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Our previous paper proposed two frameworks for iterative linear solvers: the implicit and explicit error correction methods. In this
paper, we discuss the convergence property of these methods. A formula we derive explains the reasonability of the auxiliary matrix
that Kameari suggested for thin elements. Additionally, an enhanced auxiliary matrix is devised for thin elements, in which the material

property changes discontinuously.
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1. INTRODUCTION

HE finite element (FE) method is widely used in the nu-

merical analyses of electromagnetic fields. Since the FE
formulation generally leads to a large sparse linear system of
equations, using an efficient iterative solver is effective in re-
ducing the computation costs of an FE analysis.

Previously, some of the authors proposed two comprehensive
frameworks for iterative linear solvers: the implicit error cor-
rection (IEC) and explicit error correction (EEC) methods [1],
[2]. The singularity decomposition technique (SDT), proposed
by Kameari in [3], can be regarded as a special case of the IEC
method. A common characteristic of these methods is the use of
special auxiliary matrices.

As discussed in [1] and [2], the IEC and EEC methods con-
tain well-known valuable methods, e.g., the A — ¢ method and
the multigrid method. Moreover, several numerical examples
[1]-[3] have shown that the IEC and EEC methods using ap-
propriate auxiliary matrices accelerate convergence of iterative
linear solvers. Nevertheless, from a theoretical viewpoint, little
is known about the general relationship between the property
of auxiliary matrices and the speed of convergence of iterative
solvers.

In this paper, we derive a formula, which gives an estimate
of the convergence radius of the IEC method based on a Jacobi
iteration. The formula explains the reasonability of the auxiliary
matrix, which is proposed in [3] for thin elements.

In addition, we devise a particular auxiliary matrix for
sequences of thin elements, in which the material property
changes discontinuously. The performance of the IEC and EEC
solvers are compared in 2-D and 3-D numerical tests.

II. IMPLICIT AND EXPLICIT ERROR CORRECTION METHODS

A. Implicit Error Correction Method

Consider solving the following linear system of equations:
Az =b. (1)
Here, A, x, and b denote an m x m coefficient matrix, the un-
known vector, and the right-hand side vector, respectively.
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The IEC method leads to the following linear equations:

A AB Y, _ b1 _ b 2

CA D Yo - b2 - b2 ( )

where B, C, D, and by represent auxiliary matrices and the

auxiliary vector. The sizes of B, C, and D are m X n, n X m,

and n X n, respectively. When a solution is obtained for (2), the

solution & in (1) is given by ¥y, + BYy,.

When we choose C = BT, D = BT AB, and by, = BTb, the

IEC formulation (2) corresponds to the SDT [3]

A AB v\ _ (b _ [ b
(afa otin) (3) = (5) = ()

Equations (2) and (2a) can be recognized as generalized
forms, which contain the A — ¢ method and the implicit
correction multigrid method [1]-[3].

Suppose A is a symmetric positive-definite matrix. Without
loss of generality, let the diagonal entries of A and BT AB be
unity. Then, the Jacobi iteration for (2a) gives the approximate
solution z for (1), which satisfies

@ = zuew)lla <||(I - A-BBTA)|| , <V2max(a+8,7).
(% = 2)l 4
3)
(See Appendix I for the proof.) Here
o= sup || Av]|| 4 “)
vER(B),||v||a=1
B = sup  ||(I-BBTA)v|| ,
vER(B),||v||a=1
= sup ||B(I—-BTAB)u|, )
| Bulla=1
vy=  sup  [[(I- A, (©)

veS(B),|lv]la=1
where I, R(B), and S(B) denote the unit matrix, the range of
B, and the A-orthogonal complement of R(B), respectively.

Inequality (3) helps us construct B appropriately. Rapid con-
vergence is achieved by setting B so as to decrease «, (3, and ~,
although this is not a necessary, but sufficient condition.

