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The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are
simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems
are solved: creep motion under a constant shear stress and its recovery motion after removing the stress,
pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed
elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated.
The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due
to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle
between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating
plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear
thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and vis-
coelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt
behaves as a viscous fluid in a region for ��R�1, and the crossover between the liquidlike and solidlike
regime takes place around ����1 �where � is the angular frequency of the plate and �R and �� are Rouse and
� relaxation time, respectively�.

DOI: 10.1103/PhysRevE.81.036308 PACS number�s�: 47.57.Ng, 47.11.St

I. INTRODUCTION

Many products in our daily life contain soft matter �e.g.,
polymeric liquids, colloidal dispersion, and liquid crystals�.
Soft matter involves complex internal degrees of freedom,
such as orientation of molecules, dispersed particles, and
phase-separated structures, and exhibits peculiar flow behav-
iors that are coupled to microscale dynamics �e.g., viscoelas-
tic flow, shear thinning or thickening, and flow-induced
phase transitions�. Investigation of the complicated flow be-
haviors of soft matter is of great importance in various sci-
ence and engineering fields, including fluid mechanics, ma-
terials science, biological science, mechanical engineering,
and chemical engineering. To predict the flow behavior of
soft matter by computer simulation is challenging from both
an academic and a practical point of view. The difficulty in
simulating soft-matter flows is due to the complicated cou-
plings between the microscopic dynamics of internal degrees
of freedom and macroscopic flow behavior. In the present
paper, we demonstrate that multiscale modeling is a promis-
ing candidate for soft-matter simulations. We solve the com-
plicated viscoelastic flow behaviors of polymer melt by us-
ing a multiscale hybrid simulation method.

Usually, when computer simulations of polymer melt
flows are performed, either computational fluid dynamics
�CFD� or molecular dynamics �MD� are employed. In the
case of CFD, mechanical properties of fluids must be mod-
eled mathematically in advance as a form of “constitutive
relationship” to be used in simulations. CFD is thus valid
only for the cases in which mechanical properties of fluids
are not too complex. Polymer melts, however, have very

complicated mechanical properties in general. For MD simu-
lations, in contrast to CFD, fluids consist of huge numbers of
molecules having arbitrary shapes. In principle, MD simula-
tion is thus applicable to any flow of any complex fluid.
However, the drawback with this type of simulation is that
enormous computational time is required to resolve the dy-
namics of all the constituent molecules. Hence, MD simula-
tion is not yet applicable to problems that concern large-scale
motions far beyond molecular size, as is demonstrated in the
present paper. In order to overcome the weaknesses of the
individual methods, we have developed a multiscale simula-
tion method that combines MD and CFD.

In our hybrid simulation method, the macroscopic flow
behaviors are solved using a CFD scheme, but, instead of
using any constitutive equations, a local stress is calculated
by using a nonequilibrium MD simulation associated with
each lattice node of the CFD simulation. The basic idea of
this type of hybrid simulation method was first proposed by
E and Engquist �1,2�, where the heterogeneous multiscale
method �HMM� is presented as a general methodology for
the efficient numerical computation of problems with multi-
scale characteristics. The HMM has also been applied to the
simulation of complex fluids �5�. The equation-free multi-
scale computation proposed by Kevrekidis et al. is also
based on a similar idea and has been applied to various prob-
lems �3,4�. De et al. have developed a hybrid method, called
the scale bridging method, which can correctly reproduce the
memory effect of a polymeric liquid, and demonstrated the
nonlinear viscoelastic behavior of a polymeric liquid be-
tween oscillating plates �6�. The methodology of the present
hybrid simulation is the same as that of the scale bridging
method. The present hybrid method is also similar to the
CONNFFESSIT approach �7–9� in that the macroscopic lo-
cal stresses are obtained from the configurations of polymer
molecules. In the present method, however, we couple a
CFD simulation with an MD simulation which involves full
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interactions of each molecule rather than the stochastic dy-
namics of single model polymers lacking any direct interac-
tions between molecules. Thus, the present method can re-
produce flow behaviors caused by the many-body effect,
which is quite important, especially for glassy polymers.

In previous works �10,11�, we investigated the efficiency
and accuracy of the hybrid method. We also clarified the
property of noise arising in the hybrid method by comparing
the results of the hybrid method with those from fluctuating
hydrodynamics. In addition, using the scale bridging method,
we have analyzed the complicated rheological properties of a
supercooled polymer melt in the viscous diffusion layer aris-
ing over the rapidly oscillating plate. In the present study,
various flow behaviors of polymer melts between parallel
plates are simulated using the scale bridging method. Creep
motion under a constant shear stress and its recovery motion
in the stress-free state, pressure-driven flows, and flows in
rapidly oscillating plates are investigated. In the creep/
recovery simulation, the evident elastic motion of polymer
melt is demonstrated. The result is also compared with that
obtained from a model constitutive relation. For pressure-
driven flow, the velocity profiles of melts with various tem-
peratures and pressure gradients are demonstrated. The
shear-thinning behavior of melts is also investigated. For the
problem of oscillating plates, the viscous boundary layer
arising over the oscillating plate and rheological properties
of the boundary layer are investigated for various tempera-
tures, plate oscillation frequencies, and strain amplitudes on
the system. The parameter sets used in the present paper are
different from those used in the previous paper �11�. In the
previous work, the velocity amplitude of the plate is speci-
fied as a parameter instead of the strain amplitude on the
system, as in the present paper.

For the problems of pressure-driven flow and oscillating
plates, the velocity profiles are quite nonuniform between the
plates. Two different characteristic length scales appear in
each problem that must be resolved. One is that of a polymer
chain, which is the scale of the MD simulation. The other is
that of the flow behavior of the melt, which is the scale of the
CFD simulation. This latter case could be, for example, the
width between the plates or the thickness of the boundary
layer arising over the oscillating plate. These problems con-
stitute important applications of multiscale modeling; it is
quite difficult to solve each problem by using a full MD
simulation because the width of the plates and thickness of
the boundary layer are much larger than the size of a poly-
mer chain.

In Sec. II of the following text, the multiscale modeling
and simulation method for the present problem are stated.
Some model constitutive relations for polymeric liquids and
the difficulties with using these in CFD simulations are also
mentioned in Sec. II. In Sec. III, the simulation results for the
creep and recovery, pressure-driven flows, and oscillating
plates are given. Rheological properties are also discussed in
Sec. III. Finally, a summary and an outlook for the hybrid
simulations are given in Sec. IV.

