Half-life estimation of the first excited state of 229Th by using α-particle spectrometry

H. Kikunaga, 1,2,* Y. Kasamatsu, 3 H. Haba, 2 T. Mitsugashira, 4 M. Hara, 5 K. Takamiya, 6 T. Ohtsuki, 7 A. Yokoyama, 8 T. Nakanishi, 8 and A. Shinohara 1

1 Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
2 Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan
3 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
4 Institute for Material Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
5 International Research Center for Nuclear Materials Science, Tohoku University, Ouari-machi, Ibaraki 311-1313, Japan
6 Research Reactor Institute, Kyoto University, Kamatori, Oska 590-0494, Japan
7 Laboratory of Nuclear Science, Tohoku University, Sendai, Miyagi 982-0826, Japan
8 Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan

(Received 22 May 2009; published 21 September 2009)

To search for a direct-decay signal from the isomer 229Th$.^m$, α-particle spectra of 229Thm^+ produced from 93 mg of 233U have been measured by using a rapid and high-resolution α-particle spectrometry, which can distinguish α lines of 229Thm from those of its ground state. Although α events were not obtained in the expected energy region for 229Thm^+ with the exception of those derived from 229Th, we can estimate that the half-life of 229Thm^+ is shorter than 2 h at 3σ confidence level under the chemical condition of chloride or hydroxide.

DOI: 10.1103/PhysRevC.80.034315 PACS number(s): 21.10.Tg, 23.35.+g, 23.60.+c, 27.90.+b

I. INTRODUCTION

The first excited state of 229Th (229Thm) is a very interesting nuclear isomer. A number of decay studies of 233U have shown that 229Thm^+ has the excitation energy of several electron volts [1–4]. Because of its extremely low energy comparable with the binding energy of valence electrons, the half-life of 229Thm^+ is expected to vary with the interaction between the nucleus and its orbital electron [5]. Therefore, the half-life reflects not only the nuclear structure but also its chemical environments.

The values of the half-lives of 229Thm obtained in previous works [6,7] appeared to be inconsistent. The first experimental data of the half-life was reported by Browne et al. [6] in 2001. Based on γ-ray spectrometry, they searched for the growth components on the ground state of 229Th (229Thg) from 229Thm^+ using approximately 25 g of 233U. From unsuccessful observation of such growth, they concluded that the 229Thm^+ half-life should be <6 h or \geq20 d in 2 M HCl. In our previous works [7,8], we attempted to produce 229Thm^+ in nuclear reactions and to measure its half-life by α-particle spectrometry. Although a sufficient quantity of counting statistics was not obtained, the half-life of 229Thm^+ in fluoride was estimated to be 13.9 ± 3 h [7]. More accurate determination of the half-life of 229Thm^+ would improve the experimental design for measuring its nuclear processes including direct photon emission from 229Thm^+ [9].

The previous studies indicate that the half-life of 229Thm^+ is around several hours or less and hence we have optimized our experiment to measure the half-life below one day. In this study, we used α-particle spectrometry to estimate the half-life of 229Thm^+ produced from the α decay of 233U whereas 229Thm was produced in nuclear reactions in our previous works. The detailed characteristics of the α decay of 233U are well known and the data up to 1996 are summarized in Ref. [10]. More recent data have been presented by Barci et al. [2], who investigated the nuclear level scheme of 229Th in detail by γ-ray spectrometry. These data indicate that the ground state of 233U, assigned as the $5/2^+$ [633] Nilsson state, decays to the ground state of 229Th, $5/2^+$ [633], with the branching ratio of about 87%. All the rest decay to the excited states of 229Th, so that higher than 2.1% [11] of the total decay of 233U is expected to decay via the level of 229Thm^+, $3/2^+$ [631]. Therefore, the initial α-particle spectrum of 229Thm^+ separated from 233U is expected on the assumption that the sample consists of 98% of 229Thg and 2% of 229Thm^+ as shown in Fig. 1. The solid line shows the spectrum of 229Thg estimated from Ref. [10] and the dashed line shows the 229Thg spectrum with the component of 229Thm^+ estimated by Dykhne and Tkalya [11] on the assumption that the transition from 229Thm^+ to 229Thg is negligible. The transition from 229Thg to the 149.96-keV level, $3/2^+$ [631], of 229Ra is expected to be the favored α decay, whereas 229Thg decays mainly to the 236.25-keV level, $5/2^+$ [633], and has α branching of 0.16% [10] to the 149.96-keV level of 229Ra. There is a large difference between those spectra in the energy region around 4930 keV. Note that the difference would be detected even if 229Thm^+ has such a long life as not to distinguish the signal from 229Thm by a radioactive decay or growth [6,7]. Moreover, it is possible to estimate the half-life even if the difference is not observed because of a short life, because the initial amount of 229Thm is able to be estimated from that of 233U. Therefore, comparing the high-resolution spectrum of "freshly" isolated 229Thm^+ from 233U with the spectrum of 229Thg is efficient for estimation of the half-life of 229Thm^+. The method of rapid source preparation for high-resolution α-particle spectrometry [12] has been applied to the present study.

