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CFL Conditions for Finite Integration Methods on Triangular Meshes
Tetsuji Matsuo and Takeshi Mifune
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In this paper, the CFL conditions of several 2-D finite integration (FI) methods on regular triangular meshes are derived. A piecewise
uniform element allows a time step that is twice as large as that for the Whitney element.

Index Terms—Electromagnetic wave, finite integration (FI) technique, piecewise uniform element, stability, Whitney element.

I. INTRODUCTION

F INITE INTEGRATION (FI) methods [1]–[4] enable
the use of unstructured meshes in electromagnetic-wave

analysis. Several methods to construct permittivity and re-
luctivity matrices have been proposed [3]–[6] because they
greatly affect the efficiency and accuracy of FI methods. The
resultant efficiency depends on the computational cost of per-
mittivity matrix inversion and on the Courant condition or the
Courant–Friedrichs–Lewy (CFL) condition, which gives the
maximum time step for stable computation [7].

Previous works have derived the CFL condition for
nonorthogonal mesh [8]–[10]. However, the CFL criterion
is not explicitly deduced from the permittivity and reluctivity
matrices. Accordingly, although several conditionally stable
FI methods have been proposed, their CFL criteria are not
obtained explicitly.

This paper derives CFL conditions for several 2-D FI methods
using triangular meshes, where the Whitney basis functions [3]
and piecewise uniform basis functions [4] are used to construct
the permittivity matrix.

II. CFL CONDITION

The time stepping of the FI method is written as the following:

(1)

(2)

Therein, denotes the vector of line integrals of the electric
field along the edges of primal mesh, is the vector of magnetic
fluxes across the faces of primal mesh, is the curl matrix (the
incidence matrix between faces and edges) for primal mesh,
is a time step, is the (global) permittivity matrix, and is the
(global) reluctivity matrix.

From (1) and (2), the following recursion formula for is
obtained:

(3)
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Fig. 1. Triangle element.

where is a unit matrix and is given by

(4)

The matrices and should be positive-definite symmetric for
the FI scheme to be conditionally stable [9], [10].

For to be bounded for , the CFL condition is derived
as [10]

(5)

where is the maximum eigenvalue of .

III. FI METHODS FOR TRANSVERSE ELECTRIC (TE) WAVE

COMPUTATION ON TRIANGULAR MESH

A. Local Permittivity Matrix

This paper discusses the CFL condition for the 2-D FI
method using triangular primal mesh with barycentric dual
mesh. Fig. 1(a) shows a triangle element used for FI analysis
of a TE wave, where the solid segments
are edges of primal mesh (subscript “ ” means “local”). The
dashed segments denote faces of dual mesh within ,
which have a height of unit length along the perpendicular
direction. The permittivity and permeability are assumed to
be uniform within each of the triangular elements.

The line integrals of the electric field along the primal edges
are denoted by , while the electric fluxes across
the dual faces within are denoted by [see Fig. 1(b)]. The
relation between and is written as

(6)

where
(7)
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is the local permittivity matrix.
Several methods have been proposed to construct .
The Whitney basis functions are written as

(8)

where are barycentric coordinates corresponding to node
and is a cyclic permutation of . They give the
local permittivity matrix [3] as

(9)

The piecewise uniform basis functions [4] are
written as

(in )
(in )
(in )

(10)

where is a subdomain within as shown in Fig. 1(a) and
is a cyclic permutation of . They give the local

permittivity matrix as

(11)

where is Kronecker’s delta.
Both and have an eigenvector of which

eigenvalues are and , respectively, where

(12)

(see Appendix). Therein, is the element area and .
The corresponding eigenspace is denoted by .

The orthogonal complementary space of is denoted by
, which consists of the (local) electrostatic field

. Both the Whitney basis functions and piecewise uni-
form basis functions give a uniform electric field when

. It is known [4] that for a uniform electric field,
and yield the same given by

(13)

The subspace affects some eigenvalues of because
means only that the electric field is uniform within

the element and does not mean curl globally. However, it
is expected that is more important than for the CFL
condition.

Reference [3] proposed a diagonalized local permittivity ma-
trix given as

(14)

B. Global Permittivity Matrix

The global permittivity matrix is constructed by assembling
.
For simplicity, the regular triangular mesh as depicted in

Fig. 2 is used with periodic boundary conditions along both

Fig. 2. Regular triangular mesh with periodic boundary condition: (a) edges
and (b) faces of primal mesh.

directions for eigenvalue analysis. The permittivity and
permeability are assumed to be uniform everywhere.

The Whitney basis functions or piecewise uniform basis func-
tions give an eigenvalue or , respectively, for which the
eigenvector is .