II. MULTISCALE MODELING AND SIMULATION
METHOD

We consider the polymer melt with a uniform density �0
and a uniform temperature T0 between two parallel plates

�see Fig. 1�a��. The upper- and lower-plate can move in the x
direction. The melt is composed of short chains with ten
beads. The number of bead particles composing each chain
in the MD simulation is represented by Nb. Thus Nb=10. All
of the bead particles interact with a truncated Lennard-Jones
potential defined by �12�

ULJ�r� = �4����/r�12 − ��/r�6� + � �r� 21/6�� ,

0 �r	 21/6�� .
� �1�

By using the repulsive part of the Lennard-Jones potential
only, we may prevent spatial overlap of the particles. Con-
secutive beads on each chain are connected by an anhar-
monic spring potential,

UF�r� = −
1

2
kcR0

2 ln�1 − �r/R0�2� , �2�

where kc=30� /�2 and R0=1.5�. The number density of the
bead particles is fixed at �0 /m=1 /�3, where m is the mass of
the bead particle. With this number density the configuration
of bead particles becomes severely jammed at a low tem-
perature, resulting in the complicated non-Newtonian viscos-
ity and long-time relaxation phenomena typically seen in
glassy polymers �13,14�.

We assume that macroscopic quantities are uniform in the
x and z directions, � /�x=� /�z=0. The macroscopic velocity
v� is described by the following equations:

�0
�vx

�t
=

��xy

�y
, �3�

and vy =vz=0, where t is the time and ��
 is the stress tensor.
For pressure-driven flow, −�P is also added to the right-hand
side of Eq. �3�, where �P is a uniform pressure gradient in x
direction. Here and afterward, the subscripts �, 
, and �
represent the index in Cartesian coordinates, i.e., �� ,
 ,�	
= �x ,y ,z	. We also assume the nonslip boundary condition on
each plate.
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FIG. 1. Schematics for geometry of problem and mesh system.
Two mesh systems are used in the present study; �i� the velocity is
given at the boundary for the problems of pressure-driven flow and
flow between oscillating plates and �ii� the stress is given at the
boundary for the problem of creep/recovery motion. The square
represents the cubic MD cell to calculate the local stress and closed
circle the grid point to calculate the local velocity.
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The constitutive relation of the stress tensor may be writ-
ten in a functional of the history of velocity gradients on the
fluid element,

��
�t,x�� = F�
��
�t�,x���t���	, with t�� t , �4�

where �
 is the velocity gradient, �
=�v� /�x
, and x���t��
represents the path line along which a fluid element has been
moving. Note that the temporal value of the stress tensor of a
fluid element depends upon the previous values of the veloc-
ity gradients of the fluid element. In the one-dimensional
problem, however, the equation simplifies to a functional in-
volving only the local strain rate �̇=�vx /�y since the macro-
scopic velocity is restricted to the x direction where the mac-
roscopic quantities are assumed to be uniform;

�xy�t,y� = Fxy��̇�t�,y��, with t�� t . �5�

Constructing a model for the constitutive relation is one of
the most important goals in complex fluid research, and
many models have been proposed �15,16�. The simplest
model for the viscoelastic motion is one proposed by Max-
well �17�, which is written as

�xy + �1
��xy

�t
= �1�̇ , �6�

where �1 is a time constant and �1 a viscosity. For the steady
state, this equation simplifies to the Newtonian fluid with
viscosity �1, while for sudden changes in stress, the time
derivative term dominates the left-hand side of the equation,
and then integration with respect to time gives the Hookean
solid with elastic modulus G=�1 /�1. The model which in-
cludes the time derivative of �̇ in the right-hand side of Eq.
�6� has also been proposed by Jeffreys �18�,

�xy + �1
��xy

�t
= �1
�̇ + �2

��̇

�t
� . �7�

This equation contains two time constants �1 �the “relaxation
time”� and �2 �the “retardation time”�. This model may re-
produce the delayed elastic motion for the sudden change of
stress. Models also exist for the multiple relaxation modes
and nonlinear simulations involving either the shear-rate de-
pendent viscosity �1��̇� or the nonlinear stress term �19,20�.
Usually, when one performs the CFD simulations for the
polymer melt flows, one chooses an appropriate model of
them empirically according to the physical properties of the
problem or the computational convenience. The time con-
stants, viscosities, and their dependence on the shear rate in
the equation must be specified in advance. However, no sys-
tematic methods exist to choose a suitable model for each
problem, and determination of time constants, viscosities,
and their dependence on the shear rate is quite difficult, es-
pecially for glassy materials. In our multiscale modeling, in-
stead of using explicit formulas for the constitutive relation,
the local stress is generated by the nonequilibrium MD simu-
lation associated with each local point. See Fig. 1�b�.

We use a common finite volume method with a staggered
arrangement for the CFD calculation, where the velocity is
computed at the node of each slit and the stress is computed
at the center of each slit. For the time-integration scheme, we

use the simple explicit Euler method with a small time-step
size �t. The local stress is calculated at each time step of
CFD by using the nonequilibrium MD simulation with a
small cubic MD cell associated with each slit according to a
local strain rate. In each MD simulation, we solve the so-
called SLLOD equations of motion with the Gaussian iso-
kinetic thermostat �21–23�,

dR j
k

dt
=

p j
k

m
+ �̇Ryj

k ex, �8a�

dp j
k

dt
= f j

k − �̇pyj

k ex − �p j
k, �8b�

where ex is the unit vector in the x direction and the indexes
k and j represent the kth polymer chain �k=1, ¯ ,Np� and
the jth bead �j=1, ¯ ,Nb� on each chain, respectively. Here
the number of polymer chains contained in each MD cell is
represented by Np. R j

k and p j
k+m�̇Ryj

k ex are the position and
momentum of the jth bead on the kth polymer chain, respec-
tively, f j

k is the force acting on the jth bead on the kth poly-
mer due to the potentials described in Eqs. �1� and �2�, and �̇
is the shear rate subjected on each MD cell, which corre-
sponds to the local shear rate at each slit of the CFD calcu-
lation. Note that, in the SLLOD equations, p j

k /m represents
the deviation of velocity of each particle from the mean flow
velocity �̇Ryj

k ex in the MD cell. The friction coefficient � is
determined to satisfy the constant temperature condition
dT /dt=0 with T=� j,kp j

k2 /3mNpNb, where � j,k represents
the summation all over the bead particles in each MD cell.
The friction coefficient � is calculated as

