticity e' (oblateness in parts of the

equatorial radius as mentioned in the last line on p. 416) is

e'/
semimajor,semiminor

semimajor
/

k',k

k'
/1,

k

k'
p12�
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which is the same as a of equation p2�. This can be confirmed by referring to

equation [1969p] on p. 419. Using this definition, equation p8� is arranged as

s' /k' �r1,
1

2
e'+

1

16
e'2�py',y�,

3

4
e' psin p2y'�,sin p2y��

+
15

64
e'2 psin p4y'�,sin p4y���, �1969s] p13�

the meridian quadrant S is obtained as follows, by setting y'/p/2 and y/0:

S/k'
1

2
p r1,

1

2
e'+

1

16
e'2�, �1969v] p14�

and the mean length per degree is

s/k' r1,
1

2
e'+

1

16
e'2�. p15�

This is the length of a degree at
p

4
. Equation p13� is rearranged as

s' /s�py',y�,r
3

4
e'+

3

8
e'2�psin p2y'�,sin p2y��

+
15

64
e'2 psin p4y'�,sin p4y���. p16�

This is an alternative expression of the second equation. See equation p30� in

Appendix 1 of this note.

3.2 Footnote (1484) on p. 465

The mean length s is calculated using terms of order O pe'� in equation p16�.

The estimated ellipticity of
1

334
is used hereafter. The Montjoui-Dunkirk

equation is obtained using the measured distance s' in double toise, equationp15�,

the latitudes of Montjoui (41.36245°) and Dunkirk (51.03625°), and the radian

adjustment as follows:

275792.36

s
/9.6738°,

180°

p r
3

4

1

334 � �sin p102.0725°�,sin p82.7249°�	. �2022	

p17�

This follows from equation p16�, neglecting terms of order O pe'2� and higher (This

is the same equation as the lastequation in [2024] on p. 457, with x p5�
/x p1�

/0.
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Bowditch did not use equation p11�.). By solving this equation, the mean length s

of a degree is obtained as 28503.88392. After multiplying by a factor of 90, the

meridian quadrant is obtained as 2565349.553. This differs a little from Laplace’s

number of 2565370, and Bowditch continued the calculation up to terms of order

O pe2� by using (confusingly) equation p11�.

3.3 Calculation up to terms of order O pe2�

Equation p11� is expressed as

s'/s �py',y�,
3

4

180

p
e psin p2y'�,sin p2y��+

3

8
A
180

p
e2�, p18�

A/sin2q p5�
,sin2q p1�

+
5

8
sin4q p5�

,
5

8
sin4q p1�. �2034f	

Setting y'/q p5�p51.03625°�, y/q p1�p41.36245°�, and the Monjoui-Dunkirk distance

in double toise, we obtain

275792.36

s
/9.675525339. [2034g] p19�

The mean length of a degree s is 28504.12255, and the quadrant S is 2565371.0,

[2034h] which is close to the Laplace value of 2565370 double toises. The length

of a meter, which is given by equation p1�, follows from this quadrant.

The ellipticity e is also used in the footnote (1485) on p. 466 to derive the polar

radius and equatorial radius. Using another notation for the ellipticity, r/
1

334
,

and equation p9�, the polar radius is

k/2565370/ r
p

2 � / r1+
1

2
r+

1

16
r2�/1630723.149 �2035a	 p20�

double toises, 3261446 toises, or 6356678.175 m. The oblateness is

1

334
k/

1

334
6356677/19031.96707. �2035b	 p21�

From the sum of the oblateness and k, the equatorial radius k' is calculated ass

6375709 m. Since k' is calculated as k'/k+
1

334
k in this footnote,

1

334
/

k',k

k

is confirmed.

3.4 Calculation using h' up to terms of order O Ph'2Q

The same sequence of steps as above can be applied to equation p16�, where the
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ellipticity is e', and s is defined by equation p15�. Substituting the Montjoui and

Dunkirk latitudes into equation p16�, s/28504.10996, which is closer than the

value obtained by Bowditch to the Laplace value. Laplace’s calculation could be

in terms of equation p16� and the ellipticity e'. The meridian quadrant is

2565369.896, where the Laplace value is 2565370 double toises. The length of

the meter is the same as that given in equation p1�. The length of the semimajor

axis k' is, by equation p14�, 1635612.871 double toises, 3271225.742 toises, and

6375738.669 m. The oblateness is 19089.03793, and the length of the semiminor

axis is 6356649.631 m. These values are around 30 m longer than the Bowditch

values.

