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The A-p formulation, which is widely used in electromagnetic analysis, leads to a redundant linear system of equations that includes
a substantial number of redundant degrees of freedom (DOF). We can derive a redundancy-reduced linear system of equations by elimi-
nating the redundant DOF, thereby decreasing the computation costs per iteration for iterative solvers, such as the incomplete Cholesky
conjugate gradient (ICCG) solver. This does not, however, result in a reduction in total computation time, due to significant convergence
deterioration. In this paper, we present a solution to this problem in the form of folded preconditioners. First, the theorem presented
reveals that, for any preconditioned Krylov subspace method for the original redundant linear systems, we can derive the equivalent
Krylov subspace method for the redundancy-reduced linear systems by using the corresponding folded preconditioner. As an uncom-
plicated example, the standard ICCG solver for the original redundant systems has exactly the same convergence property as the CG
solver for the redundancy-reduced systems using the folded variant of the IC preconditioner (the folded IC preconditioner). Further-
more, we discuss efficient computational procedures for the folded preconditioners and the design of Krylov subspace algorithms using
the preconditioners. A sample full-wave analysis demonstrates the good performance of a newly developed solver, the conjugate orthog-
onal conjugate gradient (COCG) method with the folded IC preconditioner. The new solver not only lowers the computation costs per

iteration by reducing the number of DOF, but also completely avoids the convergence deterioration.

Index Terms—A - method, Krylov subspace method, preconditioning, singular linear system of equations.

I. INTRODUCTION

N electromagnetic finite element (FE) analysis, the FE for-

mulation leads to a linear system of equations that includes
a substantial number of degrees of freedom (DOF). Whereas fast
linear solvers are needed to speed-up the analysis, the number
of DOF becomes extremely large in a large-scale analysis, thus
prohibiting the use of direct solvers. Possible alternatives are
the iterative methods [1], [2], such as the preconditioned Krylov
subspace (KS) methods.

Certain numerical formulations used in electromagnetic field
analysis lead to redundant (singular) linear systems of equa-
tions, which involve redundant DOF. A popular example is the
A-p (E-p) formulation [3], [4], which is widely used in mag-
neto-quasi-static or full-wave analysis. The A-p formulation
leads to a linear system of equations, in which the DOF asso-
ciated with the scalar potential ¢ are redundant. The redundant
DOF can be eliminated, for instance, by simply setting them
to zero. Another example is the A-formulation [4], [5] used in
magnetostatic analysis. The dimensions of the linear system of
equations arising from the A-formulation can be reduced by
using a tree-cotree gauge [6].

It is easy to reduce the number of redundant DOF in these for-
mulations, and this results in a reduction in computation costs
per iteration for the iterative solvers. However, in many prac-
tical applications, it is preferable to solve the redundant linear
systems of equations without a reduction in DOF, because the
redundancy reduction frequently causes significant deteriora-
tion in the convergence property of the iterative solvers [7], [8].
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References [8]-[11] provide an explanation for the poor conver-
gence caused by the redundancy reduction.

In this paper, we focus on devising an efficient preconditioned
KS method for a redundancy-reduced linear system of equa-
tions that attains similar convergence to the original precondi-
tioned KS method for the redundant linear system of equations.
For this purpose, we propose a new class of preconditioners for
the KS methods applied to the redundancy-reduced linear sys-
tems of equations: the folded preconditioners. The theorem we
present implies that, for any preconditioned KS method for a
redundant linear system of equations, we can construct a math-
ematically equivalent KS method for the redundancy-reduced
linear system of equations by using the new preconditioner. For
example, we can confirm that the incomplete Cholesky conju-
gate gradient (ICCG) solver for a redundant linear system of
equations is equivalent to the conjugate gradient (CG) solver
for the redundancy-reduced linear system of equations using the
folded variant of the IC preconditioner. Both solvers have the
same convergence property mathematically.