� = �
j,k

�f j
k · p j

k − �̇pxj

k pyj

k �/�
j,k

p j
k2. �9�

We integrate Eq. �8� with Eq. �9� by the leapfrog algorithm
�24� with using the Lees-Edwards sheared periodic boundary
condition in y direction and periodic boundary condition in x
and z directions in each cubic MD cell. The space integral of
the microscopic stress tensor reads as

��
�t� =
1

m
�
k=1

Np

�
j=1

Nb

p�j

k p
j

k − �
allpairs

dULJ���
d�

���

�

− �
k=1

Np

�
j=1

Nb dUF���
d�

���

�

, �10�

where we rewrite the momentum of the jth bead on the kth
chain, p j

k+m�̇Ryj

k ex, as p j
k. � in the right-hand side of Eq. �10�

represents the relative vector R j
k−R j�

k� between the two beads,

R j
k and R j�

k�, in the second term and the relative vector R j
k

−R j+1
k between the two consecutive beads on the same chain,

R j
k and R j+1

k , in the third term.
In the present problem we cannot assume a local equilib-

rium state at each time step of the CFD simulation since the
relaxation time of the stress may become much longer than
the time-step size of the CFD simulation �in which the mac-
roscopic motions of the system should be resolved�. In the
current simulations, the simple time-averages of the temporal
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stresses of the MD �averaged over the duration of a time step
of the CFD simulation� are used as the stresses at each time
step of the CFD calculation without ignoring the transient
time necessary for the MD system to be in steady state. See
Fig. 2. Thus the time integration of the macroscopic local
stresses �̄�
 are calculated with the microscopic stress tensor
Eq. �10� as

�̄�
�t,y� = �
t

t+�t

��
�t�,y�dt� =
1

lMD
3 �

t

t+�t

��
��;�̇�t,y��d� ,

�11�

where �t is the time-step size of the CFD simulation and lMD
is the side length of the cubic MD cell. Note that the second
argument of ��
 in Eq. �11�, i.e., �̇�t ,y�, is constant in the
integral interval. This indicates that the shear rate to which
each MD cell is subjected is also constant over a duration �t
in each MD simulation. The final configuration of molecules
obtained at each MD cell is retained as the initial configura-
tion for the MD cell at the next time step of the CFD. Thus
we trace all temporal evolutions of the microscopic configu-
rations with a microscopic time step so that the memory
effects can be reproduced correctly. Note that compared to a
full MD simulation, we can save computation time with re-
gard to the spatial integration by using MD cells that are
smaller than the slit size used in the CFD simulation. The
efficiency of the performance of the present hybrid simula-
tion is represented by a saving factor defined by the ratio of
the slit size used in the CFD simulation �x to the cell size of
the MD simulation lMD, �x / lMD. It also should be noted that,
in addition to the saving factor �x / lMD, the present hybrid
method is quite suitable as a parallel computational algo-
rithm since the MD simulations associated with each mesh of
the CFD, which cost a large part of the total simulation time,
are performed independently.

We solve the polymer melt flows in the following three
problems by using the hybrid method; �i� creep motion under
a constant shear stress and recovery after removing the
stress, �ii� pressure-driven flows and �iii� flows in rapidly
oscillating plates. In the first problem, the simple viscoelastic
behavior of the melt is demonstrated in order to verify that
the present hybrid method can reproduce the viscoelastic
motion correctly. In the second problem, we demonstrate the
peculiar velocity profile of the melt produced due to shear
thinning near the plate. We also investigate the local rheol-
ogy and the microscopic configurations at local points. In the
third problem, the viscous boundary layers arising near the
oscillating plates are resolved. The macroscopic quantities

are quite nonuniform in the boundary layers, and the local
rheological properties are also changed drastically according
to the local flow fields.

III. SIMULATION RESULTS

Hereafter, the quantities normalized by the units of length

� and time �0=�m�2 /� are denoted with a hat “ˆ.” In the
following simulations, unless otherwise specified, we fix the
time-step size of the CFD simulation �t, sampling duration
of the MD simulation tMD and time-step size of the MD
simulation �� as �t̂= t̂MD=1 and ��̂=0.001, respectively.
Thus, 1000 MD steps �M =1000 in Fig. 2� are performed in
each MD cell at each time step of the CFD computation. One
hundred chains with ten beads are confined in each cubic

MD cell with a side length l̂MD=10; thus Np=100 and Nb
=10. The density of the melt is fixed to �̂=1. The tempera-

ture of the melt is T̂0=0.2 in the creep and recovery problem,

and T̂0=0.2 and 0.4 are considered in the problems of
pressure-driven flow and oscillating plates. At this number
density and a low temperature, the polymer melt involves
complicated non-Newtonian rheology.

A. Creep and recovery

The upper and lower plates were each subjected to a con-
stant shear stress �0 at a time t=0. For a positive value of �0,
the upper plate slides right and the lower plate left in Fig.
1�a�. We set the shear stress �0 and the distance between the

plates 2H to �̂0=0.1 and 2Ĥ=800, respectively. The distance

between the plates 2Ĥ is divided into seventeen slits. The
present mesh system is shown in Fig. 1�b�-�ii�. The constant
shear stress �0 is given at the upper and lower boundaries. In
the present mesh system, 16 MD cells are used to sample the
local stresses; these cells are associated with the nodes of the
slits and the local velocities are calculated at the centers of
each slit. Thus the saving factor in the present simulation is
�x / lMD=4.7. The stress to which the plate is subjected is
transmitted inside the material immediately, and after a short
transient time, the local macroscopic quantities of the melt
are in uniform states between the plates �although they fluc-
tuate due to the noise arising from each MD cell�. The tran-
sient time �t may be estimated from Fig. 4 as �t̂�500. The
system is deformed uniformly after a short transient time.