4 Conclusion

The calculations carried out by Laplace (1829-1839) to determine the length of

the meter are summarized in this note. Laplace used a function for an arc length

between two parallels of latitude to calculate the ellipticity of the earth by using the

French and Peruvian data sets. The ellipticity is found to be 1/ 334. He also used

another function for an arc length between two parallels of latitude to determine

the length of the meridian quadrant by using the French data set and substituting

the ellipticity value of 1/ 334. Therefore, the ellipticity and the meridian quadrant

were determined from the two functions as two unknowns. Neither the method of

least squares nor any form of statistical estimation is used.

Laplace’s study is viewed in Appendix 1 as a calibration of the ellipticity and

the meridian quadrant in the asymptotic expansion of the elliptic integral (Bessel

(1837)). The least squares results obtained by Legendre (1805), Gauss(1799), and

Stigler (1881) are summarized in Appendix 2. The data set is tabulated in

Appendix 3.

Acknowledgement I am grateful to Stephen Stigler of the University of Chicago

and anonymous referees for their comments on this note. However, the author is
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Appendix 1. Elliptic integral derived by Bessel and equations

derived by Laplace

The elliptic integral for the arc length s' between two parallels of latitude y'

and y is

s'/k' p1,e2�Ey

y'

� 1,e2sin2qdq p22�

by Bessel [2], where k' is the length of the semimajor axis, and e/� 1,pk/k'�2 is

the eccentricity. I use e' of equation p12� for the ellipticity; then, e'/1,� 1,e2
.

This integral is developed as a sum of trigonometric functions with coefficients

that are reproduced in Appendix of Stigler (1981). I approximate this equation as

well as the coefficients of the order of e' and derive the basic equations p3� and

p16�. These two basic equations in Laplace are found to be an expansion of the

integral in p22�.

First, two coefficients are approximated as

n/
k',k

k'+k
o

e'

2
+

e'2

4
+O pe'3�, p23�
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N/1+
9

4
n2
+…o1+

9

16
e'2+O pe'3� ; p24�

then,

aoN-1 �
3

2
n+O pe'3��/

3

4
e'+

3

8
e'2+O pe'3�, p25�

a'oN-1 �
15

8
n2
+O pe'3��/

15

32
e'2+O pe'3�, p26�

and

a''oN-1 �
105

48
n3
+O pe'4��/0+O pe'3�. p27�

The integral is approximated as

s' /s �py',y�,2
180

p
asin py',y�cos py'+y�

+
180

p
a'sin p2y',2y�cos p2y'+2y�+O pe'3�� p28�

,
2

3

180

p
a''sin p3y',3y�cos p3y'+3y�+…

/s �py',y�,2
180

p r
3

4
e'+

3

8
e'2�sin py',y�cos py'+y�

+2
180

p

15

64
e'2sin p2y',2y�cos p2y'+2y��+O pe'3� p29�

/s �py',y�,
180

p r
3

4
e'+

3

8
e'2�psin2y',sin2y�

+
180

p

15

64
e'2psin4y',sin4y�+O pe'3��, p30�

which is equation p16�. Equation p3� follows by applying the Taylor expansion

180

p
sin py',y�opy',y� in equation p28� and approximating it by terms of order

O pe'�:

s' /s�py',y�,
180

p

3

2
e'sin py',y�cos py'+y��+O pe'2� p31�

/k' r1,
1

2
e'�py',y��1,

3

2
e' cos py'+y��+O pe'2�. p32�

This is equation p3�, but the length of the semimajor axis k' is in the equation.