Note that I — A in (6) is the iteration matrix of the ordi-
nary Jacobi method. In general, the slow convergence compo-
nents ¥ in iterative methods for (1) have the characteristic that
|lv” Av]|/||vTv]| is small. [Although the components for which
|lvT Av||/||vTv|| is large also cause a deterioration in the con-
vergence of the Jacobi method, this is overcome, for example,
by conjugate gradient (CG) acceleration.] If we can ensure that
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Fig. 1. Thin elements in 2-D edge-element analysis.
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Fig. 2. Thin elements in 3-D edge-element analysis.

R(B) represents approximately the subspace spanned by the
slow convergence components, it is expected to decrease o and
. Stated concisely, this corresponds to the strategy referred to
in [3], to ensure that the || BT AB;|| are small (before diagonal
scaling). Here, B; is the ¢th column vector of B.

Meanwhile, we focus additional attention on decreasing 3
in (5). This is sufficiently achieved by ensuring that BT AB is
approximately equal to the unit matrix (after diagonal scaling).

B. Explicit Error Correction Method

An iterative solver using the EEC method, and which is based
on the Gauss—Seidel method, is described below. A single step
of the iterative solver can also be used as a precontitioner for a
Krylov subspace solver.

i) Update the approximate solution vector £ by a Gauss—
Seidel sweep for (1).
ii) Execute an EEC procedure [1].
— Compute f = BT (b — Ax).
— By applying a Gauss—Seidel sweep to (BT AB)u = f,
obtain u that is an approximation of w.
— «— T + Bu.

iii) If the iteration does not converge, go to i).

This algorithm can be regarded as an efficient implementation
of the Gauss—Seidel iteration for (2a). See Appendix II.

III. AUXILIARY MATRIX FOR THIN ELEMENTS

Fig. 1 shows an example of thin elements in a 2-D edge-
element analysis. The auxiliary matrix B proposed in [3] is
constructed by grouping long parallel edges, i.e., (1,2, 3) and

1 1 1 0

(4,5,6)
T
000 ... 0

B_B€_<000 11 1 0 ... 0>' 7
As mentioned in [3], the above matrix ensures that the
||BF AB;|| are small. In the 2-D case, furthermore, we can
confirm that off-diagonal entries of BT AB are exactly zero,
which leads to 3 = 0.

For the 3-D case, Fig. 2 shows a typical example. According
to (10), BT AB is given by

2 1 0 0 2 -2 -2 2

Vo 1 2 0 0 Az | =2 2 2 =2
3010 0 2 1 3 -2 2 2 =2
0 0 1 2 2 =2 =2 2
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Fig. 3. Thin elements, in which material property changes discontinuously.
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Fig. 4. Thin elements in nodal element analysis.
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-2 2 2 —2
+Vnmd I K ()

2 -2 -2 2

Although the matrix above is not a diagonal matrix, the off-
diagonal entries are small compared with the diagonal entries,
if d and Az are enough small.

Moreover, for the problem addressed in the next section, we
propose an advanced strategy for sequences of thin elements,
in which the material property changes discontinuously. A new
auxiliary matrix B, is constructed by grouping edges, which are
included by the same material. An example is shown in Fig. 3.
For nodal element analyses, we use a matrix B,,, a simple ex-
pansion of (7), as shown in Fig. 4.

IV. NUMERICAL RESULTS

This section presents the numerical results, which demon-
strate good performance by the IEC and EEC solvers in FE
analyses involving thin elements. The following iterative solvers
are used.

e Two IEC solvers [for (2a)]:

— diagonal preconditioned CG (DPCG) solver;
— incomplete Cholesky CG (ICCG) solver.

* An EEC preconditioned CG (PCG) solver [for (1)]. A sym-
metrized preconditioner based on the method described in
Section II-B is used.

It should be noted that the DPCG method can be regarded as
the Jacobi preconditioned CG method. From the viewpoint of
the speed of convergence, the DPCG method invariably outper-
forms the Jacobi method.

When B = O, the IEC and EEC methods reduce to the con-
ventional methods. In all tables, “O” indicates the results with
respect to the conventional method, although the implementa-
tions are actually independent.