We measure the strain of the system ��t� as

��t� =
ux�y = 2H,t� − ux�y = 0,t�

2H
, �12�

where ux�y , t� is the displacement of the melt in x direction,
which is calculated as

ux�y,t� = �
0

t

vx�y,��d� . �13�

Figure 3 shows the time evolution of the strain of the system
��t�. In the figure, the solid line shows the creep motion and
the dashed line shows the recovery motion after removing
the stresses on the plates at a time t̂=20 000. The inset

∆ t

∆ τ

M steps
∆t = M∆τ

macro level

micro level

FIG. 2. Schematic for the time-evolution scheme.
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zooms in on the creep motion. It can be seen that, in the
creep motion, the strain � increases rapidly at the beginning,
say t̂��0,5000�, and, as time passes, the time evolution of
the strain becomes linear. The rapid evolution of the strain at
the beginning of the creep motion is caused by the elasticity
of the melt. However, as this is different from the pure elastic
deformation, in which a finite strain is instantaneously ob-
tained when subjecting the stress, the strain of the melt
evolves rather continuously. This behavior demonstrates the
delayed elastic deformation of the melt. The linear evolution
of the strain corresponds to the viscous flow. The viscosity of
the melt in the linear evolution regime �1 is calculated from
the slope, which reads �̂1=1007. For comparison, the result
of the Newtonian fluid with the viscosity �̂1 is also shown in
Fig. 3, as indicated by a dotted line. Upon removing the
stress on the plate �the dashed line in Fig. 3�, the strain of the
system starts to decrease very slowly to the line of the New-
tonian fluid. This recovery motion of strain demonstrates the
evident elastic motion; the elastic strain of the melt stored in
the creep motion is being released after removing the stresses
on the plates.

The delayed elastic deformation may be described using
the Jeffreys model shown in Eq. �7�. By integrating Eq. �7�
with �xy =�0��t�, where ��t� is the step function, the time
evolution of the strain in the creep motion can be written as
follows:

��t� =
�0

G1
�1 − e−t/�2� +

�0

�1
t , �14�

where G1=�1 / ��1−�2�. The first term in the right-hand side
of Eq. �14� represents the delayed elastic deformation and the
second term represents the viscous flow. By fitting our result
to Eq. �14�, the viscosity �1, elastic modulus G1, and retar-

dation time �2 are estimated as �̂1=1007, Ĝ1=0.38, and �̂2
=13 003, respectively. The result of the Jeffreys model with

these parameter values is shown in Fig. 3 �inset� as a dash-
dotted line. It is evident that the creep motion obtained by
the hybrid simulation can be adequately fitted by the delayed
elastic motion described by the Jeffreys model �Eq. �14��.
The recovery motion for the Jeffreys model is written as

��t� = �0/G1�1 − e−t�/�2�e−�t−t��/�2 + ��, �15�

where �� is the elastic strain remaining at an infinite time.

Equation �15� is obtained by integrating the strain rate �̇�t�
�for t	 t��, which is obtained by integrating Eq. �7� with

�xy =�0�1−��t− t��� using �̇�t0� for Eq. �14�, from a time t
to infinity t=�. In the recovery motion, however, the param-
eter values in the Jeffreys model differ from those in the
creep motion. This is because the mechanical property of the
melt changes according to the state of motion. The result
from the hybrid simulation in the recovery motion may be

fitted to Eq. �15� with Ĝ1=0.14, �̂2=1.6�104, t�=20 000,
and ��=1.76 which is a value of strain obtained by the hy-
brid simulation at t=2.5�104. The result of the Jeffreys
model with these parameter values in recovery motion is
shown as the dash-dotted line in Fig. 3.

As previously mentioned, the local macroscopic quanti-
ties fluctuate due to the noises arising from each MD cell.
These fluctuations can be measured by the standard deviation
of the local stresses from the subjected stress on the plates,
which is defined by

��t� =��
−b/2

b/2 �
0

H

��xy�y�,t + ��� − �0�2dy�d��/Hb .

�16�

The time evolution of the standard deviation � with b̂=100
is shown in Fig. 4. After a short transient time �t, �t̂�500,
the local stresses fluctuate around the uniform state with a
subjected stress on the plates �0. The standard deviation in

the fluctuating states is estimated to be approximately �̂
�0.045.
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FIG. 3. The time evolution of the strain of the system, �
= �ux�y=2H�−ux�y=0�� /2H. The solid line shows the creep motion
of the melt. The dashed line shows the recovery motion of the melt
after removing the stresses on the plates at t̂=20 000. The dotted
line shows the result for the Newtonian fluid. The dash-dotted line
shows the result given by the Jeffreys model in Eq. �7�. The inset
shows the time evolution of the strain in the beginning of creep
motion.
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FIG. 4. The time evolution of the standard deviation between
the local stresses and the subjected stress on the plates �0 described
in Eq. �16�.
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Figure 5 shows a comparison of the results for the creep
motion using different lengths of the CFD time step. The
results using �t̂=1, 2, and 0.1 agree well, while the result
with �t̂=10 is completely different from the others. This fact
is consistent with the condition of the CFD time step to
resolve the momentum transport equation. In this condition,
the time-step size of the CFD calculation must be smaller
than the time it takes for the viscosity to diffuse over the
mesh distance, which may be estimated as �x̂2 / �̂1=2.2. The
result with �t̂=10 seems to reproduce the creep motion of
the melt with a different viscosity. We also note that, in the
present hybrid simulation, the time-step size of the CFD cal-
culation must also be much smaller than the stress relaxation
time in each MD cell so that the time evolution of configu-
ration of polymer chains is resolved at the CFD time step to
reproduce the memory effect correctly. The stress relaxation
time reaches larger than 104 in the LJ units for the present
problem �14�. Thus the second condition for the CFD time
step is satisfied in all cases shown in Fig. 5.

B. Pressure-driven flow

We consider a uniform pressure gradient in the x-direction
�P. Both the upper and lower plates are at rest. For the
present problem, Eq. �3� is modified to include the uniform
pressure gradient; −�P is added to the right-hand side of Eq.

�3�. The distance between the plates is set as 2Ĥ=1600. The
mesh system is the same as that shown in Fig. 1�b�-�i�. We
use 32 slits over the distance 2H. The saving factor in this
case is �x / lMD=5. Hybrid simulations are performed for the
melts using various parameter values �Table I�.