*hkiku@chem.sci.osaka-u.ac.jp
II. EXPERIMENTAL PROCEDURES

For the purification of the 233U sample, we carried out an anion-exchange procedure. The U_3O_8 sample containing 93 mg of 233U was supplied from the International Research Center for Nuclear Materials Science, Tohoku University. Generally, a 233U sample contains 232U produced in subnuclear reactions as an impurity. The 233U sample used in this experiment contains 3.17 ppm of 232U. The oxide sample of 233U was dissolved in 12 M HCl and then precipitated by adding 15 M NH$_4$OH as ammonium diuranate. After a centrifugal separation, the precipitate was dissolved in 10 mL of 12 M HCl and the solution was passed through an anion-exchange column [Muromac(R) 1 × 8, 200–400 mesh, 8 mm φ × 50 mm], which adsorbed uranium. The resin adsorbing uranium was washed with 25 mL of 9 M HCl to eliminate thorium. The uranium was eluted from the column with 10 mL of 2 M HCl and precipitated by adding 15 M NH$_4$OH as ammonium diuranate. The precipitate was separated from the supernatant by centrifugation. This purification was repeated three times.

The precipitate of ammonium diuranate was dissolved in 10 mL of 12 M HCl and then the solution was passed through an anion-exchange column [Muromac(R) 1 × 8, 200–400 mesh, 8 mm φ × 50 mm] to adsorb uranium. The resin adsorbing uranium was washed with 25 mL of 9 M HCl to eliminate thorium. The uranium was eluted from the column with 10 mL of 2 M HCl and precipitated by adding 15 M NH$_4$OH as ammonium diuranate. The precipitate was separated from the supernatant by centrifugation. This purification was repeated three times.

The accumulation for an α-particle spectrum for 600 s was repeated 20 times. The elapsed time from the elution of thorium to the start of measurement was about 15 min. After the above procedure for elution of 229Thm,g was performed 3 times, the 233U atoms were eluted from the column with 20 mL of 2 M HCl, and again absorbed to a new column to avoid the leak of 233U. The whole procedure was performed 9 times, so that a total of 27 α sources were measured.

The α-particle spectrometry was performed by using a SILENA Model 7937/B α-particle spectrometer and a 2048-channel pulse-height analyzer system assisted by a personal computer. The α-particle spectrometer was equipped with an ion-implanted planar silicon detector (Canberra, PD450-17-100AM). A counting source was placed at a distance of 3 cm from the detector and the counting efficiency was 3.4%.

III. RESULTS AND DISCUSSIONS

An α-particle spectrum obtained as the sum of the 27-sample spectra measured for the first 6000 s is shown in Fig. 2. The α peaks of 229Th, 228Th, and the daughters of 228Th are seen in the spectrum. The 229Th peak at 5423 keV has a full width at half maximum (FWHM) of about 25 keV. This resolution is sufficient to distinguish between α lines of 229Thg and those of 229Thm.

A magnification of the α-particle spectrum in Fig. 2 for the region related to 229Th is shown in Fig. 3. The solid circles show a spectrum measured for the first 6000 s, and the open circles show a spectrum measured for the next 6000 s. The solid line shows a 229Thg spectrum estimated from the region of the main peak of 229Thg, which does not contain the component of 229Thm, and the linear background continuum. The component in the low-energy side of 229Th is due to 233U that passed through the anion-exchange column. From 1 h growth of 229Th in a 93 mg sample of 233U and using 27 such samples, we estimate 1800 counts due to 229Thg in an α spectrum measured with 3.4% efficiency for 6000 s.
FIG. 3. A magnification of the α-particle spectrum for the region related to 229Th. The solid circles show counts per channel for the initial 6000 s and the open circles show counts per channel for the following 6000 s. The lines drawn in the figures are the same as those in Fig. 1 (see text for detail).

By contrast, obtained counts of 229Th$^\alpha$ were 1700 counts per 6000 s. The obtained counts are compatible with the expected counts considering the chemical yield in purification procedures. The ratio of the α counts of 229Th$^\alpha$/228Th was about 1/30, which is consistent with the ratio of the α counts of 229Th$^\alpha$ ($T_{1/2} = 7880$ y [13]) and 228Th ($T_{1/2} = 1.9116$ y [10]) estimated from the 233U ($T_{1/2} = 1.592 \times 10^5$ y [10]) atoms containing the 232U ($T_{1/2} = 68.9$ y [10]) atoms at 3.17 ppm. The dashed line shows a spectrum that is the sum of the ROI counts with various half-life values expected as 6000 s, respectively. The solid lines show the growth curves of the ROI counts with the upper limit of the short-lived case in Ref. [6], namely, 6 h.