For any preconditioner for the original redundant linear
system of equations, the corresponding folded preconditioner
can be derived. Using the folded preconditioner, we can reduce
the redundant DOF and the computation costs with respect
to the matrix-vector multiplications and other vector compu-
tations in the KS algorithm without any deterioration in the
convergence property. Moreover, we discuss the construction
of new KS solvers using the folded preconditioners together
with efficient implementations of the special preconditioners.
Numerical tests confirm that the proposed methods are efficient.

II. REDUNDANCY-REDUCED KRYLOV SUBSPACE METHODS
AND FOLDED PRECONDITIONERS
A. Notation

Given that K is a positive definite matrix, the notation
(z,y)x = &' Ky denotes the inner product. Omission of the
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subscript means that K is a identity matrix, i.e., (z,y) = 2"y.
Similarly, ||z||x and ||z|| denote vector norms, i.e., (:1;‘,:1‘:)%2
and (z,x)'/?, respectively.

The identity matrices are denoted by 1.

B. Linear System of Equations Including Redundancy

The linear system of equations considered here is given by

Az =b, AecC™N, zec”, bec™
where A, 2, b, and N are the coefficient matrix, unknown vector,
right-hand side (RHS) vector, and a positive integer, respec-
tively. Matrix A is meant to be a sparse matrix, but the theorem
we present still holds even if A is not sparse.

Suppose that (1) is a singular system of equations, i.e.,
rank(A4) < N. The coefficient matrix in (1) can be written
as shown below, after an appropriate reordering, such that

rank(A4) = rank(A4,)

A ( A AB
“\ca, caB)

A, eC*. Be C,Lx(N—L)7 CeCcWN-DxL ()

’
where L is an integer that satisfies rank(A4) < L < N.
Consequently, the unknown and RHS vectors are written as

T = <z1>7 x € C’L, Xo € cWN-h) 3)

T2

_ bl _ br L
b <62> _ (Cb), b cC". @)

The rightmost equality in (4) should be satisfied to ensure the
existence of a solution.
Given that

T, = 11 + Bz 5

the following reduced linear system of equations is derived from

6]
Az, =b,. (6)

Once a solution for (6) has been obtained, one of the solutions
in (1) can be obtained from

=)=(%) ®
xTro 0

From the viewpoint of the number of DOF and the number of
nonzero entries in the coefficient matrix, it appears to be more
attractive to solve (6) than to solve (1). However, when con-
ventional iterative solvers are applied, the redundancy reduction
causes a significant deterioration in the convergence property
[71, [8]. Consequently, the elimination of redundant DOF does
not contribute to a reduction in the total computation time in
practical applications, such as eddy-current or full-wave anal-
ysis using the A-¢ formulation.
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C. Preconditioned Krylov Subspace Methods

By applying right and left preconditionings to (1), we obtain
the preconditioned linear system of equations

M AMoy = M1b ®)

where
y=M; z. ©)
Consider applying a specific KS method to (8). The KS

method generates the following approximate solution for y at
the nth iteration

y™ =y 4 () (10)
»(™ €span {er@), My AM M
My (AM My )"0} (11)

where y(©) is an initial approximation for g and (") denotes the
residual vector with respect to (1), i.e.,

) =b— AM,y™. (12)

Consequently, the corresponding approximate solutions z(™) =
Moy are given by

2 =30 4 () (13)

u(™ espan{Mr(O),MAM‘r(O) ..... M(AM)"_lr(O)} (14

where M = M>M;.
In the following discussion, suppose that M (the inverse of
the preconditioner) is expressed as

My Mo
M=
<M21 M22) ’
]\411 E CcL)(L7 ]\412 E OLX(N*L%

My, € C.(N—L)xL7 My, € O(N-L)x(N-L) (15)

Similarly to (13) and (14), we can illustrate that a precondi-
tioned KS method for (6) generates the approximate solutions

™ =20 4 4 (16)
u{™ €span {Mrrgo), M AMrO
Mr(Aer)"—lr@} (17)

where the L by L matrix M, and L-dimensional vector 'rsi)

denote, respectively, the inverse of the preconditioner and the

following residual vector with respect to (6)

r() = b, — Az, (18)