Reference [6] proposed an approximate method yielding ,
which is constructed by assembling locally inversed . When

is approximately composed by assembling the local inversed
or , it also has an eigenvalue or , respectively, for

which the eigenvector is .
On the other hand, the reluctivity matrix is given as

(15)

C. CFL Condition

The matrix has an eigenvalue given as

(for Whitney basis function)

(for piecewise uniform basis function)
(16)

for which the eigenvector is .
This is because

...

...

...
...

...

...

(17)

Numerical eigenvalue analysis for shows that is given
by .

For example, the eigenvalues of are computed numerically
for 2-D regular meshes consisting of equilateral
triangle elements and isosceles right triangle elements. For sim-
plicity, and are assumed to be 1 F/m and 1 H/m, respectively.
The edge length of equilateral triangle elements is 1 m while
each of the isosceles right triangle elements has two sides of 1
m and a side of m. Fig. 3 plots the distributions of eigen-
values for the two meshes, where the eigenvalues are ordered
according to their magnitudes. Fig. 3(a) also plots the eigen-
value distribution given by the diagonalized permittivity matrix
for which the local matrix becomes for equi-
lateral triangle elements. The equilateral triangle elements give
maximum eigenvalues of 48 and 12 for the Whitney and piece-
wise uniform basis functions, respectively. The isosceles right
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Fig. 3. Eigenvalue distribution: (a) equilateral triangle elements and (b)
isosceles right triangle elements.

TABLE I
COEFFICIENT � IN (19) FOR THE CFL CONDITION

triangle elements obtain maximum eigenvalues of 36 and 9. All
maximum eigenvalues agree with (16).

Consequently, the CFL condition is obtained as

(for Whitney basis function)

(for piecewise uniform basis function)

(18)
where . The piecewise uniform basis functions allow
a time step that is twice as large as that for the Whitney basis
functions.

For example, the equilateral triangle elements and isosceles
right triangle elements give the CFL condition as

(19)

where is the (shortest) edge length. The coefficient is listed in
Table I, where LI denotes the approximation of local inversion.
The CFL condition for the diagonalized is also shown for the
equilateral triangle elements. An isosceles right triangle mesh
cannot use diagonalization because its is not strictly positive
definite. The CFL condition for the finite-difference time-do-
main (FDTD) method is also shown for a square mesh with edge
length .

Fig. 4. Two initial conditions (a) and (b).

TABLE II
TIME STEP ����� (IN METERS)

Fig. 5. Distribution of � along � � � at � � �� � 14 m obtained from initial
condition (a).

IV. WAVE PROPAGATION COMPUTATION

For simplicity, variables are transformed as and
to rewrite (1) and (2) as

(20)

(21)

For numerical examination of the CFL condition, the regular
mesh with equilateral triangle elements is used
with periodic boundary conditions similar to the mesh in Fig. 2.
The edge length of a triangle element is set to 1 m. Two initial
conditions shown in Fig. 4(a) and (b) are used with at

.
Table II lists examined time steps to confirm the CFL condi-

tion, where the row “stable” gives time steps that allow stable
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Fig. 6. Wave propagation along � � � from initial condition (b): (a) with the Whitney basis functions, (b) with the piecewise uniform basis functions, and (c) with
the diagonalized permittivity matrix.

computation while the row “unstable” lists time steps that re-
sult in divergence. They agree with the CFL condition shown in
Table I.

Fig. 4 shows the distributions of along at
14 m, which is obtained from the initial condition (a), where the
distribution given by the FDTD scheme is also shown under a
similar simulation condition for comparison. The construction
of hardly affects the distribution when the initial condition is
smooth.

Fig. 5 depicts the wave propagation along , which re-
sults from the initial condition (b). The propagation of the pulse
wave is largely affected by the construction of . The Whitney
basis functions yield a small wave for which the propagation
speed is larger than . This unphysical wave comes from a small
eigenvalue of the local permittivity matrix. However, the un-
physical wave disappears when a sufficiently small time step is
used. The piecewise uniform basis functions yield an oscillation
around , which remains even if the time step is small.

V. CONCLUDING REMARKS

The CFL conditions of 2-D FI methods on regular triangular
meshes are derived, where the Whitney basis functions and
piecewise uniform basis functions are used to construct the
permittivity matrix. The piecewise uniform basis functions
allow a time step that is twice as large as the Whitney basis
functions.

This paper compares only time-stepping stabilities of several
FI methods under uniform permittivity and permeability. The
accuracy of wave propagation analysis should be examined for
nonuniform media.

APPENDIX

From (11), it is obvious that has an eigenvector
for which the eigenvalue is .

From (8), becomes

(22)

(23)

where or . From (9), (22), and (23)

(24)

is obtained. Similarly, it holds that

(25)

From (24) and (25), has an eigenvector for which
the eigenvalue is .
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