Figure 6 shows the comparison of the velocity profiles
normalized by the velocities at the middle between the plates
V0, V0=vx�y=H�, for the melt and for the Newtonian fluid.

The velocity profiles of the melt with T̂=0.4 are time-
averaged over t̂= �50 001,70 000� and those of the melt with

T̂=0.2 are time-averaged over t̂= �200 001,400 000� for

�P̂=1�10−4, t̂= �100 001,200 000� for �P̂=3�10−4, and

t̂= �50 001,100 000� for �P̂=5�10−4. The value of V0 for

each flow is also shown in Table II. It can be seen that the
velocity profiles of the melts are quite different from those of
the Newtonian fluid. As the pressure gradient increases, the
velocity gradients of the melts become steeper near the plates

and are more gradual �or rather a plateau for T̂=0.2� in the
middle region. This feature is enhanced at a low temperature

T̂=0.2. The dependence of the velocity in the middle be-
tween the plates V0 on the pressure gradient �P for the melt
is quite different from that for the Newtonian fluid. For the
Newtonian fluid, the maximum velocity V0 depends linearly
on the pressure gradient, while, for the polymer melt, its
dependence is quite nonlinear. This is especially true at a low

temperature T̂=0.2, where V0 increases more than tenfold

while the pressure gradient increases only threefold; V̂0

=0.024 to 0.31 for �P̂=1�10−4 to 3�10−4.
In Fig. 7, we show the spatial variations of the local strain

rates and local viscosities of the melts. Here, the local strain
rates are time averaged, as in the velocity profiles. The local
viscosities are calculated by dividing the time averages of the
local stresses by those of the local strain rates. It is seen that
the shear thinning occurs near the plate; i.e., the local vis-
cosities become thinner as the local strain rates near the plate
increase. The shear thinning is enhanced at a low tempera-
ture and a high pressure gradient. For a melt with a low

temperature of T̂=0.2 and a high pressure gradient of �P̂

0 5000 10000 15000 20000
0

0.5

1

1.5

2

2.5

t̂

Γ

∆t=1

∆t=0.1

∆t=2

∆t=10

FIG. 5. The comparison of the results for the creep motion with
using the different lengths of CFD time step �t. The sampling du-
ration of MD simulation in each case is taken as equal with the
time-step size of the CFD calculation, i.e., �MD=�t. The solid line
is the same as that shown in Fig. 3 �inset�.

TABLE I. Parameter values for pressure-driven flows and simu-
lation times. T is the temperature and �P is the pressure gradient of
the melt. tMax is the simulation time for each case.

T̂0 �P̂�104 t̂Max /104

Case A 0.2 1 40

Case B 0.2 3 20

Case C 0.2 5 10

Case D 0.4 3 7

Case E 0.4 5 7

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

ŷ

vx/V0

(b) T̂ = 0.4

Case D

Case E

Newtonian

0 0.2 0.4 0.6 0.8 1
0
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1000

1500

ŷ

vx/V0

(a) T̂ = 0.2

Case C

Case B

Case A

Newtonian

FIG. 6. Comparison of the normalized velocity profiles in the
steady states of the melt to those of the Newtonian fluid for the

temperature T̂=0.4 �for �a�� and T̂=0.2 �for �b��. V0 is the velocity
at the middle between the plates. The value of V0 for each flow is
shown in Table II. Note that the normalized velocity profile of the
Newtonian fluid does not depend on either the pressure gradient �P
or the temperature T.
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=5�10−4, the local viscosity near the plate decreases to less
than 3% of that in the middle. Thus, the velocity gradient
becomes quite large compared to that for the middle between
the plates, so that the flatter velocity profile shown in Fig. 6
is produced.

The microscopic configurations of polymer chains are
also investigated using the bead distribution function gs and
structure factor S defined below. These are calculated from
the microscopic configurations of bead particles obtained at
each MD cell. The bead distribution function gs�r� and struc-
ture factor S�q� are defined by

gs�r� =
1

Nb
�
j=1

Nb

���R j
k − RG

k − r��k, �17�

with RG
k =Nb

−1�i=1
Nb Ri

k, and

S�q� =
1

Nb
2 �

i,j=1

Nb

�exp�iq · �Ri
k − R j

k���k, �18�

where k is the index to represent the kth polymer chain and
Ri

k represents the position of the ith bead particle on the kth
polymer chain in each MD cell. Here, the assembled average
�¯ �k is calculated by the average over all the configurations
of polymer chains obtained at t̂=100 000+1000n�n
=0, ¯ ,100� in each MD cell. In Fig. 8, we plot the bead
distribution function gs and structure factor S for the case

TABLE II. The velocity of the melt at the middle between the
plates V0 in pressure-driven flows. For the Newtonian fluid with a
viscosity �0, V0 is written as V0=−��P�0 /2�0�H2.

T̂=0.2 T̂=0.4

�P̂�104 V̂0 �P̂�104 V̂0

1 0.024 3 1.67

3 0.31 5 3.90

5 1.84
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ŷ

ˆ̇γ
(a) local strain rate

Case A
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Case E

101 102 1030
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800

ŷ

ν̂
(b) local viscosity

FIG. 7. Spatial variation of the local strain rates �for �a�� and the
local melt viscosities �for �b��. The profiles in the lower-half space
are plotted. The profiles in the upper-half space are antisymmetric
for the strain rate and symmetric for the viscosity.
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(a) ŷ = 25

gs(r) S(q)

-2 0 2

-2

0

2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

rx
r y

qx/π

q y
/
π
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FIG. 8. The local bead distribution function gs�r� defined by Eq.
�17� in the rx−ry plane �rz=0� and local structure factor S�q� de-
fined by Eq. �18� in the qx−qy plane �qz=0� for the melt for Case B
at ŷ=25 �for �a��, ŷ=375 �for �b�� and ŷ=775 �for �c��. The contour
lines show the values 0.01+0.02k for gs and 0.05+0.2k for S with
k=0,1 , ¯ ,4 from outer to inner.
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with T̂=0.2 and �P̂=3�10−4 �Case B� at different positions.
As shown in this figure, the coherent structure is produced
near the plate, while the incoherent structure is produced in
the middle between the plates. The polymer chains are elon-
gated in the flow direction �x axis� near the plate, while, in
the middle section between the plates, bead particles are dis-
tributed rather randomly around the center of mass of each
polymer chain.