In this paper, to distinguish between the methods, we call

the preconditioned KS methods for (6), redundancy-reduced KS
(RR-KS) methods.
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D. Theorem Relating to Redundancy Reduction

When a preconditioned KS method expressed by (13) and
(14) is given, the following sequence of vectors can be regarded
as approximate solutions for z,

2 = 2" + Bzy" (19)

where

(n)

T V

™ = < ;n)> #Mect, Mec™rt (0
Ty

Furthermore, the residual vector with respect to (1) has the fol-
lowing form:

/()
r™ =p— Az = <Cr/(n)> (1)
where
(W = b, — A2, (22)

In this paper, when the preconditioned KS methods for (1)
and (6) generate identical approximate solution vectors, i.e., for
all n

(W = 2/ (23)
the two methods are termed equivalent. Equivalent solvers have
the same convergence property, in the sense that

(n) (n) /(n)
T rr ™ .
b_A< 0 ) ) <cr£">> ) (m’f“) e

(See (7) and (21).)

Now, we derive a crucial theorem.

Theorem 1: For any preconditioned KS method for (1), there
is an equivalent preconditioned RR-KS method, in which the
following matrix M is used as M, in (17)

M = My + M1>C + BMsy + BMy>yC. (25)
Proof: Since
(0)
o_ [ A AB My Mo e
AMr™ = (C’Ar CArB> <M21 Moo C"‘Ir(o)
A M, ri(o)
- (OAerr'r(O) (26)
we can recursively obtain
4 A M)
(AM)ir(® = (A:Mr)'s 27)
C (A M)irl”

My + My O) (A, Me)ir®
(My1 + M12C)( £)'r ) (28)

mtanyr® = "o
(May1 + M3 C)(A M)t

By substituting (28) into (14) and noting (19) and (20), we can
derive

/) =g/ 4/ (29)
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u/ (™ €span {Mfr,’r(o), Mg A Mer'©®

Mf(Aer)"_lr'r(O)} . (30)

Finally, consider an RR-KS method expressed by (16) and (17).
By choosing :1250) = z/r(o), we have

0 =), 31

Because the subspace in (17) is identical to the one in (30)

when M, = Mg, we are able to construct an equivalent RR-KS

method, by choosing uE") that satisfies

(™ = /(. (32)

(|

We call the special preconditioners using (25) the folded
preconditioners.

III. CONSTRUCTION OF RR-KS ALGORITHMS

A. Strategies Used to Construct RR-KS Algorithms With the
Folded Preconditioners

According to Theorem 1, for an arbitrary preconditioned KS
method applicable to a redundant system of equations, we can
find at least one RR-KS method using the corresponding folded
preconditioner that has the same convergence property as the
original KS method. In other words, the folded preconditioner
enables us to avoid any deterioration in convergence caused by
the redundancy reduction.

The tasks required to develop new solvers using the folded
preconditioners include choosing concrete RR-KS algorithms
that generate approximate solutions from the affine space repre-
sented by (16) and (17), and designing efficient computational
procedures for the special preconditioner.

Here, we present two strategies for constructing concrete
RR-KS algorithms with the folded preconditioners. These two
strategies do not always produce the same result.

1) Strategy to Derive the Equivalent Algorithm: Equation
(23) [and (32)] immediately presents a strategy, that derives an
equivalent algorithm from a specific preconditioned KS solver
for (1), such as the CG algorithm [12].

By choosing approximate solutions such that (23) holds, we
can generate the equivalent RR-KS algorithm that has consis-
tently the same convergence property as the original solver.
This property may be attractive when the original KS solver is
well-established.

As mentioned below, deriving the equivalent RR-KS algo-
rithm is accomplished by cautiously replacing some of vectors
based on (19). A drawback of this strategy is that the generated
algorithm does not always take a simple and sophisticated form,
which is not the case with the second strategy.

2) Simple Strategy Using the Folded Preconditioner: If we
do not adhere to the strict equivalence mentioned above, a dif-
ferent strategy may be more efficient.