FIG. 4. Estimated growth curves in α counts in the energy region of the 229Thm α particle. Each of the six solid curves represents the expected counts of 229Thm with a half-life between 10 min and 20 d. The solid and open circles indicate the 229Thm α counts of the spectrum measured for the initial 6000 s and those for the following 6000 s, respectively.

where N_m, N_g, and N_{233} are the numbers of 229Thm, 229Th$^\alpha$, and 233U, respectively, and λ_m, λ_g, and λ_{233} are the decay constants of 229Thm, 229Th$^\alpha$, and 233U, respectively, and br_m is the branching ratio of the decay of 233U via 229Thm. And then the 229Thm component disintegrates to 229Th$^\alpha$ according to its half-life. Here, the ROI counts are given by

$$ROI\ counts = \text{eff} \left\{ I_m \lambda_m N_m(t) + I_g \lambda_g N_g(t) \right\} + BKG, \quad (3)$$

where eff is the total efficiency, which is 3.4% in this case, I_m and I_g are the intensities of 229Thm and 229Th$^\alpha$ in the ROI region, respectively, λ_m is the partial α-decay constant of 229Thm, and BKG is the constant-background counts in the ROI region. The partial half-life of α decay of 229Thm is estimated to be 2000 y from Refs. [7,11]. According to Refs. [10,11], the ratio of I_m to I_g is 22.8 : 1. The value of $\text{eff} \{ \lambda_g N_g(t) \} + BKG$ is fitted to the solid line in Fig. 3.

The result is consistent with the upper limit of the short-lived case in Ref. [6], namely, 6 h.

We note that the half-life of 229Thm may change depending on its chemical form. In this study, the 229Th atoms formed chloride complexes before the α-source preparation and then hydroxides for α-particle spectrum accumulation. Therefore, the present results show the half-life of 229Thm is less than 2 h under the chemical condition of at least either chloride or hydroxide.
given by the following equation:

\[
\lambda = \frac{\ln 2}{T_{1/2}} = \frac{8\pi (L+1)}{L[(2L+1)!]^2} E_\gamma^{2L+1} B(ML),
\]

(4)

where \(T_{1/2}\) is the half-life of a nuclear transition, \(L\) is the multipolarity, \(E_\gamma\) is an excited energy of a level, and \(B(ML)\) is the reduced transition probability of the nucleus. The excitation energies of \(^{229}\text{Th}\) were reported to be \(3.5 \pm 1.0\) eV [1], \(3.4 \pm 1.8\) eV [2], 5.5 \(\pm 1.0\) eV [3], and 7.6 \(\pm 0.5\) eV [4]. However, the reduced transition probability of \(^{229}\text{Th}\) to \(^{229}\text{Th}\)\(^*\), \(B(ML; +3/2 \rightarrow +5/2)\), was estimated to be \(0.043 \mu^2\) [2]. Hence, the partial half-life \(T_{1/2}\) for direct photon emission is estimated to be between \(29\) min and \(16\) h in the energy range from \(2.5\) to \(8.1\) eV in a vacuum in the framework of a single-particle transition model.

The partial half-life of less than \(2\) h corresponds to the excitation energy of higher than \(5\) eV. Therefore, if the excitation energy of \(^{229}\text{Th}\) is lower than \(5\) eV, for example, \(3.5\) eV as reported in Ref. [1], the present results suggest that \(^{229}\text{Th}\) should decay via not only the direct photon emission but also other decay channels, such as an electron bridge mechanism [14] and a medium effect [5]. In contrast, assuming that the excitation energy of \(^{229}\text{Th}\) is larger than \(5\) eV, the obtained limit of the half-life of \(^{229}\text{Th}\) can be explained even if the decay occurs only via the direct photon emission. In other words, the half-life of \(^{229}\text{Th}\) should be shorter than \(2\) h regardless of the chemical forms of Th for this excitation energy. In particular, if the excitation energy is larger than an electron-binding energy of the outer valence molecular orbital of Th and its compounds, the internal conversion process is possible and the half-life is not to be significantly changed by the variation of chemical form; therefore, the half-life of shorter than \(6\) h [6] gives agreement with the present results whereas those of longer than \(20\) d [6] and \(13.9 \pm 3\) h [7] fall outside of the limits of the results.

In conclusion, we have searched for the \(\alpha\) events from \(^{229}\text{Th}\) produced from \(93\) mg of \(^{233}\text{U}\) by \(\alpha\)-particle spectrometry with rapid source preparation. From the upper limit of such events, it was concluded that the half-life of \(^{229}\text{Th}\) may be less than \(2\) h. The excitation energy is strongly expected to be determined more accurately by direct photon emission. If one attempts to detect the photon of isomeric transition from \(^{229}\text{Th}\) with excitation energy higher than the electron-binding energy of Th compounds, as the most recent value \(7.6 \pm 0.5\) eV [4], the experimental design for it should be based on the assumption that \(^{229}\text{Th}\) has a half-life shorter than a few hours.

ACKNOWLEDGMENTS

This study was carried out under the Cooperative Research Program of the International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University.