The 2-D and 3-D analyses are coded using M-code and
Fortran, respectively. MATLAB R2008a and the Intel Fortran
compiler 9.1 (/O2) are used. All computations are executed on
a PC (Windows XP Professional x64, Core 2 Duo E6400, 2 GB
RAM). The CG iterations are terminated when the relative
residual norm with respect to (1) is less than 10710,

A. The 2-D Test Problem

Fig. 5 illustrates the 2-D test model and quadrilateral FE mesh
with integer parameters k& = 16 and [ = 4. The Dirichlet
boundary condition is imposed on the right and upper sides of
the analyzed domain, and the Neumann boundary condition is
imposed on the left and lower sides.
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Fig. 5. The 2-D test problem and FE mesh (k = 16 and [ = 4).

TABLE I
CONDITION NUMBER OF DIAGONAL PRECONDITIONED COEFFICIENT
MATRIX FOR (2a) (2-D ANALYSIS)

Auxiliary Matrix B | Condition Number
0 1516
B, 592.8

Quadrilateral FE mesh (k = 16 and [ = 16) is used.

TABLE II
NUMBER OF CG ITERATIONS (2-D TEST ANALYSIS)

— . IEC EEC

Auxiliary Matrix B DPCG | 1ICCG | PCG
5 660 | 147 | 195
B, 365 89 111

Quadrilateral FE mesh (k = 64 and [ = 64) is used.

1) Nodal Element Formulation: Finite nodal element formu-
lation leads to the following coefficient matrix:

Q

where the N; are the nodal element basis functions.

2) Effect of IEC Formulations: Whereas (3) gives useful
hints for the choice of B, the convergence of IEC solvers de-
pends strongly on the condition number of the coefficient matrix
of (2a). Here, the condition number is defined by the ratio of the
maximum and minimum nonzero eigenvalues. Table I shows the
condition number, which is given by eigenvalue analysis when
k = 16 and | = 16. It can be confirmed that the IEC formula-
tion using B,, decreases the condition number significantly.

3) Performance of the Iterative Solvers: Table II gives the
convergence of the iterative solvers in 2-D analysis when k = 64
and | = 64. It shows the advantage of the IEC and EEC solvers
in convergence characteristics.

The elapsed time depends strongly on the specific implemen-
tations when they are coded in M-code. However, the essential
computation costs of the solvers per iteration are nearly propor-
tional to the number of nonzero entries in the coefficient matrix,
which is shown in Table III. Table III implies that the increase
in the computation costs per iteration is moderate.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 3, MARCH 2009

TABLE IIT
NUMBER OF DOFS AND NONZERO ENTRIES IN THE COEFFICIENT
MATRIX (2-D TEST ANALYSIS)

Auxiliary Number of Nonzero Entries
Matrix B Number of DOFs in the Coefficient Matrix
0 8,125 70,489
B, 8,189 96,139

Quadrilateral FE mesh (k = 64 and ! = 64) is used.
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Fig. 6. The 3-D test model.
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Fig. 7. FE mesh around the magnetic material. (a) Analysis 3-D1. (b) Analysis
3-D2.

B. The 3-D Test Problem

Fig. 6 shows the 3-D test model. The Neumann boundary con-
dition is imposed on the xy-planes, while the Dirichlet boundary
condition is imposed on the other boundaries. The analyzed do-
main is discretized by a hexahedral FE mesh.

Fig. 7 illustrates the FE mesh around the magnetic mate-
rial. As shown in Fig. 7, two analyses are carried out with dif-
ferent thicknesses of the magnetic material, denoted by 3-D1
and 3-D2, respectively.