Once we have decided to use a specific folded preconditioner,
a simple and natural way to search for a good approximate solu-
tion from the affine space described in (16) and (17) is to utilize
a known (sophisticated) KS method, such as the CG method.
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r®=p-4x", B, =0
forn=0,1, ...
p(n) =Mr(n) +ﬂ(n—1)p(n—1)

cz<”>::(n4r<”, ("))/(1”"),1417“))

XD = x4 G

PO ) () gy

B = ( pO) g (”“))/(Mr("),r(”))

endfor

Fig. 1. Preconditioned CG algorithm for (1).

r'”=b-4x", B,=0

T 2

forn 0,1,...
pin) __Mfr(n) ﬂ(n—l) (n-1)

a™ = (n) n) (n)
= (M, e ™) (pr 4, p™)
x(n+1) _ x‘") +a Pin)
(n+1) a™ (n)
=r" A p,
(n) (n+1) ( +1) (n) L, (n)
ﬂn (Mrn n )/(Mfrrn,rrn)
endfor

Fig. 2. RR-KS algorithm equivalent to the one in Fig. 1. [This is derived from
the first strategy and is identical to the one derived from the second strategy, that
is, the CG algorithm with a folded preconditioner for (6)].

It should be noted that the second strategy does not neces-
sarily ensure (23) nor (32) for the original preconditioned KS
solver. However, it is quite unlikely that a sophisticated KS al-
gorithm, such as the CG method, generates poor approximate
solutions compared with the algorithm derived from the first
strategy, because both algorithms search for approximate solu-
tions in the same affine space. On the other hand, the second
strategy may give a more sophisticated and efficient algorithm
than the one derived from the first strategy.

As discussed below, the first strategy derives exactly the
same algorithm as the second strategy for a certain class of KS
methods, e.g. the CG method. This is not, however, the case for
the GMRES method [13], for example.

B. Case in Which the Two Strategies Produce
the Same RR-KS Algorithm

This subsection addresses the case in which the two strategies
actually produce the same algorithm.

The CG method is one of the most sophisticated KS methods,
and can be applied to problems involving positive definite ma-
trices. Fig. 1 shows the preconditioned CG algorithm for (1).

According to the first strategy, we consider deriving an equiv-
alent RR-KS algorithm to satisfy (23) from the CG algorithm for
(1). We translate the original algorithm into a form that gives
the recurrence formula with respect to 2. = z{") + Bx{"
(see the Appendix for details). Then, we apply the following
substitutions:

(n) <_.,,;/(n) (33)
r("> — 7 (34)
p{” —pi" + Bpy (35)
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where

(n)
P = n) |
Pg )

This gives the equivalent RR-KS algorithm shown in Fig. 2.
This is identical to the standard CG algorithm for (6) using a
folded preconditioner, which is directly derived from the second
strategy.

For the CG method, we can again confirm the equality of the
two strategies from the viewpoint of the orthogonal conditions.
The preconditioned CG method for (1) finds the nth approx-
imate solution [from the affine space represented by (13) and
(14)] so as to satisfy the following orthogonal condition:

(Mir™ M (AM) @) =0, =12, .

pMect, pMecht (36)

(37)

Using My = MH , which is due to the Hermitian property for
the CG method, we obtain

(r("),M(AM)"’_lr(O)) -0, i=1,2....,n (38
that is
(Tgn) > <<M11+M12C>(Ar £) "l (0)) B
Cr™ )\ (Ma1 + Mo C)(A: Me)i=14{Y ’
1=1,2,...,n. (39)

Using C = BH, which is again due to the Hermitian property
of A, we obtain

(r§”>, Mf(Aer)i—lr]ﬁO)) —0, i=12,...,n. (40)
This is identical to the orthogonal condition that should be sat-
isfied by the preconditioned CG method for (6).

Similarly, we can also confirm that the two strategies produce
the same algorithms for the BiCG [14], COCG [15], CGS [16],
and COCR [17] methods inter alia. The CR method [18] also
belongs to this group, when it is applied to Hermitian matrices.