C. Oscillating plates

The lower and upper plates begin to oscillate with a con-
stant angular frequency �0 at a time t=0 as, respectively,

vw = � v0 cos��0t� , �19�

with v0=�0�0H. Here, �0 represents the strain amplitude on
the system. Thus, the strain of the system ��t� in Eq. �12� is
written as

��t� = �0 sin��0t� . �20�

We perform the hybrid simulations for the parameters listed

in Table III. The distance between the plates 2Ĥ is divided
into 64 slits. The mesh system is the same as that shown in
Fig. 1�b�-�i�. Thus 64 MD cells are associated with the cen-
ters of each slit. The saving factor �x / lMD is 5 for Case I in
Table III and 2.5 for Case II–IV in Table III.

Figures 9 and 10 show the instantaneous velocity profiles
between the oscillating plates. The thickness of the viscous
boundary layer near the oscillating plate l�, which is defined
by the specification that the amplitude of the local oscillating
velocity is 1% of that of the oscillating plate, i.e., vx�y
= l�� /v0=0.01, is also shown in each figure. Figure 9 shows
the comparison of the melt for Case I and the Newtonian
fluid with a constant viscosity �̂=228, which corresponds to
the dynamics viscosity of the model polymer melt at �0
=2� /1024 for small strain rates. The dynamics viscosity is
calculated by G� /�0 �where G� is the loss modulus in the
linear regime�. The velocity profiles are quite different from
each other. The boundary layer of the melt is found to be
much thinner than that of the Newtonian fluid �the thickness
of the boundary layer l� may be expressed as l����0 /�0 for
the Newtonian fluid�. This is caused by shear thinning; the
local loss modulus near the boundary is, as shown in Fig. 12,
much smaller than that of the linear regime. Figure 10 shows
the comparison of the velocity profiles for Cases II–IV given
in Table III. Comparison of �a� and �c� shows the effect of
the amplitude of the oscillating velocity, and comparison of

�b� and �c� shows the effect of the melt temperature. The
viscosity becomes smaller as the temperature or strain rate
increase. Thus, the boundary layers become thinner in Case
II and Case III, as compared to Case IV.

We also measure the “local” viscoelastic properties in
terms of the “local” storage modulus G� and loss modulus
G�. It should be noted that the local macroscopic quantities
oscillate with different phase retardations at each separate
point. The local moduli are calculated as follows: the discrete
Fourier transforms of the temporal evolutions of the strain �,
��t ,y�=�0

t �̇�t� ,y�dt�, and shear stress �xy during the steady
oscillation states are performed. These are written as

gk
l =

1

N
�
n=1

N

gn
l e−i2��n−1��k−1�/N �k = 1, . . . ,N� , �21�

with gn
l =g�n�t , l�x� �n=1, . . . ,N and l=0, . . . ,64�, where g

represents the strain or shear stress �e.g., g=� or �xy�. Here-
after, the subscript k is used to represent the mode in Fourier
space. The time evolution of the local strain at y=yl may be
expressed by using the Fourier coefficients for the mode of
oscillation of the plate k0, k0=1+ ��0 /2��N, as

TABLE III. The parameter values for the problem of oscillating plates and the thickness of the boundary
layer produced in each case �which is also shown in Figs. 9 and 10�.

T̂0 2� / �̂0 �0 Ĥ l̂�

Case I 0.2 1024 0.5 1600 750

Case II 0.2 256 0.5 800 200

Case III 0.4 256 0.1 800 250

Case IV 0.2 256 0.1 800 550
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θ/π

0
1/2

3/4
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3/2

7/4

l̂ν � 750

l̂ν � 1250

(a) Polymer Melt (b) Navier Stokes

ŷ

v̂x v̂x⇐⇒

⇐⇒

⇐⇒

⇐⇒

FIG. 9. The snapshots of velocity profiles in oscillating plates at
�0t=50�+�, � /�=0, 1/2, 3/4, 1, 3/2, and 7/4, for �̂0=2� /1024

and �0=0.5. �a� The result for the polymer melt with T̂0=0.2 �Case
I�. �b� The result for the Newtonian fluid. The vertical axis shows

the height ŷ and the horizontal axis shows the velocity vx. l̂� repre-
sents the thickness of the boundary layer, in which the amplitude of
the local oscillating velocity is more than 1% of that of the oscil-
lating plate, vx /v0	0.01.
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�l�t� = �l cos��0t + �l� , �22�

with �l=�Re��2�k0
l �2+Im�2�k0

l �2 and �l

=tan−1�Im��k0
l � /Re��k0

l ��. The time evolution of the local
shear stress for the mode k0 can also be expressed as

�xy
l �t� = �1

l cos��0t + �l� − �2
l sin��0t + �l� , �23�

where

�1
l = Re�2�k0

l �cos �l + Im�2�k0

l �sin �l, �24a�

�2
l = Im�2�k0

l �cos �l − Re�2�k0

l �sin �l. �24b�

Thus, the local storage modulus G� and loss modulus G� are
obtained, respectively, as G��yl�=�1

l / �l and G��yl�
=�2

l / �l. We note that, in the Fourier transformations, the
signals for 3�0 and 5�0 are also detected, although their
contributions are much smaller than that for �0. In Table IV,
we show the amplitudes of the harmonic contributions at
frequencies of 3�0 and 5�0 for the local stresses. �xy

l ��� is
the spector of local stress in the Fourier space, which is
obtained by �xy

l ���=��1
l �k�2+�2

l �k�2 with k=1+ �� /2��N.
Here, �1,2

l �k� are calculated via Eq. �24� by replacing k0 with
k. Table IV represents the amplitude of nonlinear response
with respect to the frequency. It is seen that the nonlinear
response is enhanced in the boundary layer near the oscillat-
ing plate.

Figure 11 shows the spatial variations of the amplitude of
the local strain �l and local phase retardation �l in Eq. �22�
for Cases I and II. The profiles of the amplitude of the local
strain � between the plates are similar in Cases I and II.
These amplitude profiles increase rapidly in the boundary
layer near the oscillating plate and have values much greater
than unity, ��10, in the vicinity of the plate. Thus, the
polymer chains are quite deformed near the oscillating
plates, although the amplitude of strain to which the system
is subjected via the oscillating plates is not so high, being
�0=0.5 in both cases.