Both basic equations p3� and p16� in the Laplace calculation are derived from

equation p29�. Therefore, his calculations can be viewed as the process of solving

s and e' from the original equation p29� . Neglecting terms of order O pe'3� ,

equation p29� is
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88448.70 /s �3.11697,2
180

p r
3

4
e'+

3

8
e'2�sin p3.11697°�

+
15

32

180

p
e'2sin p6.23394°�� p33�

for Peru since y'+y/0, and is

275792.36 /s �9.67380,2
180

p r
3

4
e'+

3

8
e'2�sin p9.67380°�cos p92.39870°�

+
15

32

180

p
e'2sin p19.34759°�cos p184.79740°�� p34�

for France. The ratio of these two quadratic equations gives e' of 1.46011211 and

2.987422-10-3
/1/334.73677. Substituting the latter value into the Peruvian

equation, the meridian quadrant obtained is 2565370.862. See result p1�. Laplace

chose the French equation for calculating s , but the results obtained using the

Peruvian equation were the same since the Peruvian and French equations form a

two-equation system with two unknowns (Laplace did not use measurements

obtained at the Cape of Good Hope, Pennsylvania, Italy, Austria, or Lapland

1829-1839, p. 444, 1799, p. 158.).

Appendix 2. Estimation by the method of the least squares

A regression equation follows from equation p31�. Using terms of order O pe'�,

equation p31� is transformed as

s'

y',y
/s,pse'�

3

2

180

p

sin py',y�cos py'+y�

y',y
p35�

os,pse'�
3

2
cos py'+y� p36�

os r1,
3

2
e'�+pse'�3sin2

y'+y

2
p37�

Stigler (1981) used equation p37� and the French data set and obtained an S of

2564801.46 and e' of 1/ 157.95. He estimated the most likely variations of this

equation, including weighted least squares.

Least squares estimation of equation p35� gives s/28497.795 and

e'/1/157.918 , and the meridian quadrant S is 2564801.564; these values are

approximately the same as the Stigler values. Adding the Peruvian measurement

to this estimation, S is 2565397.694 and e' is 1/ 320.738.

If the equation is expressed as

y',y/
s'

s
+e'

3

2

180

p
sin py',y�cos py'+y�,
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and the least squares estimation is applied, S is 2564771.04 and e' is 1/ 150.675.

Lagrange (1805, p. 78) applied this form to the French data set and obtained an S

of 2564800.2 and e' of 1/ 148. The values obtained by Gauss (1799) are 2565006

and 1/ 187, respectively, which are very different from others. See also Harter

(1974, pp. 153-154) for other values of ellipticity.

I divide the whole French interval into two sub-intervals: one is the Dunkirk-

Pantheon interval located north of Paris, and the other is the Pantheon-Montjoui

interval located south of Paris. Equation p35� is

62472.59

2.1891
/s,pse'�

3

2

180

p

sin p2.1891°�cos p49.9417°-2�

2.1891

for the Dunkirk-Pantheon interval, and

213319.77

7.4847
/s,pse'�

3

2

180

p

sin p7.4847°�

7.4847
cos p45.105°-2�

for the Pantheon-Montjoui interval. Then, e' is solved as 1/ 192.8, and s is

28499.98. The meridian quadrant S is 2564998.0. I tried other combinations of

sub-intervals as well as omitting intervals such as Pantheon-Evaux, but, I could not

obtain results any closer to those of Gauss.

Appendix 3. Data set

The Laplace data set (1829-1839, p. 443 and p. 453) or equivalently, table 1.7

of Stigler (1986, p. 59) is shown here. s' and n are the distance and an angle

between two towns, respectively. The measurements of the last two rows were

obtained from Laplace. Legendre (1805) used four pairs, namely, D-P, P-E, E-C,

and C-M, when he applied the method of least squares. The unit of distance is

double toise, which is approximately 3.89894 m.
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town latitude (y) arc length difference mean latitude

Dunkirk 51.03625° s' n/y',y L/py'+y�/2

Pantheon 48.84715° 62472.59 2.18910° 49.94170°

Evaux 46.17847° 76145.74 2.66868° 47.51281°

Carcassonne 43.21511° 84424.55 2.96336° 44.69679°

Montjoui 41.36244° 52749.48 1.85266° 42.28878°

French Total 275793.15 9.67380° 46.19935°

Peru 88448.70 3.11697° 0°