C. Case in Which the Two Strategies Produce Different
RR-KS Algorithms

By contrast to the previous case, the two strategies produce
different RR-KS algorithms for the CR (for non-Hermitian ma-
trices), GMRES, GCR [18], BiCGSTAB [19], QMR [20], and
TFQMR [21] methods inter alia.

In this paper, we present only the RR-KS algorithms based
on the GCR method, because these are relatively simple. Fig. 3
shows the GCR algorithm for (1) with right-preconditioning,
which means M; = [. Similar to the CG algorithm, substitu-
tions (33)—(35) give the equivalent RR-KS algorithm shown in
Fig. 4. This is different to the standard GCR algorithm with a
folded preconditioner shown in Fig. 5.

What causes the difference between the algorithms derived
from the two strategies? For example, the GCR method for (1)
with right-preconditioning finds an approximate solution from
the affine space (13) and (14) so as to minimize the residual
norm

= ‘ T

[Note (21).] This explains why the matrix 7+ C* C' also appears
in the algorithm presented in Fig. 4. Contrarily, the algorithm

H,,a(n) /r(n) (41)

I+cHc’

Authorized licensed use limited to: Kyoto University. Downloaded on April 22,2010 at 01:22:26 UTC from IEEE Xplore. Restrictions apply.



2072

r' =p— Ax”
PO = Mr®
forn=1,2, ...

a™ = (Ap("),r("))/(Ap("),Ap(”))
x(n+1) (n) (n)p(n)

=X +a
PO = ) _ ) gy
ﬂ(n’i) o (Ap(i)’ AMr("H))
- (Ap("), Ap("))

n
(n+l) __ (n+1) (n,i) (i)
pr =Mr" + Z £ p

i=0

i<n

endfor

Fig. 3. Preconditioned GCR algorithm for (1).

0) _ (0)
r,” =b —Ax,

0) _ (0)
pr _Mfrr
forn=1,2, ...

(n) _ (n) _,(n) (n) (n)
a _(Arpr g )1+c”c/(Arpr »A.p; )1+C”C
(n) (n)

r T
(n)

(n) (n)
r." —a" A p,
(i) (n+1)
(n,i) :_(Arpr ’Aerr )1+CHC

T

(Arpfn) ,A.p" )1+c”c

n
(n+1) __ (n+l) (n,i) (i)
D: - Mfrr + Zﬂ D
i=0

endfor

X =X

(n+l) __
T, =

B

(n+1)
r

+a"p

, i<n

Fig. 4. RR-KS algorithm equivalent to the one in Fig. 3. (This is derived from
the first strategy and is not identical to the one derived from the second strategy.)
r® =b - Ax®
0 _ (0)
pr - Mfrr
forn=1,2, ...
(n) _ (n) .(n) (n) (n)
a® =(4p" 1" Y4.p", 4.p")
(n+1) _ _(n) (n) (n)
X, =X ta pr
PO

B = _ (ArPr(i)a Aerrr(n+I))
(4p",4p")

n
(n+1) _ (n+1) (n,) (D)
T - Mfrr + z ﬂ D:
i=0

endfor

(n)

r

— () (n)
- rr - Arp

i<n

Fig. 5. RR-KS algorithm derived from the second strategy, that is, the GCR
algorithm with a folded preconditioner for (6).

shown in Fig. 5 minimizes ||r{™ ||. The other KS methods cited
above are also (partly) based on the minimization of the residual
norm to decide the parameters in their own algorithms. This
causes the difference between the derived algorithms.
Minimization of ||r§n) || is considered reasonable and proper
from the viewpoint of solving (6), especially when the termi-
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nating condition of an iteration is stated with respect to ||r§") [|.
It is unlikely that the sophisticated KS algorithms will choose
poor approximate solutions from the same affine space, which
is improved by the folded preconditioning. On the other hand,
the first strategy tends to lead to more complicated and expen-
sive algorithms than the second one. For example, the algorithm
in Fig. 4 needs additional matrix-vector multiplications with re-
spect to I + CH O, compared with the algorithm in Fig. 5. We
recommend the second strategy for practical use.