Figure 12 shows the spatial variations of the local storage
modulus and loss modulus for Cases I and II. Shear thinning
is seen near the plate; both moduli G� and G� decrease near
the oscillating plate. In the close vicinity of the oscillating
plate, the storage modulus G� is much smaller than the loss
modulus G�, G��G�. Hence, the melt behaves as a viscous
fluid. The storage modulus grows rapidly with the distance
from the oscillating plate, and the viscoelastic crossover oc-
curs at ŷ�1000 for Case I and at ŷ�200 for Case II. Both
moduli attain their linear values, which are shown as dashed
and dot-dashed lines in the figures, for a distance that is far
from the oscillating plate where the local strains are less than
about 2% �see also Fig. 11�. Thus, the local rheology of the
melt can be divided into three regimes: the viscous fluid;
viscoelastic liquid; and viscoelastic solid regimes.

These regimes may be also characterized by the two “lo-
cal” Deborah numbers. One is defined by the local Rouse
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FIG. 10. The snapshots of velocity profiles in oscillating plates at �0t=100�+�, � /�=0, 1/2, 3/4, 1, 3/2, and 7/4, for �̂0=2� /256. �a�
The result for Case II, �b� that for Case III, and �c� that for Case IV. See also the caption for Fig. 9.

TABLE IV. The harmonic contributions of spectors of the local
stress �xy

l ��� for frequency 3�0 and 5�0 in Case I and II.

Case I

ŷ �xy��0� �xy�3�0� / �xy��0� �xy�5�0� / �xy��0�

25 0.938 14% 4%

125 0.428 15% 6%

525 0.106 10% 3%

725 0.075 7% 2%

825 0.066 5% 0.2%

Case II

ŷ �xy��0� �xy�3�0� / �xy��0� �xy�5�0� / �xy��0�

12.5 2.097 10% 3%

62.5 0.594 13% 5%

112.5 0.294 13% 3%

212.5 0.139 9% 1%

362.5 0.078 3% 1%
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relaxation time �R of the melt and the angular frequency of
the plate �0, DeR=�0�R, and the other is defined by the local
� relaxation time �� and the angular frequency �0, De�

=�0��. Note that the local Rouse and � relaxation times vary
according to the local strain rate �̇, �=���̇�. Figure 13 shows
the spatial variation of the local Deborah number DeR and
De�. In these, the local relaxation times �R and �� are calcu-
lated by substituting the values of �̇l, which are obtained by
Eq. �21� and equation below Eq. �22�, into the fitting func-
tions for the relaxation times for the simple shear flows ob-
tained in Ref. �14�. In Fig. 12, the positions at which the
local Deborah numbers become equal to unity are shown by
left arrows. It is seen that the melt behaves as a viscous fluid,
G��G�, for DeR�1, while the viscoelastic properties be-
come pronounced for DeR 1. This feature is also consistent
with the rheology diagram for a model polymer melt ob-
tained from Ref. �25�. It is also seen that the crossovers from
the liquidlike regime, G�	G�, to the solidlike regime, G�
	G�, take place at De��1.

IV. SUMMARY AND OUTLOOK

The behavior of supercooled polymer melts in creep and
recovery, pressure-driven flow, and oscillating flows between
the parallel plates are investigated numerically using a hy-
brid simulation of MD and CFD. In the present hybrid
method, the memories of molecular configurations of local
fluid elements are traced at the microscopic level so that the
viscoelastic motion of the melt is correctly reproduced.

The flow profiles of the melts are quite different from
those of the Newtonian fluid. In the creep simulation, we
demonstrate the simple viscoelastic motion of the melt. The
nonlinear time evolution of strain in the system at the begin-
ning of creep motion, such as the delayed elastic deforma-
tion, is reproduced. After removing the stresses on the plates,
the polymer melt recovers by an elastic strain stored in the
creep motion. We also compare the result given by the
present hybrid method with that given by the Jeffreys model
for a constitutive relation. The result from the hybrid method
may be fitted adequately with that given by the Jeffreys
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FIG. 11. The spatial variations of � and � in Eq. �22� for �a�
Case I and �b� Case II. The black square � shows � and the
diamond � shows � /�.
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FIG. 12. The spatial variations of the local moduli Ĝ� ��� and

Ĝ� ��� for �a� Case I and �b� Case II. The dashed and dash-dotted

lines show the values of Ĝ� and Ĝ� for the linear regime �Ĝ�=1.7

and Ĝ�=1.4 for Case I and Ĝ�=3.1 and Ĝ�=1.3 for Case II�, re-
spectively. The linear moduli are calculated by the nonequilibrium
MD simulations with small strains 0.005! �!0.01. The left ar-
rows on the right-side vertical axis show the positions where the
local Deborah numbers, shown in Fig. 13, are equal to unity and the
position where the local strain is �=2%.
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FIG. 13. The spatial variations of the local Deborah numbers
�defined via the Rouse relaxation time �R and the � relaxation time
��� DeR=�0�R ��� and De�=�0�

� ���. �a� The result for Case I
and �b� that for Case II. The dashed line represents De=1.
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model, although the fitting parameters in the Jeffreys model
differ from each other in the creep and recovery motions
since the mechanical property of the melt is quite sensitive to
motion states �see Fig. 3�. In pressure-driven flow, shear thin-
ning occurs near the plates, where the local shear rates are
much larger than those in the middle of the plates. Shear
thinning is enhanced as the pressure gradient increases or the
temperature decreases, so that the velocity profile is increas-
ingly flatter �as opposed to parabolic� at the middle section
between the plates �see Figs. 6 and 7�. We also investigate
the microscopic configurations of polymer chains at local
points. The polymer chains are quite elongated in the flow
direction near the plate, while in the middle section between
the plates, the configurations of polymer chains are rather
incoherent �see Fig. 8�. For oscillating plates, we clarify that
the viscosity of the melt becomes thin near the plates, and,
thus, the boundary layer of the melt also becomes much thin-
ner than that of the Newtonian fluid �see Figs. 9 and 10�. The
local rheological properties of the melt also vary consider-
ably in the viscous boundary layer, so that three different
regimes form between the oscillating plates, i.e., the viscous
fluid, viscoelastic liquid, and viscoelastic solid regimes. It is
also found that, in the viscous fluid regime, the local Debo-
rah number defined via the Rouse relaxation time and the
angular frequency of the plate is approximately less than
unity, DeR�1. The crossover between the liquidlike and sol-
idlike regimes takes place around the position where the lo-
cal Deborah number �defined via the � relaxation time and
the angular frequency� is approximately equal to unity, De�

�1 �see Figs. 12 and 13�.
Validations for the different lengths of CFD time step with

keeping the equality of the time-step size of the CFD calcu-
lation and the sampling duration of the MD simulation are
made for the creep motion �see Fig. 5�. It is found that the
results of the hybrid simulations are accurate, given that the
time-step size of the CFD computation is smaller than the
viscous diffusion time over the mesh size of the CFD calcu-
lation �i.e., �t��x2 /�1, where �1 is the viscosity in the
steady state of the creep motion�. While, for �t��x2 /�1, the
result seems to reproduce the creep motion with a different
viscosity. This fact indicates that the present hybrid simula-
tion can correctly reproduce the correlation between the local
stress calculated in each MD cell and those of the surround-
ing fluids via the momentum transport equation, given that
the time-step size of the CFD computation is smaller than the
viscous diffusion time over the mesh size of the CFD calcu-
lation.

In the present hybrid method, the long-range correlations
of the macroscopic quantities, which are difficult to treat at
the MD level, are involved at the CFD level via the macro-
scopic momentum transport equation. Thus, although each
MD simulation is performed independently at each time step
of CFD, the polymers in different MD cells are also corre-
lated with each other via macroscopic momentum transport.
The complicated mechanical properties that depend on the
microscopic configurations of polymer chains, for which it is
difficult to construct the model constitutive relation, are also
correctly involved in the CFD simulation. This is because the
microscopic motions of polymers are resolved in the MD
simulations associated with each mesh node of the CFD cal-

culation, according to the local flow field. Hence, the present
hybrid method is expected to be applicable both to problems
concerning large-scale flows, which are out-of-range of the
MD simulation, and complex flows, which do not have any
known model constitutive relations.

Compared with running a full MD simulation, the present
hybrid simulation can save computation time as to the spatial
domain �while no acceleration is involved for the temporal
domain, as we set the equality of the time-step size of CFD
calculation and the sampling duration of MD simulation,
�t= tMD, to reproduce the memory effect correctly�. The ef-
ficiency of this hybrid simulation is represented by a saving
factor defined by the ratio of the mesh size of the CFD simu-
lation �x to the cell size of the MD simulation lMD, �x / lMD.
In the present simulations, the saving factors are �x / lMD
=4.7 for the creep and recovery, �x / lMD=5 for pressure-
driven flow and Case I in the oscillation problem, and
�x / lMD=2.5 for Cases II–IV in the oscillation problem. The
fluctuations in numerical solutions are enhanced by increas-
ing the saving factor. It has been verified in a previous paper
�10� that, for simple Lennard-Jones liquids, the amplitudes of
fluctuations arising in the hybrid simulation are consistent
with the central limit theorem with respect to the saving
factors �i.e., the fluctuation intensity is proportional to the
factor ���x / lMD�3��t / tMD��. In addition to the saving factor
�x / lMD, the present hybrid method is also unique in that it is
quite suitable as a parallel computational algorithm. This is
because the MD simulations associated with each mesh of
the CFD, which represent a large part of the total simulation
time, are performed independently �43�.

We carry out benchmarks for parallel computations for
the hybrid simulation method. In the benchmarks, the creep

simulations with 2Ĥ=12 800 and �̂0=0.1 are performed for
t̂= �0,1000�. The distance between the plates 2H is divided

into 257 slits. Thus 256 MD cells with l̂MD=10 are associ-
ated with each node of the slits. The parallelization algorithm
is applied to the process of calculation of local stresses by
MD simulations. Hence, in the parallel computations with
NCPU CPUs, each CPU is assigned to the calculations of
�256 /NCPU� local stresses at each time step of the CFD. Fig-
ure 14 shows the result of the benchmarks. The parallel com-
putations are performed nearly ideal until the number of
CPUs NCPU is 128, NCPU=128. The efficiency of parallel
computation " defined by "= �t1 / tNCPU

� /NCPU, where tNCPU
is

the computational time for NCPU parallelization, is more than
99% up to NCPU=128 and 90% for NCPU=256. Paralleliza-
tion efficiency decreases a bit at NCPU=256 in the present
benchmark, as the CFD calculation and communication be-
tween CPUs increase relative to the total computation. How-
ever, for simulations of large-scale and slow dynamics, we
can improve the parallelization efficiency even for a large
number of CPUs by setting the slit size and time-step size of
the CFD calculation, �x and �t, large while keeping the
ratios �x / lMD and �t / tMD constant. This is because the ratio
of CFD calculation computation time to the total time de-
creases. Although the total computation time indeed in-
creases, the efficiency of the hybrid simulation compared to
the full MD simulation does not change. Thus, we can expect
to carry out quite high-performance parallel computations
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even for thousands or tens of thousands of CPUs.
The present paper deals only with one-dimensional prob-

lems. Future work should include the development of the

hybrid method for two- or three-dimensional simulations. In
order to extend the present method to the two- or three-
dimensional problems, we must treat the advection of each
fluid element, which has a memory of the configuration of
polymer chains. For two-dimensional or three-dimensional
flows of viscoelastic fluids, many novel simulation methods
have been proposed �9,26–30�. Incorporating the present hy-
brid technique into well-established simulation methods for
the viscoelastic flows represents an important direction for
future research. The extension of this technique to the cou-
pling of macroscopic heat and mass transfers is also impor-
tant to the investigation of various physical problems in-
volved in polymer melts.

We use the assumption of the nonslip boundary condition
at the CFD level in the present study. It is, however, well
known that the slip motion may occur at the boundary for the
polymer melt. Incorporation of hybrid simulations of MD
and CFD that are based on the “domain decomposition” into
the present hybrid technique should be useful for problems
involving interfaces, such as stick-slip motion, adhesion, and
anchoring �31–42�. By incorporating the MD simulations
that resolve direct interactions between polymers and walls
into the present method, one can reproduce the slip velocities
of the melt on the boundaries. These are important in many
systems within the fields of engineering and science. This
extension also indicates an important direction for future
work.
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