1) Edge-Element Formulation: Let the N; be edge-element
basis functions. Finite edge-element formulation derives the fol-
lowing coefficient matrix:

[A]U = /l/(v X NL) . (V X N])dV
Q
2) Performance of the Iterative Solvers: Tables IV and V

show the convergence of the iterative solvers in analyses 3-D1
and 3-D2, respectively. Whereas the IEC and EEC solvers using

(10)
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TABLE IV
NUMBER OF CG ITERATIONS (ANALYSIS 3-D1)

Auxiliary IEC EEC

Matrix B | DPCG ICCG PCG
0 1280 (60) | 571 (115) | 348 (50)
B, 271(16) | 134(86) | 79 (16)

Figures in parentheses denote the elapsed time (seconds)

TABLE V
NUMBER OF CG ITERATIONS (ANALYSIS 3-D2)

Auxiliary IEC EEC

Matrix B DPCG ICCG PCG
0 1320 (60) | 614 (119) | 383 (52)
B, 568 (32) 306 (119) | 209 (40)
B.~ 274 (16) 131 (82) 79 (16)

Figures in parentheses denote the elapsed time (seconds)

TABLE VI
NUMBER OF DOFS AND NONZERO ENTRIES OF THE COEFFICIENT
MATRIX (ANALYSIS 3-D1 AND 3-D2)

Auxiliar . f i
Matri 5 | Number of DOFs | Ny M icient Matr v
[ 438,204 14,033,916
B. 447,524 17,827,356
B.~ 452,404 18,297,724

B, drastically improve the convergence properties in analysis
3-D1, the effect deteriorates in analysis 3-D2. Table V demon-
strates that the new auxiliary matrix B/ is effective in acceler-
ating the convergence in analysis 3-D2.

Figures in parentheses in Tables IV and V give the elapsed
time. The DPCG (IEC) and PCG (EEC) solvers with suitable B
outperform the other solvers with respect to the elapsed time.
The PCG (EEC) solver has the additional advantage of not
having to store the matrix AB in memory, which is different
for the IEC solvers. The number of DOFs and nonzero entries
in the coefficient matrix are given in Table VI.

V. CONCLUSION

In this paper, we present a formula, which provides helpful
hints for determining the auxiliary matrix in the IEC and EEC
methods. The formula reveals the reasonability of the method
proposed in [3].

In addition, we suggest an enhanced strategy for determining
the auxiliary matrix for thin elements. Numerical tests demon-
strate the effect of the new strategy.

In our numerical tests, the EEC preconditioned CG solver
based on the Gauss—Seidel method, which is regarded as an ef-
ficient implementation of an IEC solver, outperforms the other
solvers, including the SDT.
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APPENDIX |

When all diagonal entries are unity, the Jacobi iteration for
the linear equations (2a) is expressed as follows:
Y _ Y < - A(y, + By,) ) (A1)
) T \@) T\BTB-AG +BR))
Here, y; and y, are the approximate solutions for ¥, and y,,
respectively. Replacing 9, + By, by 2, we have
2"V =2+ (I + BBT)(b— Az) (A.2)
that is
z— 2"V =(I—-A—- BBTA)(z - 2). (A.3)
From (A.3), the left inequality in (3) is immediately obtained.
Letw = u+ v, u € R(B), and v € S(B). Noting that
BT Av = 0 and ||w||, = ||ul|3 + ||v|%, we have
|(I-=A=BB"A)|| , = sup (I -A-BB" Ayw|| , /|lwl|.o

< [+ A)llulla +vlvl.4)
S Il + Dol

< VZmax(a + f,7).
In [4, eq. (3)], “\/2” is incorrectly dropped.

(A4)

APPENDIX II

Let L1 and L be the lower triangular parts of A and BT AB,
respectively. The Gauss—Seidel method 1for (2a) is expressed by

()= (3)+ (2, )
Yo Y2 BTA Ly
( b= Al + Bys) ) . @B
BT [b— Ay, + By,)]
The inverse matrix lnl (B.1) is given by

L O B Lt O
(BTA Lz) _<—L;13TAL;1 L;l)' (B-2)

After some calculation, we have
x—2"" = (I - BL,'BTA) (I - Li'A) (z — 2)
:GQGl(.’E—Z). (B3)
The matrix G; is identical to the iteration matrix of the
Gauss—Seidel method for (1), and G2 corresponds with the
EEC procedure referred to in Section II-B.
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