IV. COMPUTATIONAL PROCEDURES FOR THE FOLDED
PRECONDITIONERS AND EFFICIENCY OF RR-KS SOLVERS

A. Computational Procedures for the Folded Preconditioners

The remaining task is to design computational procedures
for the folded preconditioners. To implement the algorithms de-
scribed in the previous section, the following matrix-vector mul-
tiplication needs to be computed:

q, = Myr, = (My1 + M12C + BMyy + BMC)r, (42)

where the superscript () is omitted. Although a certain class
of preconditioners, e.g., the Incomplete LU (ILU) factorization,
does not explicitly give matrix M, we can at least obtain g, from
the following procedure.

Procedure 1: General Procedure for Folded Preconditioners:
Because M is used as the inverse of a preconditioner for (1), we
must be able to compute the following vector, whether M is
given explicitly or not

(0)-CGi ) (&)

Then, the vector g, is obtained from
4, = q; + Bg,. (44)
O

Consequently, for any original preconditioner, we can com-
pute g, with at most i) the same costs as in the original precon-
ditioning plus ii) additional costs from the matrix-vector multi-
plications with respect to B and C.

Moreover, there is still room for improvement with respect
to the individual implementations. The following subsections
address the cases in which the original preconditioners are the
ILU factorization and Gauss-Seidel (GS) method.

B. Folded ILU (IC) Preconditioner

The ILU preconditioner for (1) is given in the form

L U U
ML= 11 ) ( 11 12) '
( Loy U2

Ly
As mentioned in the previous subsection, the matrix-vector
multiplication with respect to the folded ILU preconditioner can
be implemented by Procedure 1. Moreover, we can improve it

as follows.
-1 _
= {;111 1 1
Lo —Lgy LonLyy Ly

Since
U12 ) - — < []1_11 _Ul_ll U112 U2_21 ) (46)
Uss Us,

(45)

Ly
Loy

(Un
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after some calculation, we can represent the inverse of the folded
IC preconditioner as

My = U 'L + (B — Uij'Us2) Usy' Ly (C' — Lat L7

47
This can be rewritten as
My =Ug" (I +U{,Us' Ly L) L (48)
where
L’21 = Loy — CLqq, U{z = U,y — U1 B. 49)

Using (48) and (49), we can implement the folded ILU pre-
conditioner by the following procedure.

Procedure 2: Modified Procedure for the Folded ILU Precon-
ditioner: To obtain q, = M;yr,, compute

Unn Ui, - Ly - T
U22 L121 L22 0
Un' (I+UfyUsy' Lyy Ly, ) Ly r q,
= —17—17/ 7-1 = (50
—Usgy Loy Loy Liy 1y *

using the (standard) forward and backward substitution. O

Assuming that we apply the ILU factorization prohibiting
fill-ins, L1; and Lo; have the same sparse patterns as A and
C' A, respectively. Noting (49), L}, is expected to have nearly
the same sparse pattern as Lo and similarly Ujs as Uj,. In
fact, L}, (U{,) has exactly the same sparse pattern as Loy (Ui2)
in the full-wave analysis addressed in Section VI. Overwriting
Loy (Ui2) by Ly (U1,) after the ILU factorization, we can exe-
cute the folded ILU preconditioning with nearly the same costs
as the original ILU preconditioning.

When the original coefficient matrix has the symmetric
property, we obtain the folded incomplete Cholesky (IC)
preconditioner.

C. Folded GS Preconditioner
The (forward) GS preconditioner for (1) is given by

21 In
M= (OAr L2>

where L and L are the lower triangular parts of A, and CA, B,
respectively.
The folded GS preconditioner is represented by

61y

My = L'+ BLy'C (I - A LY) . (52)

Instead of using Procedure 1, we have an alternative way of
obtaining q, = Msr,.

Procedure 3: Modified Procedure for the Folded GS Precon-
ditioner: First compute u = Ll_l‘r‘]r by a GS sweep and obtain
the vector r,, = C(L1 — A,)u. Then compute v = L2_11“,1 by
a GS sweep with respect to the matrix C'A; B. Finally, obtain
q, =u+ Bv. O

Although Procedure 3 requires matrix-vector multiplications
with respect to B, C and (L; — A,), it omits the multiplication
with respect to C' A, which is required in Procedure 1.

2073

D. Efficiency of RR-KS Solvers With Folded Preconditioners

Here we discuss the efficiency of the RR-KS solver with the
folded preconditioner. In general, it is required that the number
of reduced DOF is sufficiently large and that matrices B and C
are sparse and given explicitly, to attain better performance than
the original preconditioned KS solver for (1). If this is the case,
the performance of the RR-KS solver is promising, because it is
expected that

i) the convergence of the RR-KS solver is equal to that of
the original solver for (1), at least when we adopt the first
strategy in Section III;

ii) the RR-KS solver substantially reduces the computation
costs with respect to the matrix-vector multiplications and
other vector computations in the iteration except for the
preconditioning;

iii) the folded preconditioner using Procedure 1 involves ad-
ditional effort only to compute the multiplications with
respect to B and C, compared with the original precondi-
tioner.

Moreover, we can improve the individual implementation of
the folded preconditioners, e.g., by using Procedures 2 and 3.

More specifically, consider the CG solver for (6) with the
folded IC preconditioner (the folded ICCG solver) using Pro-
cedure 2. The folded ICCG solver is robustly superior to the
original ICCG solver for (1), because the folded ICCG solver is
equivalent to the ICCG solver for (1) and the computation cost
for the folded IC preconditioner using Procedure 2 is nearly the
same as the original IC preconditioner for (1).

V. APPLICATION TO FINITE ELEMENT ANALYSIS USING THE
A-¢p FORMULATION

In this section the application to finite element analysis is
discussed. In full-wave analysis, the A-y formulation leads to
the linear system of equations [4], in which

[Adim = /u<v x N))-(V x Np)dv

—w2/ <s+ i) N,-N,.dV (53)

Jw
and

B=aG, C=Ga". (54)
Here, j, N, v, ¢, 0, w, and G denote an imaginary unit, the
edge-element basis functions, magnetic reluctivity, electric per-
mittivity, electric conductivity, exciting angular frequency, and
the discrete gradient operator [4], [10], respectively.

Because B and C are sparse and explicitly given, we can con-
struct efficient RR-KS solvers with the folded preconditioners.
For example, we can apply the COCG solver with the folded IC
preconditioner (the folded ICCOCG solver), which has the same
convergence property as the ICCOCG solver for the original
equations arising from the A-¢ formulation. The performance
of the folded ICCOCG solver using Procedure 2 is promising,
because it surely involves less computation cost per iteration
than the standard ICCOCG solver for the original equations.

Similarly, the folded ICCG and ICCOCG methods are
efficient solvers for eddy-current analysis using the A-¢
formulation.
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Fig. 6. Dielectric loaded waveguide.

TABLE 1
NUMBERS OF DOF AND NONZERO ENTRIES OF THE COEFFICIENT MATRIX
Formulations A A-Q
Number of DOF 363,107 483,887
Number of Nonzero Entries
(Upper Triangular Part) 6,006,199 13,930,984

VI. NUMERICAL TESTS

In this section, the performance of the folded ICCOCG solver
is examined in a sample full-wave analysis. Fig. 6 shows the test
model [3], a dielectric loaded waveguide discretized by rectan-
gular elements (1/2 model). The relative permittivity of the di-
electric material is set to 6.0-j 1.0. The angular frequency is de-
cided such that kga = 2.6, where kg and a denote the free-space
wave number and one-half width of the waveguide, respectively.

Table I shows the numbers of DOF and nonzero entries of the
coefficient matrix. The number of redundant DOF in the A-¢
formulation is 120 780.

The acceleration parameter in the IC factorization is set to
1.2. Computations are executed on a Workstation (Xeon X5472,
8 GB RAM). The convergence criterion for the RR-KS solvers
is

ol <[l
where ¢ is le-8. For fair comparison
‘r’r(") ‘ <e r'r(O)H (56)

is used as the criterion for the KS solver for the redundant sys-
tems arising from the A-¢ formulation.

We apply the standard and folded ICCOCG solvers to a re-
dundant system and redundancy-reduced system, respectively.
Fig. 7 compares the convergence of ||'rr") || and ||r/r(n) || with re-
spect to both solvers. As predicted, the profiles of these norms
nearly coincide, although there is a slight difference caused by
round-off errors. This is due to the mathematical equivalence of
both solvers.

Table II depicts the performance of the iterative solvers, in-
cluding the COCG solver for the redundancy-reduced system
using the standard IC preconditioner (“ICCOCG (A)” in the
table). Whereas the reduction in DOF causes significant deteri-
oration in the convergence property when using the standard IC
preconditioner, the folded IC preconditioner counteracts the ef-
fect of the redundancy-reduction on the convergence property.
This results in the good performance of the new solvers with
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Fig. 7. Comparison of convergence behavior of the ICCOCG method for the
A-p formulation and the folded ICCOCG method. Note that this figure plots
the relative residual norms with respect to the redundancy-reduced system. See
(56).

TABLE II
PERFORMANCE OF THE ITERATIVE SOLVERS
Folded Folded
Solver ICgOCG IC?/(\))CG ICCOCG ICCOCG
(A-0) (Procedure 1) | (Procedure 2)
Number of 302 1772 302 302
Iterations
Elaps?s) Time 98.8 265.5 89.4 81.8
Maximum
Memory 663 356 542 524
Consumption (550) (260) (444) (427)
MB)

Figures in parentheses express the memory consumptions (calculated values)

required to execute the preconditioned COCG solvers.

respect to elapsed time. The new solvers can also reduce the
memory consumption, compared with the ICCOCG solver for
the A-p formulation. Moreover, it is confirmed that the perfor-
mance of the folded ICCOCG solver is improved considerably
by using Procedure 2.

VII. CONCLUSION

We have proposed the folded preconditioners: a new class
of preconditioners for the RR-KS methods, which is useful for
solving redundant linear systems of equations efficiently. The
theorem we present reveals that, for an arbitrary preconditioned
KS method for the original redundant systems, the equivalent
RR-KS method can be constructed using the corresponding
folded preconditioner. We can reduce the redundant DOF and
the computation costs with respect to the matrix-vector multi-
plications and other vector computations in the KS algorithm,
without any deterioration in the convergence property.

The folded preconditioner can be implemented efficiently ir-
respective of the original preconditioner, if matrices B and C
are sparse and given explicitly. Furthermore, for specific pre-
conditioners, such as the IC factorization, we are able to improve
the implementation. For instance, the folded IC preconditioner
needs approximately the same computational effort as the orig-
inal IC preconditioner.

For practical applications, the folded ICCG and ICCOCG
methods are promising solvers for full-wave or eddy-current
analysis. These methods provide a solution to the problem of
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Fig. 8. Rewritten CG algorithm.
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Fig. 9. Equivalent algorithm to the one in Fig. 8, which gives the recurrence
formula with respect to /(") = z'™ + Bz{").

poor convergence in conventional solvers caused by the redun-
dancy reduction in the A-p formulation.

The folded preconditioners have a strong relationship to the
explicit/implicit error correction methods [11] and the singu-
larity decomposition technique [22]. In fact, Procedure 3 in
Section I'V can be regarded as a kind of explicit error correction
method based on the GS method. The relationship between
these methods will be discussed in future works.

APPENDIX

To derive the algorithm in Fig. 2 using the first strategy, we
rewrite the CG algorithm (Fig. 1) as shown in Fig. 8, using (20),
(21), and (36).
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Noting C = B, which is due to the Hermitian property for
the CG method, we obtain the algorithm shown in Fig. 9. This
gives the recurrence formula with respect to zi™ = z\™ +

B.'Eg") in the form of an RR-KS algorithm.
Finally, applying substitutions (33)—(35), we obtain the algo-
rithm presented in Fig. 2.
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